FFmpeg
hevcdec.c
Go to the documentation of this file.
1 /*
2  * HEVC video Decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2012 - 2013 Mickael Raulet
6  * Copyright (C) 2012 - 2013 Gildas Cocherel
7  * Copyright (C) 2012 - 2013 Wassim Hamidouche
8  *
9  * This file is part of FFmpeg.
10  *
11  * FFmpeg is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * FFmpeg is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with FFmpeg; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25 
26 #include "config_components.h"
27 
28 #include "libavutil/attributes.h"
29 #include "libavutil/avstring.h"
30 #include "libavutil/common.h"
33 #include "libavutil/internal.h"
34 #include "libavutil/md5.h"
35 #include "libavutil/mem.h"
36 #include "libavutil/opt.h"
37 #include "libavutil/pixdesc.h"
38 #include "libavutil/stereo3d.h"
39 #include "libavutil/tdrdi.h"
40 #include "libavutil/timecode.h"
41 
42 #include "aom_film_grain.h"
43 #include "bswapdsp.h"
44 #include "cabac_functions.h"
45 #include "codec_internal.h"
46 #include "decode.h"
47 #include "golomb.h"
48 #include "h274.h"
49 #include "hevc.h"
50 #include "parse.h"
51 #include "hevcdec.h"
52 #include "hwaccel_internal.h"
53 #include "hwconfig.h"
54 #include "internal.h"
55 #include "profiles.h"
56 #include "progressframe.h"
57 #include "libavutil/refstruct.h"
58 #include "thread.h"
59 #include "threadprogress.h"
60 
61 static const uint8_t hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
62 
63 /**
64  * NOTE: Each function hls_foo correspond to the function foo in the
65  * specification (HLS stands for High Level Syntax).
66  */
67 
68 /**
69  * Section 5.7
70  */
71 
72 /* free everything allocated by pic_arrays_init() */
74 {
75  av_freep(&l->sao);
76  av_freep(&l->deblock);
77 
78  av_freep(&l->skip_flag);
80 
81  av_freep(&l->tab_ipm);
82  av_freep(&l->cbf_luma);
83  av_freep(&l->is_pcm);
84 
85  av_freep(&l->qp_y_tab);
88 
90  av_freep(&l->vertical_bs);
91 
92  for (int i = 0; i < 3; i++) {
95  }
96 
99 }
100 
101 /* allocate arrays that depend on frame dimensions */
103 {
104  int log2_min_cb_size = sps->log2_min_cb_size;
105  int width = sps->width;
106  int height = sps->height;
107  int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
108  ((height >> log2_min_cb_size) + 1);
109  int ctb_count = sps->ctb_width * sps->ctb_height;
110  int min_pu_size = sps->min_pu_width * sps->min_pu_height;
111 
112  l->bs_width = (width >> 2) + 1;
113  l->bs_height = (height >> 2) + 1;
114 
115  l->sao = av_calloc(ctb_count, sizeof(*l->sao));
116  l->deblock = av_calloc(ctb_count, sizeof(*l->deblock));
117  if (!l->sao || !l->deblock)
118  goto fail;
119 
120  l->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
121  l->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
122  if (!l->skip_flag || !l->tab_ct_depth)
123  goto fail;
124 
125  l->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
126  l->tab_ipm = av_mallocz(min_pu_size);
127  l->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
128  if (!l->tab_ipm || !l->cbf_luma || !l->is_pcm)
129  goto fail;
130 
131  l->filter_slice_edges = av_mallocz(ctb_count);
132  l->tab_slice_address = av_malloc_array(pic_size_in_ctb,
133  sizeof(*l->tab_slice_address));
134  l->qp_y_tab = av_calloc(pic_size_in_ctb,
135  sizeof(*l->qp_y_tab));
136  if (!l->qp_y_tab || !l->filter_slice_edges || !l->tab_slice_address)
137  goto fail;
138 
141  if (!l->horizontal_bs || !l->vertical_bs)
142  goto fail;
143 
144  l->tab_mvf_pool = av_refstruct_pool_alloc(min_pu_size * sizeof(MvField), 0);
145  l->rpl_tab_pool = av_refstruct_pool_alloc(ctb_count * sizeof(RefPicListTab), 0);
146  if (!l->tab_mvf_pool || !l->rpl_tab_pool)
147  goto fail;
148 
149  if (sps->sao_enabled) {
150  int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
151 
152  for (int c_idx = 0; c_idx < c_count; c_idx++) {
153  int w = sps->width >> sps->hshift[c_idx];
154  int h = sps->height >> sps->vshift[c_idx];
155  l->sao_pixel_buffer_h[c_idx] =
156  av_mallocz((w * 2 * sps->ctb_height) <<
157  sps->pixel_shift);
158  l->sao_pixel_buffer_v[c_idx] =
159  av_mallocz((h * 2 * sps->ctb_width) <<
160  sps->pixel_shift);
161  if (!l->sao_pixel_buffer_h[c_idx] ||
162  !l->sao_pixel_buffer_v[c_idx])
163  goto fail;
164  }
165  }
166 
167  return 0;
168 
169 fail:
170  pic_arrays_free(l);
171  return AVERROR(ENOMEM);
172 }
173 
174 static int pred_weight_table(SliceHeader *sh, void *logctx,
175  const HEVCSPS *sps, GetBitContext *gb)
176 {
177  int i = 0;
178  int j = 0;
179  int luma_log2_weight_denom;
180  unsigned luma_weight_flags, chroma_weight_flags;
181 
182  luma_log2_weight_denom = get_ue_golomb_long(gb);
183  if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) {
184  av_log(logctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
185  return AVERROR_INVALIDDATA;
186  }
187  sh->luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
188  if (sps->chroma_format_idc != 0) {
189  int64_t chroma_log2_weight_denom = luma_log2_weight_denom + (int64_t)get_se_golomb(gb);
190  if (chroma_log2_weight_denom < 0 || chroma_log2_weight_denom > 7) {
191  av_log(logctx, AV_LOG_ERROR, "chroma_log2_weight_denom %"PRId64" is invalid\n", chroma_log2_weight_denom);
192  return AVERROR_INVALIDDATA;
193  }
194  sh->chroma_log2_weight_denom = chroma_log2_weight_denom;
195  }
196 
197  luma_weight_flags = get_bits(gb, sh->nb_refs[L0]);
198  chroma_weight_flags = sps->chroma_format_idc != 0 ? get_bits(gb, sh->nb_refs[L0]) : 0;
199  for (i = 0; i < sh->nb_refs[L0]; i++) {
200  unsigned flag_bit = 1 << (sh->nb_refs[L0] - 1 - i);
201 
202  if (luma_weight_flags & flag_bit) {
203  int delta_luma_weight_l0 = get_se_golomb(gb);
204  if ((int8_t)delta_luma_weight_l0 != delta_luma_weight_l0)
205  return AVERROR_INVALIDDATA;
206  sh->luma_weight_l0[i] = (1 << sh->luma_log2_weight_denom) + delta_luma_weight_l0;
207  sh->luma_offset_l0[i] = get_se_golomb(gb);
208  } else {
209  sh->luma_weight_l0[i] = 1 << sh->luma_log2_weight_denom;
210  sh->luma_offset_l0[i] = 0;
211  }
212  if (chroma_weight_flags & flag_bit) {
213  for (j = 0; j < 2; j++) {
214  int delta_chroma_weight_l0 = get_se_golomb(gb);
215  int delta_chroma_offset_l0 = get_se_golomb(gb);
216 
217  if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0
218  || delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) {
219  return AVERROR_INVALIDDATA;
220  }
221 
222  sh->chroma_weight_l0[i][j] = (1 << sh->chroma_log2_weight_denom) + delta_chroma_weight_l0;
223  sh->chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * sh->chroma_weight_l0[i][j])
224  >> sh->chroma_log2_weight_denom) + 128), -128, 127);
225  }
226  } else {
227  sh->chroma_weight_l0[i][0] = 1 << sh->chroma_log2_weight_denom;
228  sh->chroma_offset_l0[i][0] = 0;
229  sh->chroma_weight_l0[i][1] = 1 << sh->chroma_log2_weight_denom;
230  sh->chroma_offset_l0[i][1] = 0;
231  }
232  }
233  if (sh->slice_type == HEVC_SLICE_B) {
234  luma_weight_flags = get_bits(gb, sh->nb_refs[L1]);
235  chroma_weight_flags = sps->chroma_format_idc != 0 ? get_bits(gb, sh->nb_refs[L1]) : 0;
236  for (i = 0; i < sh->nb_refs[L1]; i++) {
237  unsigned flag_bit = 1 << (sh->nb_refs[L1] - 1 - i);
238 
239  if (luma_weight_flags & flag_bit) {
240  int delta_luma_weight_l1 = get_se_golomb(gb);
241  if ((int8_t)delta_luma_weight_l1 != delta_luma_weight_l1)
242  return AVERROR_INVALIDDATA;
243  sh->luma_weight_l1[i] = (1 << sh->luma_log2_weight_denom) + delta_luma_weight_l1;
244  sh->luma_offset_l1[i] = get_se_golomb(gb);
245  } else {
246  sh->luma_weight_l1[i] = 1 << sh->luma_log2_weight_denom;
247  sh->luma_offset_l1[i] = 0;
248  }
249  if (chroma_weight_flags & flag_bit) {
250  for (j = 0; j < 2; j++) {
251  int delta_chroma_weight_l1 = get_se_golomb(gb);
252  int delta_chroma_offset_l1 = get_se_golomb(gb);
253 
254  if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1
255  || delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) {
256  return AVERROR_INVALIDDATA;
