Go to the documentation of this file.
206 unsigned long dest_len = uncompressed_size;
208 if (uncompress(td->
tmp, &dest_len,
src, compressed_size) != Z_OK ||
209 dest_len != uncompressed_size)
214 s->dsp.predictor(td->
tmp, uncompressed_size);
221 int compressed_size,
int uncompressed_size)
224 const int8_t *
s =
src;
225 int ssize = compressed_size;
226 int dsize = uncompressed_size;
227 uint8_t *dend = d + dsize;
236 if ((dsize -= count) < 0 ||
237 (ssize -= count + 1) < 0)
245 if ((dsize -= count) < 0 ||
265 rle(td->
tmp,
src, compressed_size, uncompressed_size);
269 ctx->dsp.predictor(td->
tmp, uncompressed_size);
275 #define USHORT_RANGE (1 << 16)
276 #define BITMAP_SIZE (1 << 13)
283 if ((
i == 0) || (bitmap[
i >> 3] & (1 << (
i & 7))))
297 for (
i = 0;
i < dsize; ++
i)
301 #define HUF_ENCBITS 16 // literal (value) bit length
302 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
306 uint64_t
c, n[59] = { 0 };
313 for (
i = 58;
i > 0; --
i) {
314 uint64_t nc = ((
c + n[
i]) >> 1);
323 freq[
i] = l | (n[l]++ << 6);
327 #define SHORT_ZEROCODE_RUN 59
328 #define LONG_ZEROCODE_RUN 63
329 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
330 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
340 for (; im <= iM; im++) {
349 if (im + zerun > iM + 1)
359 if (im + zerun > iM + 1)
381 for (
int i = im;
i < iM;
i++) {
385 if (td->
he[j].
len > 32) {
389 if (td->
he[j].
len > 0)
407 if (td->
he[j].
len > 32) {
416 &td->
he[0].
len,
sizeof(td->
he[0]),
sizeof(td->
he[0].
len),
418 &td->
he[0].
sym,
sizeof(td->
he[0]),
sizeof(td->
he[0].
sym), 0);
422 int no, uint16_t *
out)
435 if (oe == 0 || oe +
run > no)
453 uint16_t *
dst,
int dst_size)
459 im = bytestream2_get_le32(gb);
460 iM = bytestream2_get_le32(gb);
462 nBits = bytestream2_get_le32(gb);
473 if (!td->
freq || !td->
he) {
492 static inline void wdec14(uint16_t l, uint16_t
h, uint16_t *
a, uint16_t *
b)
497 int ai = ls + (hi & 1) + (hi >> 1);
499 int16_t bs = ai - hi;
506 #define A_OFFSET (1 << (NBITS - 1))
507 #define MOD_MASK ((1 << NBITS) - 1)
509 static inline void wdec16(uint16_t l, uint16_t
h, uint16_t *
a, uint16_t *
b)
520 int ny,
int oy, uint16_t
mx)
522 int w14 = (
mx < (1 << 14));
523 int n = (nx > ny) ? ny : nx;
536 uint16_t *ey = in + oy * (ny - p2);
537 uint16_t i00, i01, i10, i11;
543 for (; py <= ey; py += oy2) {
545 uint16_t *ex = py + ox * (nx - p2);
547 for (; px <= ex; px += ox2) {
548 uint16_t *p01 = px + ox1;
549 uint16_t *p10 = px + oy1;
550 uint16_t *p11 = p10 + ox1;
553 wdec14(*px, *p10, &i00, &i10);
554 wdec14(*p01, *p11, &i01, &i11);
555 wdec14(i00, i01, px, p01);
556 wdec14(i10, i11, p10, p11);
558 wdec16(*px, *p10, &i00, &i10);
559 wdec16(*p01, *p11, &i01, &i11);
560 wdec16(i00, i01, px, p01);
561 wdec16(i10, i11, p10, p11);
566 uint16_t *p10 = px + oy1;
569 wdec14(*px, *p10, &i00, p10);
571 wdec16(*px, *p10, &i00, p10);
579 uint16_t *ex = py + ox * (nx - p2);
581 for (; px <= ex; px += ox2) {
582 uint16_t *p01 = px + ox1;
585 wdec14(*px, *p01, &i00, p01);
587 wdec16(*px, *p01, &i00, p01);
602 uint16_t maxval, min_non_zero, max_non_zero;
604 uint16_t *
tmp = (uint16_t *)td->
tmp;
623 min_non_zero = bytestream2_get_le16(&gb);
624 max_non_zero = bytestream2_get_le16(&gb);
630 if (min_non_zero <= max_non_zero)
632 max_non_zero - min_non_zero + 1);
643 for (
i = 0;
i <
s->nb_channels;
i++) {
651 for (j = 0; j < pixel_half_size; j++)
653 td->
xsize * pixel_half_size, maxval);
654 ptr += td->
xsize * td->
ysize * pixel_half_size;
662 for (j = 0; j <