257  }
258 
259  sh->chroma_weight_l1[i][j] = (1 << sh->chroma_log2_weight_denom) + delta_chroma_weight_l1;
260  sh->chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * sh->chroma_weight_l1[i][j])
261  >> sh->chroma_log2_weight_denom) + 128), -128, 127);
262  }
263  } else {
264  sh->chroma_weight_l1[i][0] = 1 << sh->chroma_log2_weight_denom;
265  sh->chroma_offset_l1[i][0] = 0;
266  sh->chroma_weight_l1[i][1] = 1 << sh->chroma_log2_weight_denom;
267  sh->chroma_offset_l1[i][1] = 0;
268  }
269  }
270  }
271  return 0;
272 }
273 
274 static int decode_lt_rps(const HEVCSPS *sps, LongTermRPS *rps,
275  GetBitContext *gb, int cur_poc, int poc_lsb)
276 {
277  int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
278  int prev_delta_msb = 0;
279  unsigned int nb_sps = 0, nb_sh;
280  int i;
281 
282  rps->nb_refs = 0;
283  if (!sps->long_term_ref_pics_present)
284  return 0;
285 
286  if (sps->num_long_term_ref_pics_sps > 0)
287  nb_sps = get_ue_golomb_long(gb);
288  nb_sh = get_ue_golomb_long(gb);
289 
290  if (nb_sps > sps->num_long_term_ref_pics_sps)
291  return AVERROR_INVALIDDATA;
292  if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
293  return AVERROR_INVALIDDATA;
294 
295  rps->nb_refs = nb_sh + nb_sps;
296 
297  for (i = 0; i < rps->nb_refs; i++) {
298 
299  if (i < nb_sps) {
300  uint8_t lt_idx_sps = 0;
301 
302  if (sps->num_long_term_ref_pics_sps > 1)
303  lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
304 
305  rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
306  rps->used[i] = !!(sps->used_by_curr_pic_lt & (1U << lt_idx_sps));
307  } else {
308  rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
309  rps->used[i] = get_bits1(gb);
310  }
311 
312  rps->poc_msb_present[i] = get_bits1(gb);
313  if (rps->poc_msb_present[i]) {
315  int64_t poc;
316 
317  if (i && i != nb_sps)
318  delta += prev_delta_msb;
319 
320  poc = rps->poc[i] + cur_poc - delta * max_poc_lsb - poc_lsb;
321  if (poc != (int32_t)poc)
322  return AVERROR_INVALIDDATA;
323  rps->poc[i] = poc;
324  prev_delta_msb = delta;
325  }
326  }
327 
328  return 0;
329 }
330 
332 {
333  AVCodecContext *avctx = s->avctx;
334  const HEVCVPS *vps = sps->vps;
335  const HEVCWindow *ow = &sps->output_window;
336  unsigned int num = 0, den = 0;
337 
338  avctx->pix_fmt = sps->pix_fmt;
339  avctx->coded_width = sps->width;
340  avctx->coded_height = sps->height;
341  avctx->width = sps->width - ow->left_offset - ow->right_offset;
342  avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
343  avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
344  avctx->profile = sps->ptl.general_ptl.profile_idc;
345  avctx->level = sps->ptl.general_ptl.level_idc;
346 
347  ff_set_sar(avctx, sps->vui.common.sar);
348 
349  if (sps->vui.common.video_signal_type_present_flag)
350  avctx->color_range = sps->vui.common.video_full_range_flag ? AVCOL_RANGE_JPEG
352  else
353  avctx->color_range = AVCOL_RANGE_MPEG;
354 
355  if (sps->vui.common.colour_description_present_flag) {
356  avctx->color_primaries = sps->vui.common.colour_primaries;
357  avctx->color_trc = sps->vui.common.transfer_characteristics;
358  avctx->colorspace = sps->vui.common.matrix_coeffs;
359  } else {
363  }
364 
366  if (sps->chroma_format_idc == 1) {
367  if (sps->vui.common.chroma_loc_info_present_flag) {
368  if (sps->vui.common.chroma_sample_loc_type_top_field <= 5)
369  avctx->chroma_sample_location = sps->vui.common.chroma_sample_loc_type_top_field + 1;
370  } else
372  }
373 
374  if (vps->vps_timing_info_present_flag) {
375  num = vps->vps_num_units_in_tick;
376  den = vps->vps_time_scale;
377  } else if (sps->vui.vui_timing_info_present_flag) {
378  num = sps->vui.vui_num_units_in_tick;
379  den = sps->vui.vui_time_scale;
380  }
381 
382  if (num > 0 && den > 0)
383  av_reduce(&avctx->framerate.den, &avctx->framerate.num,
384  num, den, 1 << 30);
385 }
386 
388 {
389  AVCodecContext *avctx = s->avctx;
390 
391 #if FF_API_CODEC_PROPS
393  if (s->sei.common.a53_caption.buf_ref)
394  s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
396 #endif
397 
398  if (s->sei.common.alternative_transfer.present &&
399  av_color_transfer_name(s->sei.common.alternative_transfer.preferred_transfer_characteristics) &&
400  s->sei.common.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
401  avctx->color_trc = s->sei.common.alternative_transfer.preferred_transfer_characteristics;
402  }
403 
404 #if FF_API_CODEC_PROPS
406  if ((s->sei.common.film_grain_characteristics && s->sei.common.film_grain_characteristics->present) ||
407  s->sei.common.aom_film_grain.enable)
410 #endif
411 
412  return 0;
413 }
414 
416 {
417  const HEVCSEITDRDI *tdrdi = &s->sei.tdrdi;
418 
419  av_freep(&s->view_ids_available);
420  s->nb_view_ids_available = 0;
421  av_freep(&s->view_pos_available);
422  s->nb_view_pos_available = 0;
423 
424  // don't export anything in the trivial case (1 layer, view id=0)
425  if (vps->nb_layers < 2 && !vps->view_id[0])
426  return 0;
427 
428  s->view_ids_available = av_calloc(vps->nb_layers, sizeof(*s->view_ids_available));
429  if (!s->view_ids_available)
430  return AVERROR(ENOMEM);
431 
432  if (tdrdi->num_ref_displays) {
433  s->view_pos_available = av_calloc(vps->nb_layers, sizeof(*s->view_pos_available));
434  if (!s->view_pos_available)
435  return AVERROR(ENOMEM);
436  }
437 
438  for (int i = 0; i < vps->nb_layers; i++) {
439  s->view_ids_available[i] = vps->view_id[i];
440 
441  if (s->view_pos_available) {
442  s->view_pos_available[i] = vps->view_id[i] == tdrdi->left_view_id[0] ?
444  vps->view_id[i] == tdrdi->right_view_id[0] ?
446  }
447  }
448  s->nb_view_ids_available = vps->nb_layers;
449  s->nb_view_pos_available = s->view_pos_available ? vps->nb_layers : 0;
450 
451  return 0;
452 }
453 
455 {
456  const HEVCVPS *vps = s->vps;
457  int ret = 0;
458 
459  if (vps->nb_layers != 2 || !vps->layer_id_in_nuh[1])
460  return 0;
461 
462  /* decode_vps_ext() guarantees that SCALABILITY_AUXILIARY with AuxId other
463  * than alpha cannot reach here.
464  */
465  ret = (s->vps->scalability_mask_flag & HEVC_SCALABILITY_AUXILIARY);
466 
467  av_log(s->avctx, AV_LOG_DEBUG, "Multi layer video, %s alpha video\n",
468  ret ? "is" : "not");
469 
470  return ret;
471 }
472 
474 {
475  unsigned layers_active_output = 0, highest_layer;
476 
477  s->layers_active_output = 1;
478  s->layers_active_decode = 1;
479 
480  if (ff_hevc_is_alpha_video(s)) {
481  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(s->avctx->pix_fmt);
482 
483  if (!(desc->flags & AV_PIX_FMT_FLAG_ALPHA))
484  return 0;
485 
486  s->layers_active_decode = (1 << vps->nb_layers) - 1;
487  s->layers_active_output = 1;
488 
489  return 0;
490  }
491 
492  // nothing requested - decode base layer only
493  if (!s->nb_view_ids)
494  return 0;
495 
496  if (s->nb_view_ids == 1 && s->view_ids[0] == -1) {
497  layers_active_output = (1 << vps->nb_layers) - 1;
498  } else {
499  for (int i = 0; i < s->nb_view_ids; i++) {
500  int view_id = s->view_ids[i];
501  int layer_idx = -1;
502 
503  if (view_id < 0) {
504  av_log(s->avctx, AV_LOG_ERROR,
505  "Invalid view ID requested: %d\n", view_id);
506  return AVERROR(EINVAL);
507  }
508 
509  for (int j = 0; j < vps->nb_layers; j++) {
510  if (vps->view_id[j] == view_id) {
511  layer_idx = j;
512  break;
513  }
514  }
515  if (layer_idx < 0) {
516  av_log(s->avctx, AV_LOG_ERROR,
517  "View ID %d not present in VPS\n", view_id);
518  return AVERROR(EINVAL);
519  }
520  layers_active_output |= 1 << layer_idx;
521  }
522  }
523 
524  if (!layers_active_output) {
525  av_log(s->avctx, AV_LOG_ERROR, "No layers selected\n");
526  return AVERROR_BUG;
527  }
528 
529  highest_layer = ff_log2(layers_active_output);
530  if (highest_layer >= FF_ARRAY_ELEMS(s->layers)) {
531  av_log(s->avctx, AV_LOG_ERROR,
532  "Too many layers requested: %u\n", layers_active_output);
533  return AVERROR(EINVAL);
534  }
535 
536  /* Assume a higher layer depends on all the lower ones.
537  * This is enforced in VPS parsing currently, this logic will need
538  * to be changed if we want to support more complex dependency structures.
539  */
540  s->layers_active_decode = (1 << (highest_layer + 1)) - 1;
541  s->layers_active_output = layers_active_output;
542 
543  av_log(s->avctx, AV_LOG_DEBUG, "decode/output layers: %x/%x\n",
544  s->layers_active_decode, s->layers_active_output);
545 
546  return 0;
547 }
548 
550  enum AVPixelFormat pix_fmt)
551 {
552  switch (pix_fmt) {
553  case AV_PIX_FMT_YUV420P:
554  case AV_PIX_FMT_YUVJ420P:
555  return AV_PIX_FMT_YUVA420P;
557  return AV_PIX_FMT_YUVA420P10;
558  case AV_PIX_FMT_YUV444P:
559  return AV_PIX_FMT_YUVA444P;
560  case AV_PIX_FMT_YUV422P:
561  return AV_PIX_FMT_YUVA422P;
565  return AV_PIX_FMT_YUVA444P10;
567  return AV_PIX_FMT_YUVA444P12;
569  return AV_PIX_FMT_YUVA422P12;
570  default:
571  av_log(s->avctx, AV_LOG_WARNING, "No alpha pixel format map for %s\n",
573  return AV_PIX_FMT_NONE;
574  }
575 }
576 
578 {
579 #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + \
580  CONFIG_HEVC_D3D11VA_HWACCEL * 2 + \
581  CONFIG_HEVC_D3D12VA_HWACCEL + \
582  CONFIG_HEVC_NVDEC_HWACCEL + \
583  CONFIG_HEVC_VAAPI_HWACCEL + \
584  CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL + \
585  CONFIG_HEVC_VDPAU_HWACCEL + \
586  CONFIG_HEVC_VULKAN_HWACCEL)
587  enum AVPixelFormat pix_fmts[HWACCEL_MAX + 3], *fmt = pix_fmts;
588  enum AVPixelFormat alpha_fmt = AV_PIX_FMT_NONE;
589  int ret;
590 
592  alpha_fmt = map_to_alpha_format(s, sps->pix_fmt);
593 
594  switch (sps->pix_fmt) {
595  case AV_PIX_FMT_YUV420P:
596  case AV_PIX_FMT_YUVJ420P:
597 #if CONFIG_HEVC_DXVA2_HWACCEL
598  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
599 #endif
600 #if CONFIG_HEVC_D3D11VA_HWACCEL
601  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
602  *fmt++ = AV_PIX_FMT_D3D11;
603 #endif
604 #if CONFIG_HEVC_D3D12VA_HWACCEL
605  *fmt++ = AV_PIX_FMT_D3D12;
606 #endif
607 #if CONFIG_HEVC_VAAPI_HWACCEL
608  *fmt++ = AV_PIX_FMT_VAAPI;
609 #endif
610 #if CONFIG_HEVC_VDPAU_HWACCEL
611  *fmt++ = AV_PIX_FMT_VDPAU;
612 #endif
613 #if CONFIG_HEVC_NVDEC_HWACCEL
614  *fmt++ = AV_PIX_FMT_CUDA;
615 #endif
616 #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
617  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
618 #endif
619 #if CONFIG_HEVC_VULKAN_HWACCEL
620  *fmt++ = AV_PIX_FMT_VULKAN;
621 #endif
622  break;
624 #if CONFIG_HEVC_DXVA2_HWACCEL
625  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
626 #endif
627 #if CONFIG_HEVC_D3D11VA_HWACCEL
628  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
629  *fmt++ = AV_PIX_FMT_D3D11;
630 #endif
631 #if CONFIG_HEVC_D3D12VA_HWACCEL
632  *fmt++ = AV_PIX_FMT_D3D12;
633 #endif
634 #if CONFIG_HEVC_VAAPI_HWACCEL
635  *fmt++ = AV_PIX_FMT_VAAPI;
636 #endif
637 #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
638  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
639 #endif
640 #if CONFIG_HEVC_VULKAN_HWACCEL
641  *fmt++ = AV_PIX_FMT_VULKAN;
642 #endif
643 #if CONFIG_HEVC_VDPAU_HWACCEL
644  *fmt++ = AV_PIX_FMT_VDPAU;
645 #endif
646 #if CONFIG_HEVC_NVDEC_HWACCEL
647  *fmt++ = AV_PIX_FMT_CUDA;
648 #endif
649  break;
650  case AV_PIX_FMT_YUV444P:
651 #if CONFIG_HEVC_VAAPI_HWACCEL
652  *fmt++ = AV_PIX_FMT_VAAPI;
653 #endif
654 #if CONFIG_HEVC_VDPAU_HWACCEL
655  *fmt++ = AV_PIX_FMT_VDPAU;
656 #endif
657 #if CONFIG_HEVC_NVDEC_HWACCEL
658  *fmt++ = AV_PIX_FMT_CUDA;
659 #endif
660 #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
661  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
662 #endif
663 #if CONFIG_HEVC_VULKAN_HWACCEL
664  *fmt++ = AV_PIX_FMT_VULKAN;
665 #endif
666  break;
667  case AV_PIX_FMT_YUV422P:
669 #if CONFIG_HEVC_VAAPI_HWACCEL
670  *fmt++ = AV_PIX_FMT_VAAPI;
671 #endif
672 #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
673  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
674 #endif
675 #if CONFIG_HEVC_VULKAN_HWACCEL
676  *fmt++ = AV_PIX_FMT_VULKAN;
677 #endif
678 #if CONFIG_HEVC_NVDEC_HWACCEL
679  *fmt++ = AV_PIX_FMT_CUDA;
680 #endif
681  break;
683 #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
684  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
685 #endif
686  /* NOTE: fallthrough */
689 #if CONFIG_HEVC_VAAPI_HWACCEL
690  *fmt++ = AV_PIX_FMT_VAAPI;
691 #endif
692 #if CONFIG_HEVC_VDPAU_HWACCEL
693  *fmt++ = AV_PIX_FMT_VDPAU;
694 #endif
695 #if CONFIG_HEVC_VULKAN_HWACCEL
696  *fmt++ = AV_PIX_FMT_VULKAN;
697 #endif
698 #if CONFIG_HEVC_NVDEC_HWACCEL
699  *fmt++ = AV_PIX_FMT_CUDA;
700 #endif
701  break;
703 #if CONFIG_HEVC_VAAPI_HWACCEL
704  *fmt++ = AV_PIX_FMT_VAAPI;
705 #endif
706 #if CONFIG_HEVC_VULKAN_HWACCEL
707  *fmt++ = AV_PIX_FMT_VULKAN;
708 #endif
709 #if CONFIG_HEVC_NVDEC_HWACCEL
710  *fmt++ = AV_PIX_FMT_CUDA;
711 #endif
712  break;
713  }
714 
715  if (alpha_fmt != AV_PIX_FMT_NONE)
716  *fmt++ = alpha_fmt;
717  *fmt++ = sps->pix_fmt;
718  *fmt = AV_PIX_FMT_NONE;
719 
720  // export multilayer information from active VPS to the caller,
721  // so it is available in get_format()
722  ret = export_multilayer(s, sps->vps);
723  if (ret < 0)
724  return ret;
725 
726  ret = ff_get_format(s->avctx, pix_fmts);
727  if (ret < 0)
728  return ret;
729  s->avctx->pix_fmt = ret;
730 
731  // set up multilayer decoding, if requested by caller
732  ret = setup_multilayer(s, sps->vps);
733  if (ret < 0)
734  return ret;
735 
736  return 0;
737 }
738 
740 {
741  int ret;
742 
743  pic_arrays_free(l);
744  av_refstruct_unref(&l->sps);
745  av_refstruct_unref(&s->vps);
746 
747  if (!sps)
748  return 0;
749 
750  ret = pic_arrays_init(l, sps);
751  if (ret < 0)
752  goto fail;
753 
754  ff_hevc_pred_init(&s->hpc, sps->bit_depth);
755  ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
756  ff_videodsp_init (&s->vdsp, sps->bit_depth);
757 
758  l->sps = av_refstruct_ref_c(sps);
759  s->vps = av_refstruct_ref_c(sps->vps);
760 
761  return 0;
762 
763 fail:
764  pic_arrays_free(l);
765  av_refstruct_unref(&l->sps);
766  return ret;
767 }
768 
770 {
771  const HEVCPPS *pps;
772  const HEVCSPS *sps;
773  const HEVCVPS *vps;
774  unsigned pps_id, layer_idx;
775  int i, ret;
776 
777  // Coded parameters
779 
781  if (IS_IRAP(s))
783 
784  pps_id = get_ue_golomb_long(gb);
785  if (pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[pps_id]) {
786  av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", pps_id);
787  return AVERROR_INVALIDDATA;
788  }
789  if (!sh->first_slice_in_pic_flag && s->ps.pps_list[pps_id] != s->pps) {
790  av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
791  return AVERROR_INVALIDDATA;
792  }
793  sh->pps_id = pps_id;
794 
795  pps = s->ps.pps_list[pps_id];
796  sps = pps->sps;
797  vps = sps->vps;
798  layer_idx = vps->layer_idx[s->nuh_layer_id];
799 
800  if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
802 
804  if (!sh->first_slice_in_pic_flag) {
805  int slice_address_length;
806 
807  if (pps->dependent_slice_segments_enabled_flag)
809  if (sh->dependent_slice_segment_flag && !s->slice_initialized) {
810  av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
811  return AVERROR_INVALIDDATA;
812  }
813 
814  slice_address_length = av_ceil_log2(sps->ctb_width *
815  sps->ctb_height);
816  sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
817  if (sh->slice_segment_addr >= sps->ctb_width * sps->ctb_height) {
818  av_log(s->avctx, AV_LOG_ERROR,
819  "Invalid slice segment address: %u.\n",
820  sh->slice_segment_addr);
821  return AVERROR_INVALIDDATA;
822  }
823 
824  if (!sh->dependent_slice_segment_flag) {
825  sh->slice_addr = sh->slice_segment_addr;
826  }
827  } else {
828  sh->slice_segment_addr = sh->slice_addr = 0;
829  }
830 
831  if (!sh->dependent_slice_segment_flag) {
832  for (i = 0; i < pps->num_extra_slice_header_bits; i++)
833  skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
834 
835  sh->slice_type = get_ue_golomb_long(gb);
836  if (!(sh->slice_type == HEVC_SLICE_I ||
837  sh->slice_type == HEVC_SLICE_P ||
838  sh->slice_type == HEVC_SLICE_B)) {