s->nb_channels; j++) {
670 tmp_offset += pixel_half_size;
673 s->bbdsp.bswap16_buf(
out, in, td->
xsize * pixel_half_size);
675 memcpy(
out, in, td->
xsize * 2 * pixel_half_size);
685 int compressed_size,
int uncompressed_size,
688 unsigned long dest_len, expected_len = 0;
689 const uint8_t *in = td->
tmp;
693 for (
i = 0;
i <
s->nb_channels;
i++) {
696 }
else if (
s->channels[
i].pixel_type ==
EXR_HALF) {
703 dest_len = expected_len;
705 if (uncompress(td->
tmp, &dest_len,
src, compressed_size) != Z_OK) {
707 }
else if (dest_len != expected_len) {
713 for (
c = 0;
c <
s->nb_channels;
c++) {
715 const uint8_t *ptr[4];
721 ptr[1] = ptr[0] + td->
xsize;
722 ptr[2] = ptr[1] + td->
xsize;
723 in = ptr[2] + td->
xsize;
725 for (j = 0; j < td->
xsize; ++j) {
726 uint32_t
diff = ((unsigned)*(ptr[0]++) << 24) |
727 (*(ptr[1]++) << 16) |
735 ptr[1] = ptr[0] + td->
xsize;
736 in = ptr[1] + td->
xsize;
737 for (j = 0; j < td->
xsize; j++) {
738 uint32_t
diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
746 ptr[1] = ptr[0] +
s->xdelta;
747 ptr[2] = ptr[1] +
s->xdelta;
748 ptr[3] = ptr[2] +
s->xdelta;
749 in = ptr[3] +
s->xdelta;
751 for (j = 0; j <
s->xdelta; ++j) {
752 uint32_t
diff = ((uint32_t)*(ptr[0]++) << 24) |
753 (*(ptr[1]++) << 16) |
754 (*(ptr[2]++) << 8 ) |
770 uint16_t
shift = (
b[ 2] >> 2) & 15;
774 s[ 0] = (
b[0] << 8) |
b[1];
776 s[ 4] =
s[ 0] + ((((
b[ 2] << 4) | (
b[ 3] >> 4)) & 0x3f) <<
shift) -
bias;
777 s[ 8] =
s[ 4] + ((((
b[ 3] << 2) | (
b[ 4] >> 6)) & 0x3f) <<
shift) -
bias;
781 s[ 5] =
s[ 4] + ((((
b[ 5] << 4) | (
b[ 6] >> 4)) & 0x3f) <<
shift) -
bias;
782 s[ 9] =
s[ 8] + ((((
b[ 6] << 2) | (
b[ 7] >> 6)) & 0x3f) <<
shift) -
bias;
786 s[ 6] =
s[ 5] + ((((
b[ 8] << 4) | (
b[ 9] >> 4)) & 0x3f) <<
shift) -
bias;
787 s[10] =
s[ 9] + ((((
b[ 9] << 2) | (
b[10] >> 6)) & 0x3f) <<
shift) -
bias;
791 s[ 7] =
s[ 6] + ((((
b[11] << 4) | (
b[12] >> 4)) & 0x3f) <<
shift) -
bias;
792 s[11] =
s[10] + ((((
b[12] << 2) | (
b[13] >> 6)) & 0x3f) <<
shift) -
bias;
795 for (
i = 0;
i < 16; ++
i) {
807 s[0] = (
b[0] << 8) |
b[1];
814 for (
i = 1;
i < 16;
i++)
821 const int8_t *sr =
src;
822 int stay_to_uncompress = compressed_size;
823 int nb_b44_block_w, nb_b44_block_h;
824 int index_tl_x, index_tl_y, index_out, index_tmp;
825 uint16_t tmp_buffer[16];
827 int target_channel_offset = 0;
830 nb_b44_block_w = td->
xsize / 4;
831 if ((td->
xsize % 4) != 0)
834 nb_b44_block_h = td->
ysize / 4;
835 if ((td->
ysize % 4) != 0)
838 for (
c = 0;
c <
s->nb_channels;
c++) {
840 for (iY = 0; iY < nb_b44_block_h; iY++) {
841 for (iX = 0; iX < nb_b44_block_w; iX++) {
842 if (stay_to_uncompress < 3)
845 if (
src[compressed_size - stay_to_uncompress + 2] == 0xfc) {
848 stay_to_uncompress -= 3;
850 if (stay_to_uncompress < 14)
854 stay_to_uncompress -= 14;
861 for (y = index_tl_y; y <
FFMIN(index_tl_y + 4, td->
ysize); y++) {
862 for (x = index_tl_x; x <
FFMIN(index_tl_x + 4, td->
xsize); x++) {
864 index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
871 target_channel_offset += 2;
873 if (stay_to_uncompress < td->ysize * td->
xsize * 4)
876 for (y = 0; y < td->
ysize; y++) {
881 target_channel_offset += 4;
883 stay_to_uncompress -= td->
ysize * td->
xsize * 4;
899 }
else if ((
val >> 8) == 0xff) {
921 float alpha[4], beta[4], theta[4], gamma[4];
939 gamma[0] = theta[0] + theta[1];
940 gamma[1] = theta[3] + theta[2];
941 gamma[2] = theta[3] - theta[2];
942 gamma[3] = theta[0] - theta[1];
944 blk[0 *
step] = gamma[0] + beta[0];
945 blk[1 *
step] = gamma[1] + beta[1];
946 blk[2 *
step] = gamma[2] + beta[2];
947 blk[3 *
step] = gamma[3] + beta[3];
949 blk[4 *
step] = gamma[3] - beta[3];
950 blk[5 *
step] = gamma[2] - beta[2];
951 blk[6 *
step] = gamma[1] - beta[1];
952 blk[7 *
step] = gamma[0] - beta[0];
957 for (
int i = 0;
i < 8;
i++)
960 for (
int i = 0;
i < 8;
i++) {
967 float *
b,
float *
g,
float *
r)
969 *
r = y + 1.5747f * v;
970 *
g = y - 0.1873f *
u - 0.4682f * v;
971 *
b = y + 1.8556f *
u;
991 int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
992 int64_t ac_count, dc_count, ac_compression;
993 const int dc_w = td->
xsize >> 3;
994 const int dc_h = td->
ysize >> 3;
998 if (compressed_size <= 88)
1016 if ( compressed_size < (uint64_t)(lo_size | ac_size | dc_size | rle_csize) || compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize
1017 || ac_count > (uint64_t)INT_MAX/2
1022 skip = bytestream2_get_le16(&gb);
1029 if (lo_usize > uncompressed_size)
1035 unsigned long dest_len;
1038 if (ac_count > 3LL * td->
xsize *
s->scan_lines_per_block)
1041 dest_len = ac_count * 2LL;
1047 switch (ac_compression) {
1054 if (uncompress(td->
ac_data, &dest_len, agb.
buffer, ac_size) != Z_OK ||
1055 dest_len != ac_count * 2LL)
1066 unsigned long dest_len;
1069 if (dc_count != dc_w * dc_h * 3)
1072 dest_len = dc_count * 2LL;
1079 (dest_len != dc_count * 2LL))
1088 if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
1089 unsigned long dest_len = rle_usize;
1099 if (uncompress(td->
rle_data, &dest_len, gb.
buffer, rle_csize) != Z_OK ||
1100 (dest_len != rle_usize))
1111 for (
int y = 0; y < td->
ysize; y += 8) {
1112 for (
int x = 0; x < td->
xsize; x += 8) {
1115 for (
int j = 0; j < 3; j++) {
1117 const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
1123 block[0] = dc_val.f;
1129 const int o =
s->nb_channels == 4;
1131 y * td->
xsize *
s->nb_channels + td->
xsize * (o + 0) + x;
1133 y * td->
xsize *
s->nb_channels + td->
xsize * (o + 1) + x;
1135 y * td->
xsize *
s->nb_channels + td->
xsize * (o + 2) + x;
1136 float *yb = td->
block[0];
1138 float *vb = td->
block[2];
1140 for (
int yy = 0; yy < 8; yy++) {
1141 for (
int xx = 0; xx < 8; xx++) {
1142 const int idx = xx + yy * 8;
1144 convert(yb[idx],
ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
1151 bo += td->
xsize *
s->nb_channels;
1152 go += td->
xsize *
s->nb_channels;
1153 ro += td->
xsize *
s->nb_channels;
1159 if (
s->nb_channels < 4)
1167 for (
int x = 0; x < td->
xsize; x++) {
1168 uint16_t ha = ai0[x] | (ai1[x] << 8);
1178 int jobnr,
int threadnr)
1183 const uint8_t *channel_buffer[4] = { 0 };
1184 const uint8_t *buf =
s->buf;
1185 uint64_t line_offset, uncompressed_size;
1189 uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1191 int step =
s->desc->comp[0].step;
1192 int bxmin = 0, axmax = 0, window_xoffset = 0;
1193 int window_xmin, window_xmax, window_ymin, window_ymax;
1194 int data_xoffset, data_yoffset, data_window_offset, xsize, ysize;
1195 int i, x, buf_size =
s->buf_size;
1196 int c, rgb_channel_count;
1197 float one_gamma = 1.0f /
s->gamma;
1201 line_offset =
AV_RL64(
s->gb.buffer + jobnr * 8);
1204 if (buf_size < 20 || line_offset > buf_size - 20)
1207 src = buf + line_offset + 20;
1208 if (
s->is_multipart)
1217 if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1220 if (tile_level_x || tile_level_y) {
1225 if (tile_x &&
s->tile_attr.xSize + (
int64_t)
FFMAX(
s->xmin, 0) >= INT_MAX / tile_x )
1227 if (tile_y &&
s->tile_attr.ySize + (
int64_t)
FFMAX(
s->ymin, 0) >= INT_MAX / tile_y )