839  av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
840  sh->slice_type);
841  return AVERROR_INVALIDDATA;
842  }
843  if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I &&
844  !pps->pps_curr_pic_ref_enabled_flag &&
845  s->nuh_layer_id == 0) {
846  av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
847  return AVERROR_INVALIDDATA;
848  }
849 
850  // when flag is not present, picture is inferred to be output
851  sh->pic_output_flag = 1;
852  if (pps->output_flag_present_flag)
853  sh->pic_output_flag = get_bits1(gb);
854 
855  if (sps->separate_colour_plane)
856  sh->colour_plane_id = get_bits(gb, 2);
857 
858  if (!IS_IDR(s) ||
859  (s->nuh_layer_id > 0 &&
860  !(vps->poc_lsb_not_present & (1 << layer_idx)))) {
861  int poc;
862 
863  sh->pic_order_cnt_lsb = get_bits(gb, sps->log2_max_poc_lsb);
864  poc = ff_hevc_compute_poc(sps, s->poc_tid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
865  if (!sh->first_slice_in_pic_flag && poc != sh->poc) {
866  av_log(s->avctx, AV_LOG_WARNING,
867  "Ignoring POC change between slices: %d -> %d\n", poc, sh->poc);
868  if (s->avctx->err_recognition & AV_EF_EXPLODE)
869  return AVERROR_INVALIDDATA;
870  poc = sh->poc;
871  }
872  sh->poc = poc;
873  }
874 
875  if (!IS_IDR(s)) {
876  int pos;
877 
879  pos = get_bits_left(gb);
881  ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, sps, 1);
882  if (ret < 0)
883  return ret;
884 
885  sh->short_term_rps = &sh->slice_rps;
886  } else {
887  int numbits, rps_idx;
888 
889  if (!sps->nb_st_rps) {
890  av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
891  return AVERROR_INVALIDDATA;
892  }
893 
894  numbits = av_ceil_log2(sps->nb_st_rps);
895  rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
896  sh->short_term_rps = &sps->st_rps[rps_idx];
897  }
899 
900  pos = get_bits_left(gb);
901  ret = decode_lt_rps(sps, &sh->long_term_rps, gb, sh->poc, sh->pic_order_cnt_lsb);
902  if (ret < 0) {
903  av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
904  if (s->avctx->err_recognition & AV_EF_EXPLODE)
905  return AVERROR_INVALIDDATA;
906  }
908 
909  if (sps->temporal_mvp_enabled)
911  else
913  } else {
914  sh->poc = 0;
915  sh->pic_order_cnt_lsb = 0;
918  sh->short_term_rps = NULL;
921  }
922 
923  sh->inter_layer_pred = 0;
924  if (s->nuh_layer_id > 0) {
925  int num_direct_ref_layers = vps->num_direct_ref_layers[layer_idx];
926 
927  if (vps->default_ref_layers_active)
928  sh->inter_layer_pred = !!num_direct_ref_layers;
929  else if (num_direct_ref_layers) {
930  sh->inter_layer_pred = get_bits1(gb);
931 
932  if (sh->inter_layer_pred && num_direct_ref_layers > 1) {
933  av_log(s->avctx, AV_LOG_ERROR,
934  "NumDirectRefLayers>1 not supported\n");
935  return AVERROR_PATCHWELCOME;
936  }
937  }
938  }
939 
940  if (sps->sao_enabled) {
942  if (sps->chroma_format_idc) {
945  }
946  } else {
950  }
951 
952  sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
953  if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
954  int nb_refs;
955 
956  sh->nb_refs[L0] = pps->num_ref_idx_l0_default_active;
957  if (sh->slice_type == HEVC_SLICE_B)
958  sh->nb_refs[L1] = pps->num_ref_idx_l1_default_active;
959 
960  if (get_bits1(gb)) { // num_ref_idx_active_override_flag
961  sh->nb_refs[L0] = get_ue_golomb_31(gb) + 1;
962  if (sh->slice_type == HEVC_SLICE_B)
963  sh->nb_refs[L1] = get_ue_golomb_31(gb) + 1;
964  }
965  if (sh->nb_refs[L0] >= HEVC_MAX_REFS || sh->nb_refs[L1] >= HEVC_MAX_REFS) {
966  av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
967  sh->nb_refs[L0], sh->nb_refs[L1]);
968  return AVERROR_INVALIDDATA;
969  }
970 
971  sh->rpl_modification_flag[0] = 0;
972  sh->rpl_modification_flag[1] = 0;
973  nb_refs = ff_hevc_frame_nb_refs(sh, pps, layer_idx);
974  if (!nb_refs) {
975  av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
976  return AVERROR_INVALIDDATA;
977  }
978 
979  if (pps->lists_modification_present_flag && nb_refs > 1) {
980  sh->rpl_modification_flag[0] = get_bits1(gb);
981  if (sh->rpl_modification_flag[0]) {
982  for (i = 0; i < sh->nb_refs[L0]; i++)
983  sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
984  }
985 
986  if (sh->slice_type == HEVC_SLICE_B) {
987  sh->rpl_modification_flag[1] = get_bits1(gb);
988  if (sh->rpl_modification_flag[1] == 1)
989  for (i = 0; i < sh->nb_refs[L1]; i++)
990  sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
991  }
992  }
993 
994  if (sh->slice_type == HEVC_SLICE_B)
995  sh->mvd_l1_zero_flag = get_bits1(gb);
996 
997  if (pps->cabac_init_present_flag)
998  sh->cabac_init_flag = get_bits1(gb);
999  else
1000  sh->cabac_init_flag = 0;
1001 
1002  sh->collocated_ref_idx = 0;
1004  sh->collocated_list = L0;
1005  if (sh->slice_type == HEVC_SLICE_B)
1006  sh->collocated_list = !get_bits1(gb);
1007 
1008  if (sh->nb_refs[sh->collocated_list] > 1) {
1010  if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
1011  av_log(s->avctx, AV_LOG_ERROR,
1012  "Invalid collocated_ref_idx: %d.\n",
1013  sh->collocated_ref_idx);
1014  return AVERROR_INVALIDDATA;
1015  }
1016  }
1017  }
1018 
1019  if ((pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
1020  (pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
1021  int ret = pred_weight_table(sh, s->avctx, sps, gb);
1022  if (ret < 0)
1023  return ret;
1024  }
1025 
1026  sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
1027  if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
1028  av_log(s->avctx, AV_LOG_ERROR,
1029  "Invalid number of merging MVP candidates: %d.\n",
1030  sh->max_num_merge_cand);
1031  return AVERROR_INVALIDDATA;
1032  }
1033 
1034  // Syntax in 7.3.6.1
1035  if (sps->motion_vector_resolution_control_idc == 2)
1036  sh->use_integer_mv_flag = get_bits1(gb);
1037  else
1038  // Inferred to be equal to motion_vector_resolution_control_idc if not present
1039  sh->use_integer_mv_flag = sps->motion_vector_resolution_control_idc;
1040 
1041  }
1042 
1043  sh->slice_qp_delta = get_se_golomb(gb);
1044 
1045  if (pps->pic_slice_level_chroma_qp_offsets_present_flag) {
1048  if (sh->slice_cb_qp_offset < -12 || sh->slice_cb_qp_offset > 12 ||
1049  sh->slice_cr_qp_offset < -12 || sh->slice_cr_qp_offset > 12) {
1050  av_log(s->avctx, AV_LOG_ERROR, "Invalid slice cx qp offset.\n");
1051  return AVERROR_INVALIDDATA;
1052  }
1053  } else {
1054  sh->slice_cb_qp_offset = 0;
1055  sh->slice_cr_qp_offset = 0;
1056  }
1057 
1058  if (pps->pps_slice_act_qp_offsets_present_flag) {
1062  }
1063 
1064  if (pps->chroma_qp_offset_list_enabled_flag)
1066  else
1068 
1069  if (pps->deblocking_filter_control_present_flag) {
1070  int deblocking_filter_override_flag = 0;
1071 
1072  if (pps->deblocking_filter_override_enabled_flag)
1073  deblocking_filter_override_flag = get_bits1(gb);
1074 
1075  if (deblocking_filter_override_flag) {
1077  if (!sh->disable_deblocking_filter_flag) {
1078  int beta_offset_div2 = get_se_golomb(gb);
1079  int tc_offset_div2 = get_se_golomb(gb) ;
1080  if (beta_offset_div2 < -6 || beta_offset_div2 > 6 ||
1081  tc_offset_div2 < -6 || tc_offset_div2 > 6) {
1082  av_log(s->avctx, AV_LOG_ERROR,
1083  "Invalid deblock filter offsets: %d, %d\n",
1084  beta_offset_div2, tc_offset_div2);
1085  return AVERROR_INVALIDDATA;
1086  }
1087  sh->beta_offset = beta_offset_div2 * 2;
1088  sh->tc_offset = tc_offset_div2 * 2;
1089  }
1090  } else {
1091  sh->disable_deblocking_filter_flag = pps->disable_dbf;
1092  sh->beta_offset = pps->beta_offset;
1093  sh->tc_offset = pps->tc_offset;
1094  }
1095  } else {
1097  sh->beta_offset = 0;
1098  sh->tc_offset = 0;
1099  }
1100 
1101  if (pps->seq_loop_filter_across_slices_enabled_flag &&
1106  } else {
1107  sh->slice_loop_filter_across_slices_enabled_flag = pps->seq_loop_filter_across_slices_enabled_flag;
1108  }
1109  }
1110 
1111  sh->num_entry_point_offsets = 0;
1112  if (pps->tiles_enabled_flag || pps->entropy_coding_sync_enabled_flag) {
1113  unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
1114  // It would be possible to bound this tighter but this here is simpler