1230 line =
s->ymin +
s->tile_attr.ySize * tile_y;
1231 col =
s->tile_attr.xSize * tile_x;
1234 s->xmin + col < s->xmin ||
s->xmin + col >
s->xmax)
1237 td->
ysize =
FFMIN(
s->tile_attr.ySize,
s->ydelta - tile_y *
s->tile_attr.ySize);
1238 td->
xsize =
FFMIN(
s->tile_attr.xSize,
s->xdelta - tile_x *
s->tile_attr.xSize);
1240 if (td->
xsize * (uint64_t)
s->current_channel_offset > INT_MAX ||
1247 if (buf_size < 8 || line_offset > buf_size - 8)
1250 src = buf + line_offset + 8;
1251 if (
s->is_multipart)
1259 if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1265 if (td->
xsize * (uint64_t)
s->current_channel_offset > INT_MAX ||
1272 if ((
s->compression ==
EXR_RAW && (data_size != uncompressed_size ||
1273 line_offset > buf_size - uncompressed_size)) ||
1274 (
s->compression !=
EXR_RAW && (data_size > uncompressed_size ||
1275 line_offset > buf_size - data_size))) {
1284 xsize = window_xmax - window_xmin;
1285 ysize = window_ymax - window_ymin;
1288 if (xsize <= 0 || ysize <= 0)
1295 window_xoffset =
FFMAX(0,
s->xmin);
1297 bxmin = window_xoffset *
step;
1301 if(col + td->
xsize ==
s->xdelta) {
1302 window_xmax = avctx->
width;
1310 if (data_size < uncompressed_size || s->is_tile) {
1316 if (data_size < uncompressed_size) {
1324 switch (
s->compression) {
1359 if (
s->channel_offsets[3] >= 0)
1360 channel_buffer[3] =
src + (td->
xsize *
s->channel_offsets[3]) + data_window_offset;
1362 channel_buffer[0] =
src + (td->
xsize *
s->channel_offsets[0]) + data_window_offset;
1363 channel_buffer[1] =
src + (td->
xsize *
s->channel_offsets[1]) + data_window_offset;
1364 channel_buffer[2] =
src + (td->
xsize *
s->channel_offsets[2]) + data_window_offset;
1365 rgb_channel_count = 3;
1367 channel_buffer[0] =
src + (td->
xsize *
s->channel_offsets[1]) + data_window_offset;
1369 channel_buffer[1] = channel_buffer[3];
1370 rgb_channel_count = 1;
1374 for (
c = 0;
c <
s->desc->nb_components;
c++) {
1375 int plane =
s->desc->comp[
c].plane;
1376 ptr = p->
data[plane] + window_ymin * p->
linesize[plane] + (window_xmin *
step) +
s->desc->comp[
c].offset;
1379 const uint8_t *
src = channel_buffer[
c];
1380 uint8_t *ptr_x = ptr + window_xoffset *
step;
1384 memset(ptr, 0, bxmin);
1391 for (
int x = 0; x < xsize; x++, ptr_x +=
step) {
1395 }
else if (one_gamma != 1.
f) {
1396 for (
int x = 0; x < xsize; x++, ptr_x +=
step) {
1398 if (
f > 0.0
f &&
c < 3)
1403 for (
int x = 0; x < xsize; x++, ptr_x +=
step)
1409 for (
int x = 0; x < xsize; x++, ptr_x +=
step)
1410 AV_WN16A(ptr_x,
s->gamma_table[bytestream_get_le16(&
src)]);
1412 for (
int x = 0; x < xsize; x++, ptr_x +=
step)
1418 memset(ptr_x, 0, axmax);
1425 ptr = p->
data[0] + window_ymin * p->
linesize[0] + (window_xmin *
s->desc->nb_components * 2);
1427 for (
i = 0;
i < ysize;
i++, ptr += p->
linesize[0]) {
1430 const uint8_t *
rgb[3];
1433 for (
c = 0;
c < rgb_channel_count;
c++) {
1434 rgb[
c] = channel_buffer[
c];
1437 if (channel_buffer[3])
1438 a = channel_buffer[3];
1440 ptr_x = (uint16_t *) ptr;
1443 memset(ptr_x, 0, bxmin);
1444 ptr_x += window_xoffset *
s->desc->nb_components;
1446 for (x = 0; x < xsize; x++) {
1447 for (
c = 0;
c < rgb_channel_count;
c++) {
1448 *ptr_x++ = bytestream_get_le32(&
rgb[
c]) >> 16;
1451 if (channel_buffer[3])
1452 *ptr_x++ = bytestream_get_le32(&
a) >> 16;
1456 memset(ptr_x, 0, axmax);
1461 if (channel_buffer[3])
1474 if (!bytestream2_peek_byte(gb))
1478 for (
int i = 0;
i < 2;
i++)
1479 while (bytestream2_get_byte(gb) != 0);
1499 const char *value_name,
1500 const char *value_type,
1501 unsigned int minimum_length)
1507 !strcmp(gb->
buffer, value_name)) {
1509 gb->
buffer += strlen(value_name) + 1;
1510 if (!strcmp(gb->
buffer, value_type)) {
1511 gb->
buffer += strlen(value_type) + 1;
1512 var_size = bytestream2_get_le32(gb);
1518 gb->
buffer -= strlen(value_name) + 1;
1520 "Unknown data type %s for header variable %s.\n",
1521 value_type, value_name);
1533 int layer_match = 0;
1535 int dup_channels = 0;
1537 s->current_channel_offset = 0;
1544 s->channel_offsets[0] = -1;
1545 s->channel_offsets[1] = -1;
1546 s->channel_offsets[2] = -1;
1547 s->channel_offsets[3] = -1;
1553 s->tile_attr.xSize = -1;
1554 s->tile_attr.ySize = -1;
1556 s->is_multipart = 0;
1558 s->current_part = 0;
1565 magic_number = bytestream2_get_le32(gb);
1566 if (magic_number != 20000630) {
1573 version = bytestream2_get_byte(gb);
1579 flags = bytestream2_get_le24(gb);
1584 s->is_multipart = 1;
1594 while (
s->is_multipart &&
s->current_part <
s->selected_part &&
1596 if (bytestream2_peek_byte(gb)) {
1600 if (!bytestream2_peek_byte(gb))
1607 if (!bytestream2_peek_byte(gb)) {
1608 if (!
s->is_multipart)
1611 if (
s->current_part ==
s->selected_part) {
1613 if (bytestream2_peek_byte(gb)) {
1617 if (!bytestream2_peek_byte(gb))
1622 if (!bytestream2_peek_byte(gb))
1628 "chlist", 38)) >= 0) {
1640 int channel_index = -1;
1643 if (strcmp(
s->layer,
"") != 0) {
1644 if (strncmp(ch_gb.
buffer,
s->layer, strlen(
s->layer)) == 0) {
1647 "Channel match layer : %s.\n", ch_gb.
buffer);
1648 ch_gb.
buffer += strlen(
s->layer);
1649 if (*ch_gb.
buffer ==
'.')
1654 "Channel doesn't match layer : %s.\n", ch_gb.
buffer);
1682 "Unsupported channel %.256s.\n", ch_gb.
buffer);
1688 bytestream2_get_byte(&ch_gb))
1697 current_pixel_type = bytestream2_get_le32(&ch_gb);
1700 current_pixel_type);
1706 xsub = bytestream2_get_le32(&ch_gb);
1707 ysub = bytestream2_get_le32(&ch_gb);
1709 if (xsub != 1 || ysub != 1) {
1711 "Subsampling %dx%d",
1717 if (channel_index >= 0 &&
s->channel_offsets[channel_index] == -1) {
1719 s->pixel_type != current_pixel_type) {
1721 "RGB channels not of the same depth.\n");
1725 s->pixel_type = current_pixel_type;
1726 s->channel_offsets[channel_index] =
s->current_channel_offset;
1727 }
else if (channel_index >= 0) {
1729 "Multiple channels with index %d.\n", channel_index);
1730 if (++dup_channels > 10) {
1742 channel = &
s->channels[
s->nb_channels - 1];
1743 channel->pixel_type = current_pixel_type;
1747 if (current_pixel_type ==
EXR_HALF) {
1748 s->current_channel_offset += 2;
1750 s->current_channel_offset += 4;
1757 if (
FFMIN3(
s->channel_offsets[0],
1758 s->channel_offsets[1],
1759 s->channel_offsets[2]) < 0) {
1760 if (
s->channel_offsets[0] < 0)
1762 if (
s->channel_offsets[1] < 0)
1764 if (
s->channel_offsets[2] < 0)
1776 int xmin, ymin, xmax, ymax;
1782 xmin = bytestream2_get_le32(gb);
1783 ymin = bytestream2_get_le32(gb);
1784 xmax = bytestream2_get_le32(gb);
1785 ymax = bytestream2_get_le32(gb);
1787 if (xmin > xmax || ymin > ymax ||
1788 ymax == INT_MAX || xmax == INT_MAX ||
1789 (
unsigned)xmax - xmin >= INT_MAX ||
1790 (
unsigned)ymax - ymin >= INT_MAX) {
1798 s->xdelta = (
s->xmax -
s->xmin) + 1;
1799 s->ydelta = (
s->ymax -
s->ymin) + 1;
1803 "box2i", 34)) >= 0) {
1811 sx = bytestream2_get_le32(gb);
1812 sy = bytestream2_get_le32(gb);
1813 dx = bytestream2_get_le32(gb);
1814 dy = bytestream2_get_le32(gb);
1816 s->w = (unsigned)dx - sx + 1;
1817 s->h = (unsigned)dy - sy + 1;