1115  if (num_entry_point_offsets > get_bits_left(gb) || num_entry_point_offsets > UINT16_MAX) {
1116  av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
1117  return AVERROR_INVALIDDATA;
1118  }
1119 
1120  sh->num_entry_point_offsets = num_entry_point_offsets;
1121  if (sh->num_entry_point_offsets > 0) {
1122  int offset_len = get_ue_golomb_long(gb) + 1;
1123 
1124  if (offset_len < 1 || offset_len > 32) {
1125  sh->num_entry_point_offsets = 0;
1126  av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
1127  return AVERROR_INVALIDDATA;
1128  }
1129 
1131  av_freep(&sh->offset);
1132  av_freep(&sh->size);
1133  sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
1134  sh->offset = av_malloc_array(sh->num_entry_point_offsets + 1, sizeof(int));
1135  sh->size = av_malloc_array(sh->num_entry_point_offsets + 1, sizeof(int));
1136  if (!sh->entry_point_offset || !sh->offset || !sh->size) {
1137  sh->num_entry_point_offsets = 0;
1138  av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
1139  return AVERROR(ENOMEM);
1140  }
1141  for (i = 0; i < sh->num_entry_point_offsets; i++) {
1142  unsigned val = get_bits_long(gb, offset_len);
1143  sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
1144  }
1145  }
1146  }
1147 
1148  if (pps->slice_header_extension_present_flag) {
1149  unsigned int length = get_ue_golomb_long(gb);
1150  if (length*8LL > get_bits_left(gb)) {
1151  av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
1152  return AVERROR_INVALIDDATA;
1153  }
1154  for (i = 0; i < length; i++)
1155  skip_bits(gb, 8); // slice_header_extension_data_byte
1156  }
1157 
1158  ret = get_bits1(gb);
1159  if (!ret && get_bits_left(gb) >= 0) {
1160  av_log(s->avctx, AV_LOG_ERROR, "alignment_bit_equal_to_one=0\n");
1161  return AVERROR_INVALIDDATA;
1162  }
1163  sh->data_offset = align_get_bits(gb) - gb->buffer;
1164 
1165  if (get_bits_left(gb) < 0) {
1166  av_log(s->avctx, AV_LOG_ERROR,
1167  "Overread slice header by %d bits\n", -get_bits_left(gb));
1168  return AVERROR_INVALIDDATA;
1169  }
1170 
1171  // Inferred parameters
1172  sh->slice_qp = 26U + pps->pic_init_qp_minus26 + sh->slice_qp_delta;
1173  if (sh->slice_qp > 51 ||
1174  sh->slice_qp < -sps->qp_bd_offset) {
1175  av_log(s->avctx, AV_LOG_ERROR,
1176  "The slice_qp %d is outside the valid range "
1177  "[%d, 51].\n",
1178  sh->slice_qp,
1179  -sps->qp_bd_offset);
1180  return AVERROR_INVALIDDATA;
1181  }
1182 
1184 
1185  if (sh->dependent_slice_segment_flag &&
1186  (!sh->slice_ctb_addr_rs || !pps->ctb_addr_rs_to_ts[sh->slice_ctb_addr_rs])) {
1187  av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
1188  return AVERROR_INVALIDDATA;
1189  }
1190 
1191  return 0;
1192 }
1193 
1194 #define CTB(tab, x, y) ((tab)[(y) * sps->ctb_width + (x)])
1195 
1196 #define SET_SAO(elem, value) \
1197 do { \
1198  if (!sao_merge_up_flag && !sao_merge_left_flag) \
1199  sao->elem = value; \
1200  else if (sao_merge_left_flag) \
1201  sao->elem = CTB(l->sao, rx-1, ry).elem; \
1202  else if (sao_merge_up_flag) \
1203  sao->elem = CTB(l->sao, rx, ry-1).elem; \
1204  else \
1205  sao->elem = 0; \
1206 } while (0)
1207 
1209  const HEVCPPS *pps, const HEVCSPS *sps,
1210  int rx, int ry)
1211 {
1212  const HEVCContext *const s = lc->parent;
1213  int sao_merge_left_flag = 0;
1214  int sao_merge_up_flag = 0;
1215  SAOParams *sao = &CTB(l->sao, rx, ry);
1216  int c_idx, i;
1217 
1218  if (s->sh.slice_sample_adaptive_offset_flag[0] ||
1219  s->sh.slice_sample_adaptive_offset_flag[1]) {
1220  if (rx > 0) {
1221  if (lc->ctb_left_flag)
1222  sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(lc);
1223  }
1224  if (ry > 0 && !sao_merge_left_flag) {
1225  if (lc->ctb_up_flag)
1226  sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(lc);
1227  }
1228  }
1229 
1230  for (c_idx = 0; c_idx < (sps->chroma_format_idc ? 3 : 1); c_idx++) {
1231  int log2_sao_offset_scale = c_idx == 0 ? pps->log2_sao_offset_scale_luma :
1232  pps->log2_sao_offset_scale_chroma;
1233 
1234  if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
1235  sao->type_idx[c_idx] = SAO_NOT_APPLIED;
1236  continue;
1237  }
1238 
1239  if (c_idx == 2) {
1240  sao->type_idx[2] = sao->type_idx[1];
1241  sao->eo_class[2] = sao->eo_class[1];
1242  } else {
1243  SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(lc));
1244  }
1245 
1246  if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
1247  continue;
1248 
1249  for (i = 0; i < 4; i++)
1250  SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(lc, sps->bit_depth));
1251 
1252  if (sao->type_idx[c_idx] == SAO_BAND) {
1253  for (i = 0; i < 4; i++) {
1254  if (sao->offset_abs[c_idx][i]) {
1255  SET_SAO(offset_sign[c_idx][i],
1257  } else {
1258  sao->offset_sign[c_idx][i] = 0;
1259  }
1260  }
1261  SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(lc));
1262  } else if (c_idx != 2) {
1263  SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(lc));
1264  }
1265 
1266  // Inferred parameters
1267  sao->offset_val[c_idx][0] = 0;
1268  for (i = 0; i < 4; i++) {
1269  sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
1270  if (sao->type_idx[c_idx] == SAO_EDGE) {
1271  if (i > 1)
1272  sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
1273  } else if (sao->offset_sign[c_idx][i]) {
1274  sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
1275  }
1276  sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
1277  }
1278  }
1279 }
1280 
1281 #undef SET_SAO
1282 #undef CTB
1283 
1285 {
1286  int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(lc, idx);
1287 
1288  if (log2_res_scale_abs_plus1 != 0) {
1289  int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(lc, idx);
1290  lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
1291  (1 - 2 * res_scale_sign_flag);
1292  } else {
1293  lc->tu.res_scale_val = 0;
1294  }
1295 
1296 
1297  return 0;
1298 }
1299 
1301  const HEVCLayerContext *l,
1302  const HEVCPPS *pps, const HEVCSPS *sps,
1303  int x0, int y0,
1304  int xBase, int yBase, int cb_xBase, int cb_yBase,
1305  int log2_cb_size, int log2_trafo_size,
1306  int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
1307 {
1308  const HEVCContext *const s = lc->parent;
1309  const int log2_trafo_size_c = log2_trafo_size - sps->hshift[1];
1310  int i;
1311 
1312  if (lc->cu.pred_mode == MODE_INTRA) {
1313  int trafo_size = 1 << log2_trafo_size;
1314  ff_hevc_set_neighbour_available(lc, x0, y0, trafo_size, trafo_size, sps->log2_ctb_size);
1315 
1316  s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, x0, y0, 0);
1317  }
1318 
1319  if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
1320  (sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
1321  int scan_idx = SCAN_DIAG;
1322  int scan_idx_c = SCAN_DIAG;
1323  int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
1324  (sps->chroma_format_idc == 2 &&
1325  (cbf_cb[1] || cbf_cr[1]));
1326 
1327  if (pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
1329  if (lc->tu.cu_qp_delta != 0)
1330  if (ff_hevc_cu_qp_delta_sign_flag(lc) == 1)
1331  lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
1332  lc->tu.is_cu_qp_delta_coded = 1;
1333 
1334  if (lc->tu.cu_qp_delta < -(26 + sps->qp_bd_offset / 2) ||
1335  lc->tu.cu_qp_delta > (25 + sps->qp_bd_offset / 2)) {
1336  av_log(s->avctx, AV_LOG_ERROR,
1337  "The cu_qp_delta %d is outside the valid range "
1338  "[%d, %d].\n",
1339  lc->tu.cu_qp_delta,
1340  -(26 + sps->qp_bd_offset / 2),
1341  (25 + sps->qp_bd_offset / 2));
1342  return AVERROR_INVALIDDATA;
1343  }
1344 
1345  ff_hevc_set_qPy(lc, l, pps, cb_xBase, cb_yBase, log2_cb_size);
1346  }
1347 
1348  if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
1350  int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(lc);
1351  if (cu_chroma_qp_offset_flag) {
1352  int cu_chroma_qp_offset_idx = 0;
1353  if (pps->chroma_qp_offset_list_len_minus1 > 0) {
1354  cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(lc, pps->chroma_qp_offset_list_len_minus1);