1821 "lineOrder", 25)) >= 0) {
1828 line_order = bytestream2_get_byte(gb);
1830 if (line_order > 2) {
1838 "float", 31)) >= 0) {
1844 s->sar = bytestream2_get_le32(gb);
1848 "compression", 29)) >= 0) {
1855 s->compression = bytestream2_get_byte(gb);
1859 "Found more than one compression attribute.\n");
1864 "tiledesc", 22)) >= 0) {
1869 "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1871 s->tile_attr.xSize = bytestream2_get_le32(gb);
1872 s->tile_attr.ySize = bytestream2_get_le32(gb);
1874 tileLevel = bytestream2_get_byte(gb);
1875 s->tile_attr.level_mode = tileLevel & 0x0f;
1876 s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1880 s->tile_attr.level_mode);
1887 s->tile_attr.level_round);
1894 "string", 1)) >= 0) {
1895 uint8_t
key[256] = { 0 };
1902 "rational", 33)) >= 0) {
1908 s->avctx->framerate.num = bytestream2_get_le32(gb);
1909 s->avctx->framerate.den = bytestream2_get_le32(gb);
1915 s->chunk_count = bytestream2_get_le32(gb);
1919 "string", 16)) >= 0) {
1920 uint8_t
key[256] = { 0 };
1923 if (strncmp(
"scanlineimage",
key, var_size) &&
1924 strncmp(
"tiledimage",
key, var_size)) {
1931 "preview", 16)) >= 0) {
1932 uint32_t pw = bytestream2_get_le32(gb);
1933 uint32_t
ph = bytestream2_get_le32(gb);
1934 uint64_t psize = pw * (uint64_t)
ph;
1935 if (psize > INT64_MAX / 4) {
1960 uint8_t
name[256] = { 0 };
1961 uint8_t
type[256] = { 0 };
1962 uint8_t
value[8192] = { 0 };
1966 bytestream2_peek_byte(gb) &&
i < 255) {
1967 name[
i++] = bytestream2_get_byte(gb);
1973 bytestream2_peek_byte(gb) &&
i < 255) {
1974 type[
i++] = bytestream2_get_byte(gb);
1977 size = bytestream2_get_le32(gb);
1982 if (!strcmp(
type,
"string"))
1994 if (
s->tile_attr.xSize < 1 ||
s->tile_attr.ySize < 1) {
2007 frame->metadata = metadata;
2024 int i, y,
ret, ymax;
2028 uint64_t start_offset_table;
2029 uint64_t start_next_scanline;
2038 s->current_channel_offset *= 2;
2039 for (
int i = 0;
i < 4;
i++)
2040 s->channel_offsets[
i] *= 2;
2043 switch (
s->pixel_type) {
2046 if (
s->channel_offsets[3] >= 0) {
2062 if (
s->channel_offsets[3] >= 0) {
2077 if (
s->channel_offsets[3] >= 0) {
2098 else if (
s->gamma > 0.9999f &&
s->gamma < 1.0001f)
2101 switch (
s->compression) {
2105 s->scan_lines_per_block = 1;
2109 s->scan_lines_per_block = 16;
2115 s->scan_lines_per_block = 32;
2118 s->scan_lines_per_block = 256;
2127 if (
s->xmin >
s->xmax ||
s->ymin >
s->ymax ||
2128 s->ydelta == 0xFFFFFFFF ||
s->xdelta == 0xFFFFFFFF) {
2146 out_line_size = avctx->
width *
s->desc->comp[0].step;
2149 nb_blocks = ((
s->xdelta +
s->tile_attr.xSize - 1) /
s->tile_attr.xSize) *
2150 ((
s->ydelta +
s->tile_attr.ySize - 1) /
s->tile_attr.ySize);
2152 nb_blocks = (
s->ydelta +
s->scan_lines_per_block - 1) /
2153 s->scan_lines_per_block;
2163 if (!
s->is_tile && bytestream2_peek_le64(gb) == 0) {
2169 if (!
s->offset_table)
2173 start_next_scanline = start_offset_table + nb_blocks * 8;
2176 for (y = 0; y < nb_blocks; y++) {
2178 bytestream2_put_le64(&offset_table_writer, start_next_scanline);
2182 start_next_scanline += (bytestream2_get_le32(gb) + 8);
2188 s->buf = avpkt->
data;
2189 s->buf_size = avpkt->
size;
2193 ptr = picture->
data[
i];
2194 for (y = 0; y <
FFMIN(
s->ymin,
s->h); y++) {
2195 memset(ptr, 0, out_line_size);
2200 s->picture = picture;
2204 ymax =
FFMAX(0,
s->ymax + 1);
2206 if (ymax < avctx->
height)
2209 for (y = ymax; y < avctx->
height; y++) {
2210 memset(ptr, 0, out_line_size);
2226 float one_gamma = 1.0
f /
s->gamma;
2242 for (
i = 0;
i < 65536; ++
i) {
2244 t.