1355  av_log(s->avctx, AV_LOG_ERROR,
1356  "cu_chroma_qp_offset_idx not yet tested.\n");
1357  }
1358  lc->tu.cu_qp_offset_cb = pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
1359  lc->tu.cu_qp_offset_cr = pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
1360  } else {
1361  lc->tu.cu_qp_offset_cb = 0;
1362  lc->tu.cu_qp_offset_cr = 0;
1363  }
1365  }
1366 
1367  if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
1368  if (lc->tu.intra_pred_mode >= 6 &&
1369  lc->tu.intra_pred_mode <= 14) {
1370  scan_idx = SCAN_VERT;
1371  } else if (lc->tu.intra_pred_mode >= 22 &&
1372  lc->tu.intra_pred_mode <= 30) {
1373  scan_idx = SCAN_HORIZ;
1374  }
1375 
1376  if (lc->tu.intra_pred_mode_c >= 6 &&
1377  lc->tu.intra_pred_mode_c <= 14) {
1378  scan_idx_c = SCAN_VERT;
1379  } else if (lc->tu.intra_pred_mode_c >= 22 &&
1380  lc->tu.intra_pred_mode_c <= 30) {
1381  scan_idx_c = SCAN_HORIZ;
1382  }
1383  }
1384 
1385  lc->tu.cross_pf = 0;
1386 
1387  if (cbf_luma)
1388  ff_hevc_hls_residual_coding(lc, pps, x0, y0, log2_trafo_size, scan_idx, 0);
1389  if (sps->chroma_format_idc && (log2_trafo_size > 2 || sps->chroma_format_idc == 3)) {
1390  int trafo_size_h = 1 << (log2_trafo_size_c + sps->hshift[1]);
1391  int trafo_size_v = 1 << (log2_trafo_size_c + sps->vshift[1]);
1392  lc->tu.cross_pf = (pps->cross_component_prediction_enabled_flag && cbf_luma &&
1393  (lc->cu.pred_mode == MODE_INTER ||
1394  (lc->tu.chroma_mode_c == 4)));
1395 
1396  if (lc->tu.cross_pf) {
1397  hls_cross_component_pred(lc, 0);
1398  }
1399  for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) {
1400  if (lc->cu.pred_mode == MODE_INTRA) {
1401  ff_hevc_set_neighbour_available(lc, x0, y0 + (i << log2_trafo_size_c),
1402  trafo_size_h, trafo_size_v, sps->log2_ctb_size);
1403  s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (i << log2_trafo_size_c), 1);
1404  }
1405  if (cbf_cb[i])
1406  ff_hevc_hls_residual_coding(lc, pps, x0, y0 + (i << log2_trafo_size_c),
1407  log2_trafo_size_c, scan_idx_c, 1);
1408  else
1409  if (lc->tu.cross_pf) {
1410  ptrdiff_t stride = s->cur_frame->f->linesize[1];
1411  int hshift = sps->hshift[1];
1412  int vshift = sps->vshift[1];
1413  const int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
1414  int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
1415  int size = 1 << log2_trafo_size_c;
1416 
1417  uint8_t *dst = &s->cur_frame->f->data[1][(y0 >> vshift) * stride +
1418  ((x0 >> hshift) << sps->pixel_shift)];
1419  for (i = 0; i < (size * size); i++) {
1420  coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
1421  }
1422  s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
1423  }
1424  }
1425 
1426  if (lc->tu.cross_pf) {
1427  hls_cross_component_pred(lc, 1);
1428  }
1429  for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) {
1430  if (lc->cu.pred_mode == MODE_INTRA) {
1431  ff_hevc_set_neighbour_available(lc, x0, y0 + (i << log2_trafo_size_c),
1432  trafo_size_h, trafo_size_v, sps->log2_ctb_size);
1433  s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (i << log2_trafo_size_c), 2);
1434  }
1435  if (cbf_cr[i])
1436  ff_hevc_hls_residual_coding(lc, pps, x0, y0 + (i << log2_trafo_size_c),
1437  log2_trafo_size_c, scan_idx_c, 2);
1438  else
1439  if (lc->tu.cross_pf) {
1440  ptrdiff_t stride = s->cur_frame->f->linesize[2];
1441  int hshift = sps->hshift[2];
1442  int vshift = sps->vshift[2];
1443  const int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
1444  int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
1445  int size = 1 << log2_trafo_size_c;
1446 
1447  uint8_t *dst = &s->cur_frame->f->data[2][(y0 >> vshift) * stride +
1448  ((x0 >> hshift) << sps->pixel_shift)];
1449  for (i = 0; i < (size * size); i++) {
1450  coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
1451  }
1452  s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
1453  }
1454  }
1455  } else if (sps->chroma_format_idc && blk_idx == 3) {
1456  int trafo_size_h = 1 << (log2_trafo_size + 1);
1457  int trafo_size_v = 1 << (log2_trafo_size + sps->vshift[1]);
1458  for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) {
1459  if (lc->cu.pred_mode == MODE_INTRA) {
1460  ff_hevc_set_neighbour_available(lc, xBase, yBase + (i << log2_trafo_size),
1461  trafo_size_h, trafo_size_v, sps->log2_ctb_size);
1462  s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (i << log2_trafo_size), 1);
1463  }
1464  if (cbf_cb[i])
1465  ff_hevc_hls_residual_coding(lc, pps, xBase, yBase + (i << log2_trafo_size),
1466  log2_trafo_size, scan_idx_c, 1);
1467  }
1468  for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) {
1469  if (lc->cu.pred_mode == MODE_INTRA) {
1470  ff_hevc_set_neighbour_available(lc, xBase, yBase + (i << log2_trafo_size),
1471  trafo_size_h, trafo_size_v, sps->log2_ctb_size);
1472  s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (i << log2_trafo_size), 2);
1473  }
1474  if (cbf_cr[i])
1475  ff_hevc_hls_residual_coding(lc, pps, xBase, yBase + (i << log2_trafo_size),
1476  log2_trafo_size, scan_idx_c, 2);
1477  }
1478  }
1479  } else if (sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
1480  if (log2_trafo_size > 2 || sps->chroma_format_idc == 3) {
1481  int trafo_size_h = 1 << (log2_trafo_size_c + sps->hshift[1]);
1482  int trafo_size_v = 1 << (log2_trafo_size_c + sps->vshift[1]);
1483  ff_hevc_set_neighbour_available(lc, x0, y0, trafo_size_h, trafo_size_v,
1484  sps->log2_ctb_size);
1485  s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0, 1);
1486  s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0, 2);
1487  if (sps->chroma_format_idc == 2) {
1488  ff_hevc_set_neighbour_available(lc, x0, y0 + (1 << log2_trafo_size_c),
1489  trafo_size_h, trafo_size_v, sps->log2_ctb_size);
1490  s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (1 << log2_trafo_size_c), 1);
1491  s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (1 << log2_trafo_size_c), 2);
1492  }
1493  } else if (blk_idx == 3) {
1494  int trafo_size_h = 1 << (log2_trafo_size + 1);
1495  int trafo_size_v = 1 << (log2_trafo_size + sps->vshift[1]);
1496  ff_hevc_set_neighbour_available(lc, xBase, yBase,
1497  trafo_size_h, trafo_size_v, sps->log2_ctb_size);
1498  s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase, 1);
1499  s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase, 2);
1500  if (sps->chroma_format_idc == 2) {
1501  ff_hevc_set_neighbour_available(lc, xBase, yBase + (1 << log2_trafo_size),
1502  trafo_size_h, trafo_size_v, sps->log2_ctb_size);
1503  s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (1 << log2_trafo_size), 1);
1504  s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (1 << log2_trafo_size), 2);
1505  }
1506  }
1507  }
1508 
1509  return 0;
1510 }
1511 
1512 static void set_deblocking_bypass(uint8_t *is_pcm, const HEVCSPS *sps,
1513  int x0, int y0, int log2_cb_size)
1514 {
1515  int cb_size = 1 << log2_cb_size;
1516  int log2_min_pu_size = sps->log2_min_pu_size;
1517 
1518  int min_pu_width = sps->min_pu_width;
1519  int x_end = FFMIN(x0 + cb_size, sps->width);
1520  int y_end = FFMIN(y0 + cb_size, sps->height);
1521  int i, j;
1522 
1523  for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
1524  for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
1525  is_pcm[i + j * min_pu_width] = 2;
1526 }
1527 
1529  const HEVCLayerContext *l,
1530  const HEVCPPS *pps, const HEVCSPS *sps,
1531  int x0, int y0,
1532  int xBase, int yBase, int cb_xBase, int cb_yBase,
1533  int log2_cb_size, int log2_trafo_size,
1534  int trafo_depth, int blk_idx,
1535  const int *base_cbf_cb, const int *base_cbf_cr)
1536 {
1537  const HEVCContext *const s = lc->parent;
1538  uint8_t split_transform_flag;
1539  int cbf_cb[2];
1540  int cbf_cr[2];
1541  int ret;
1542 
1543  cbf_cb[0] = base_cbf_cb[0];
1544  cbf_cb[1] = base_cbf_cb[1];
1545  cbf_cr[0] = base_cbf_cr[0];
1546  cbf_cr[1] = base_cbf_cr[1];
1547 
1548  if (lc->cu.intra_split_flag) {
1549  if (trafo_depth == 1) {
1550  lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