f = trc_func(t.
f);
2247 }
else if (one_gamma != 1.0
f) {
2248 for (
i = 0;
i < 65536; ++
i) {
2252 s->gamma_table[
i] =
i;
2254 t.
f =
powf(t.
f, one_gamma);
2262 if (!
s->thread_data)
2294 #define OFFSET(x) offsetof(EXRContext, x)
2295 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2297 {
"layer",
"Set the decoding layer",
OFFSET(layer),
2299 {
"part",
"Set the decoding part",
OFFSET(selected_part),
2301 {
"gamma",
"Set the float gamma value when decoding",
OFFSET(gamma),
2305 {
"apply_trc",
"color transfer characteristics to apply to EXR linear input",
OFFSET(apply_trc_type),
2307 {
"bt709",
"BT.709", 0,
2309 {
"gamma",
"gamma", 0,
2311 {
"gamma22",
"BT.470 M", 0,
2313 {
"gamma28",
"BT.470 BG", 0,
2315 {
"smpte170m",
"SMPTE 170 M", 0,
2317 {
"smpte240m",
"SMPTE 240 M", 0,
2319 {
"linear",
"Linear", 0,
2323 {
"log_sqrt",
"Log square root", 0,
2325 {
"iec61966_2_4",
"IEC 61966-2-4", 0,
2327 {
"bt1361",
"BT.1361", 0,
2329 {
"iec61966_2_1",
"IEC 61966-2-1", 0,
2331 {
"bt2020_10bit",
"BT.2020 - 10 bit", 0,
2333 {
"bt2020_12bit",
"BT.2020 - 12 bit", 0,
2335 {
"smpte2084",
"SMPTE ST 2084", 0,
2337 {
"smpte428_1",
"SMPTE ST 428-1", 0,
enum ExrTileLevelRound level_round
#define AV_LOG_WARNING
Something somehow does not look correct.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option name
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
AVColorTransferCharacteristic
Color Transfer Characteristic.
void ff_init_float2half_tables(Float2HalfTables *t)
#define u(width, name, range_min, range_max)
uint8_t * uncompressed_data
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
@ AVCOL_TRC_LINEAR
"Linear transfer characteristics"
static int decode_header(EXRContext *s, AVFrame *frame)
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
static int get_bits_count(const GetBitContext *s)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
static int decode_frame(AVCodecContext *avctx, AVFrame *picture, int *got_frame, AVPacket *avpkt)
static int FUNC() ph(CodedBitstreamContext *ctx, RWContext *rw, H266RawPH *current)
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
This structure describes decoded (raw) audio or video data.
@ AVCOL_TRC_NB
Not part of ABI.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
static av_cold int decode_init(AVCodecContext *avctx)
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
@ AVCOL_TRC_BT2020_12
ITU-R BT2020 for 12-bit system.
static int piz_uncompress(const EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
static av_always_inline uint32_t av_float2int(float f)
Reinterpret a float as a 32-bit integer.
static const AVOption options[]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
static int b44_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static int rle(uint8_t *dst, const uint8_t *src, int compressed_size, int uncompressed_size)
static void convert(float y, float u, float v, float *b, float *g, float *r)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
av_csp_trc_function av_csp_trc_func_from_id(enum AVColorTransferCharacteristic trc)
Determine the function needed to apply the given AVColorTransferCharacteristic to linear input.
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
EXRTileAttribute tile_attr
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t mx
AVCodec p
The public AVCodec.
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
@ AVCOL_TRC_IEC61966_2_1
IEC 61966-2-1 (sRGB or sYCC)
enum AVDiscard skip_frame
Skip decoding for selected frames.
static av_always_inline float av_int2float(uint32_t i)
Reinterpret a 32-bit integer as a float.
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
@ AVCOL_TRC_GAMMA28
also ITU-R BT470BG
static double val(void *priv, double ch)
#define AV_PIX_FMT_GRAYF16
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_PIX_FMT_GRAY16
@ AVCOL_TRC_LOG_SQRT
"Logarithmic transfer characteristic (100 * Sqrt(10) : 1 range)"
static __device__ float fabsf(float a)
const FFCodec ff_exr_decoder
static int huf_build_dec_table(const EXRContext *s, EXRThreadData *td, int im, int iM)
@ AVCOL_TRC_GAMMA22
also ITU-R BT470M / ITU-R BT1700 625 PAL & SECAM
int av_image_check_size2(unsigned int w, unsigned int h, int64_t max_pixels, enum AVPixelFormat pix_fmt, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of a plane of an image with...
static float to_linear(float x, float scale)
static av_cold int decode_end(AVCodecContext *avctx)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
enum ExrCompr compression
#define FF_CODEC_DECODE_CB(func)
static int check_header_variable(EXRContext *s, const char *value_name, const char *value_type, unsigned int minimum_length)
Check if the variable name corresponds to its data type.
static void huf_canonical_code_table(uint64_t *freq)
@ AVCOL_TRC_BT1361_ECG
ITU-R BT1361 Extended Colour Gamut.
int ff_thread_get_buffer(AVCodecContext *avctx, AVFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
int current_channel_offset
static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
enum ExrPixelType pixel_type
uint16_t gamma_table[65536]
int64_t max_pixels
The number of pixels per image to maximally accept.