1551  if (sps->chroma_format_idc == 3) {
1552  lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
1553  lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
1554  } else {
1556  lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
1557  }
1558  }
1559  } else {
1560  lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
1562  lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
1563  }
1564 
1565  if (log2_trafo_size <= sps->log2_max_trafo_size &&
1566  log2_trafo_size > sps->log2_min_tb_size &&
1567  trafo_depth < lc->cu.max_trafo_depth &&
1568  !(lc->cu.intra_split_flag && trafo_depth == 0)) {
1569  split_transform_flag = ff_hevc_split_transform_flag_decode(lc, log2_trafo_size);
1570  } else {
1571  int inter_split = sps->max_transform_hierarchy_depth_inter == 0 &&
1572  lc->cu.pred_mode == MODE_INTER &&
1573  lc->cu.part_mode != PART_2Nx2N &&
1574  trafo_depth == 0;
1575 
1576  split_transform_flag = log2_trafo_size > sps->log2_max_trafo_size ||
1577  (lc->cu.intra_split_flag && trafo_depth == 0) ||
1578  inter_split;
1579  }
1580 
1581  if (sps->chroma_format_idc && (log2_trafo_size > 2 || sps->chroma_format_idc == 3)) {
1582  if (trafo_depth == 0 || cbf_cb[0]) {
1583  cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth);
1584  if (sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
1585  cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth);
1586  }
1587  }
1588 
1589  if (trafo_depth == 0 || cbf_cr[0]) {
1590  cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth);
1591  if (sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
1592  cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth);
1593  }
1594  }
1595  }
1596 
1597  if (split_transform_flag) {
1598  const int trafo_size_split = 1 << (log2_trafo_size - 1);
1599  const int x1 = x0 + trafo_size_split;
1600  const int y1 = y0 + trafo_size_split;
1601 
1602 #define SUBDIVIDE(x, y, idx) \
1603 do { \
1604  ret = hls_transform_tree(lc, l, pps, sps, \
1605  x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
1606  log2_trafo_size - 1, trafo_depth + 1, idx, \
1607  cbf_cb, cbf_cr); \
1608  if (ret < 0) \
1609  return ret; \
1610 } while (0)
1611 
1612  SUBDIVIDE(x0, y0, 0);
1613  SUBDIVIDE(x1, y0, 1);
1614  SUBDIVIDE(x0, y1, 2);
1615  SUBDIVIDE(x1, y1, 3);
1616 
1617 #undef SUBDIVIDE
1618  } else {
1619  int min_tu_size = 1 << sps->log2_min_tb_size;
1620  int log2_min_tu_size = sps->log2_min_tb_size;
1621  int min_tu_width = sps->min_tb_width;
1622  int cbf_luma = 1;
1623 
1624  if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
1625  cbf_cb[0] || cbf_cr[0] ||
1626  (sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
1627  cbf_luma = ff_hevc_cbf_luma_decode(lc, trafo_depth);
1628  }
1629 
1630  ret = hls_transform_unit(lc, l, pps, sps,
1631  x0, y0, xBase, yBase, cb_xBase, cb_yBase,
1632  log2_cb_size, log2_trafo_size,
1633  blk_idx, cbf_luma, cbf_cb, cbf_cr);
1634  if (ret < 0)
1635  return ret;
1636  // TODO: store cbf_luma somewhere else
1637  if (cbf_luma) {
1638  int i, j;
1639  for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
1640  for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
1641  int x_tu = (x0 + j) >> log2_min_tu_size;
1642  int y_tu = (y0 + i) >> log2_min_tu_size;
1643  l->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
1644  }
1645  }
1646  if (!s->sh.disable_deblocking_filter_flag) {
1647  ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_trafo_size);
1648  if (pps->transquant_bypass_enable_flag &&
1650  set_deblocking_bypass(l->is_pcm, sps, x0, y0, log2_trafo_size);
1651  }
1652  }
1653  return 0;
1654 }
1655 
1657  const HEVCPPS *pps, int x0, int y0, int log2_cb_size)
1658 {
1659  const HEVCContext *const s = lc->parent;
1660  const HEVCSPS *const sps = pps->sps;
1661  GetBitContext gb;
1662  int cb_size = 1 << log2_cb_size;
1663  ptrdiff_t stride0 = s->cur_frame->f->linesize[0];
1664  ptrdiff_t stride1 = s->cur_frame->f->linesize[1];
1665  ptrdiff_t stride2 = s->cur_frame->f->linesize[2];
1666  uint8_t *dst0 = &s->cur_frame->f->data[0][y0 * stride0 + (x0 << sps->pixel_shift)];
1667  uint8_t *dst1 = &s->cur_frame->f->data[1][(y0 >> sps->vshift[1]) * stride1 + ((x0 >> sps->hshift[1]) << sps->pixel_shift)];
1668  uint8_t *dst2 = &s->cur_frame->f->data[2][(y0 >> sps->vshift[2]) * stride2 + ((x0 >> sps->hshift[2]) << sps->pixel_shift)];
1669 
1670  int length = cb_size * cb_size * sps->pcm.bit_depth +
1671  (((cb_size >> sps->hshift[1]) * (cb_size >> sps->vshift[1])) +
1672  ((cb_size >> sps->hshift[2]) * (cb_size >> sps->vshift[2]))) *
1673  sps->pcm.bit_depth_chroma;
1674  const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
1675  int ret;
1676 
1677  if (!s->sh.disable_deblocking_filter_flag)
1678  ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_cb_size);
1679 
1680  ret = init_get_bits(&gb, pcm, length);
1681  if (ret < 0)
1682  return ret;
1683 
1684  s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, sps->pcm.bit_depth);
1685  if (sps->chroma_format_idc) {
1686  s->hevcdsp.put_pcm(dst1, stride1,
1687  cb_size >> sps->hshift[1],
1688  cb_size >> sps->vshift[1],
1689  &gb, sps->pcm.bit_depth_chroma);
1690  s->hevcdsp.put_pcm(dst2, stride2,
1691  cb_size >> sps->hshift[2],
1692  cb_size >> sps->vshift[2],
1693  &gb, sps->pcm.bit_depth_chroma);
1694  }
1695 
1696  return 0;
1697 }
1698 
1699 /**
1700  * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
1701  *
1702  * @param s HEVC decoding context
1703  * @param dst target buffer for block data at block position
1704  * @param dststride stride of the dst buffer
1705  * @param ref reference picture buffer at origin (0, 0)
1706  * @param mv motion vector (relative to block position) to get pixel data from
1707  * @param x_off horizontal position of block from origin (0, 0)
1708  * @param y_off vertical position of block from origin (0, 0)
1709  * @param block_w width of block
1710  * @param block_h height of block
1711  * @param luma_weight weighting factor applied to the luma prediction
1712  * @param luma_offset additive offset applied to the luma prediction value
1713  */
1714 
1716  const HEVCPPS *pps, const HEVCSPS *sps,
1717  uint8_t *dst, ptrdiff_t dststride,
1718  const AVFrame *ref, const Mv *mv, int x_off, int y_off,
1719  int block_w, int block_h, int luma_weight, int luma_offset)
1720 {
1721  const HEVCContext *const s = lc->parent;
1722  const uint8_t *src = ref->data[0];
1723  ptrdiff_t srcstride = ref->linesize[0];
1724  int pic_width = sps->width;
1725  int pic_height = sps->height;
1726  int mx = mv->x & 3;
1727  int my = mv->y & 3;
1728  int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) ||
1729  (s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag);
1730  int idx = hevc_pel_weight[block_w];
1731 
1732  x_off += mv->x >> 2;
1733  y_off += mv->y >> 2;
1734  src += y_off * srcstride + (x_off * (1 << sps->pixel_shift));
1735 
1736  if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
1737  x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
1738  y_off >= pic_height - block_h - QPEL_EXTRA_AFTER ||
1739  ref == s->cur_frame->f) {
1740  const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
1741  int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
1742  int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
1743 
1744  s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
1745  edge_emu_stride, srcstride,
1746  block_w + QPEL_EXTRA,
1747  block_h + QPEL_EXTRA,
1748  x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
1749  pic_width, pic_height);
1750  src = lc->edge_emu_buffer + buf_offset;
1751  srcstride = edge_emu_stride;
1752  }
1753 
1754  if (!weight_flag)
1755  s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
1756  block_h, mx, my, block_w);
1757  else
1758  s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
1759  block_h, s->sh.luma_log2_weight_denom,
1760  luma_weight, luma_offset, mx, my, block_w);
1761 }
1762 
1763 /**
1764  * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