#define SHORTEST_LONG_RUN
static void skip_header_chunk(EXRContext *s)
#define AV_PIX_FMT_GRAYF32
#define CODEC_LONG_NAME(str)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
const AVPixFmtDescriptor * desc
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
@ AVDISCARD_ALL
discard all
#define av_realloc_f(p, o, n)
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static int bias(int x, int c)
#define LONG_ZEROCODE_RUN
#define SHORT_ZEROCODE_RUN
@ AVCOL_TRC_IEC61966_2_4
IEC 61966-2-4.
const char * av_default_item_name(void *ptr)
Return the context name.
@ AV_PICTURE_TYPE_I
Intra.
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
av_cold void ff_exrdsp_init(ExrDSPContext *c)
@ AVCOL_TRC_BT2020_10
ITU-R BT2020 for 10-bit system.
static void unpack_14(const uint8_t b[14], uint16_t s[16])
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
#define AV_PIX_FMT_GBRPF16
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Float2HalfTables f2h_tables
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
static av_always_inline int bytestream2_tell(GetByteContext *g)
enum ExrPixelType pixel_type
enum ExrTileLevelMode level_mode
EXRThreadData * thread_data
enum AVPictureType pict_type
Picture type of the frame.
int(* init)(AVBSFContext *ctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static int dwa_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static int shift(int a, int b)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
@ AVCOL_TRC_LOG
"Logarithmic transfer characteristic (100:1 range)"
#define bytestream2_get_ne16
#define AV_PIX_FMT_GBRPF32
#define FF_CODEC_CAP_SKIP_FRAME_FILL_PARAM
The decoder extracts and fills its parameters even if the frame is skipped due to the skip_frame sett...
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static int ac_uncompress(const EXRContext *s, GetByteContext *gb, float *block)
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
static void idct_1d(float *blk, int step)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
enum AVColorTransferCharacteristic apply_trc_type
int ff_vlc_init_sparse(VLC *vlc, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
Build VLC decoding tables suitable for use with get_vlc2().
static void unpack_3(const uint8_t b[3], uint16_t s[16])
#define AV_LOG_INFO
Standard information.
@ AVCOL_TRC_BT709
also ITU-R BT1361
@ AV_OPT_TYPE_FLOAT
Underlying C type is float.
static void dct_inverse(float *block)
double(* av_csp_trc_function)(double)
Function pointer representing a double -> double transfer function that performs either an OETF trans...
Half2FloatTables h2f_tables
#define i(width, name, range_min, range_max)
#define av_malloc_array(a, b)
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
const char * name
Name of the codec implementation.
static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *freq)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
const uint8_t ff_zigzag_direct[64]
void ff_vlc_free(VLC *vlc)
static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym, int no, uint16_t *out)
static uint32_t half2float(uint16_t h, const Half2FloatTables *t)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
void ff_init_half2float_tables(Half2FloatTables *t)
static int rle_uncompress(const EXRContext *ctx, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static const struct @482 planes[]
static uint16_t float2half(uint32_t f, const Float2HalfTables *t)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
main external API structure.
static int pxr24_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
@ AV_OPT_TYPE_INT
Underlying C type is int.
#define AV_PIX_FMT_GBRAPF32
#define AV_PIX_FMT_GBRAPF16
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
@ AVCOL_TRC_SMPTE170M
also ITU-R BT601-6 525 or 625 / ITU-R BT1358 525 or 625 / ITU-R BT1700 NTSC
#define avpriv_request_sample(...)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static int huf_uncompress(const EXRContext *s, EXRThreadData *td, GetByteContext *gb, uint16_t *dst, int dst_size)
static void scale(int *out, const int *in, const int w, const int h, const int shift)
static const int16_t alpha[]
This structure stores compressed data.
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
static int zip_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
int width
picture width / height.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static const AVClass exr_class
@ AV_OPT_TYPE_STRING
Underlying C type is a uint8_t* that is either NULL or points to a C string allocated with the av_mal...
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
static void BS_FUNC() skip(BSCTX *bc, unsigned int n)
Skip n bits in the buffer.
The official guide to swscale for confused that consecutive non overlapping rectangles of slice_bottom special converter These generally are unscaled converters of common like for each output line the vertical scaler pulls lines from a ring buffer When the ring buffer does not contain the wanted line
void * av_realloc(void *ptr, size_t size)
Allocate, reallocate, or free a block of memory.