1765  *
1766  * @param s HEVC decoding context
1767  * @param dst target buffer for block data at block position
1768  * @param dststride stride of the dst buffer
1769  * @param ref0 reference picture0 buffer at origin (0, 0)
1770  * @param mv0 motion vector0 (relative to block position) to get pixel data from
1771  * @param x_off horizontal position of block from origin (0, 0)
1772  * @param y_off vertical position of block from origin (0, 0)
1773  * @param block_w width of block
1774  * @param block_h height of block
1775  * @param ref1 reference picture1 buffer at origin (0, 0)
1776  * @param mv1 motion vector1 (relative to block position) to get pixel data from
1777  * @param current_mv current motion vector structure
1778  */
1780  const HEVCPPS *pps, const HEVCSPS *sps,
1781  uint8_t *dst, ptrdiff_t dststride,
1782  const AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
1783  int block_w, int block_h, const AVFrame *ref1,
1784  const Mv *mv1, struct MvField *current_mv)
1785 {
1786  const HEVCContext *const s = lc->parent;
1787  ptrdiff_t src0stride = ref0->linesize[0];
1788  ptrdiff_t src1stride = ref1->linesize[0];
1789  int pic_width = sps->width;
1790  int pic_height = sps->height;
1791  int mx0 = mv0->x & 3;
1792  int my0 = mv0->y & 3;
1793  int mx1 = mv1->x & 3;
1794  int my1 = mv1->y & 3;
1795  int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) ||
1796  (s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag);
1797  int x_off0 = x_off + (mv0->x >> 2);
1798  int y_off0 = y_off + (mv0->y >> 2);
1799  int x_off1 = x_off + (mv1->x >> 2);
1800  int y_off1 = y_off + (mv1->y >> 2);
1801  int idx = hevc_pel_weight[block_w];
1802 
1803  const uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << sps->pixel_shift);
1804  const uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << sps->pixel_shift);
1805 
1806  if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
1807  x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
1808  y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
1809  const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
1810  int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
1811  int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
1812 
1813  s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
1814  edge_emu_stride, src0stride,
1815  block_w + QPEL_EXTRA,
1816  block_h + QPEL_EXTRA,
1817  x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
1818  pic_width, pic_height);
1819  src0 = lc->edge_emu_buffer + buf_offset;
1820  src0stride = edge_emu_stride;
1821  }
1822 
1823  if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
1824  x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
1825  y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
1826  const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
1827  int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
1828  int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
1829 
1830  s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
1831  edge_emu_stride, src1stride,
1832  block_w + QPEL_EXTRA,
1833  block_h + QPEL_EXTRA,
1834  x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
1835  pic_width, pic_height);
1836  src1 = lc->edge_emu_buffer2 + buf_offset;
1837  src1stride = edge_emu_stride;
1838  }
1839 
1840  s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
1841  block_h, mx0, my0, block_w);
1842  if (!weight_flag)
1843  s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
1844  block_h, mx1, my1, block_w);
1845  else
1846  s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
1847  block_h, s->sh.luma_log2_weight_denom,
1848  s->sh.luma_weight_l0[current_mv->ref_idx[0]],
1849  s->sh.luma_weight_l1[current_mv->ref_idx[1]],
1850  s->sh.luma_offset_l0[current_mv->ref_idx[0]],
1851  s->sh.luma_offset_l1[current_mv->ref_idx[1]],
1852  mx1, my1, block_w);
1853 
1854 }
1855 
1856 /**
1857  * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
1858  *
1859  * @param s HEVC decoding context
1860  * @param dst1 target buffer for block data at block position (U plane)
1861  * @param dst2 target buffer for block data at block position (V plane)
1862  * @param dststride stride of the dst1 and dst2 buffers
1863  * @param ref reference picture buffer at origin (0, 0)
1864  * @param mv motion vector (relative to block position) to get pixel data from
1865  * @param x_off horizontal position of block from origin (0, 0)
1866  * @param y_off vertical position of block from origin (0, 0)
1867  * @param block_w width of block
1868  * @param block_h height of block
1869  * @param chroma_weight weighting factor applied to the chroma prediction
1870  * @param chroma_offset additive offset applied to the chroma prediction value
1871  */
1872 
1874  const HEVCPPS *pps, const HEVCSPS *sps,
1875  uint8_t *dst0,
1876  ptrdiff_t dststride, const uint8_t *src0, ptrdiff_t srcstride, int reflist,
1877  int x_off, int y_off, int block_w, int block_h,
1878  const struct MvField *current_mv, int chroma_weight, int chroma_offset)
1879 {
1880  const HEVCContext *const s = lc->parent;
1881  int pic_width = sps->width >> sps->hshift[1];
1882  int pic_height = sps->height >> sps->vshift[1];
1883  const Mv *mv = &current_mv->mv[reflist];
1884  int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) ||
1885  (s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag);
1886  int idx = hevc_pel_weight[block_w];
1887  int hshift = sps->hshift[1];
1888  int vshift = sps->vshift[1];
1889  intptr_t mx = av_zero_extend(mv->x, 2 + hshift);
1890  intptr_t my = av_zero_extend(mv->y, 2 + vshift);
1891  intptr_t _mx = mx << (1 - hshift);
1892  intptr_t _my = my << (1 - vshift);
1893  int emu = src0 == s->cur_frame->f->data[1] || src0 == s->cur_frame->f->data[2];
1894 
1895  x_off += mv->x >> (2 + hshift);
1896  y_off += mv->y >> (2 + vshift);
1897  src0 += y_off * srcstride + (x_off * (1 << sps->pixel_shift));
1898 
1899  if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
1900  x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
1901  y_off >= pic_height - block_h - EPEL_EXTRA_AFTER ||
1902  emu) {
1903  const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
1904  int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << sps->pixel_shift));
1905  int buf_offset0 = EPEL_EXTRA_BEFORE *
1906  (edge_emu_stride + (1 << sps->pixel_shift));
1907  s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
1908  edge_emu_stride, srcstride,
1909  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1910  x_off - EPEL_EXTRA_BEFORE,
1911  y_off - EPEL_EXTRA_BEFORE,
1912  pic_width, pic_height);
1913 
1914  src0 = lc->edge_emu_buffer + buf_offset0;
1915  srcstride = edge_emu_stride;
1916  }
1917  if (!weight_flag)
1918  s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
1919  block_h, _mx, _my, block_w);
1920  else
1921  s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
1922  block_h, s->sh.chroma_log2_weight_denom,
1923  chroma_weight, chroma_offset, _mx, _my, block_w);
1924 }
1925 
1926 /**
1927  * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
1928  *
1929  * @param s HEVC decoding context
1930  * @param dst target buffer for block data at block position
1931  * @param dststride stride of the dst buffer
1932  * @param ref0 reference picture0 buffer at origin (0, 0)
1933  * @param mv0 motion vector0 (relative to block position) to get pixel data from
1934  * @param x_off horizontal position of block from origin (0, 0)
1935  * @param y_off vertical position of block from origin (0, 0)
1936  * @param block_w width of block
1937  * @param block_h height of block
1938  * @param ref1 reference picture1 buffer at origin (0, 0)
1939  * @param mv1 motion vector1 (relative to block position) to get pixel data from
1940  * @param current_mv current motion vector structure
1941  * @param cidx chroma component(cb, cr)
1942  */
1944  const HEVCPPS *pps, const HEVCSPS *sps,
1945  uint8_t *dst0, ptrdiff_t dststride,
1946  const AVFrame *ref0, const AVFrame *ref1,
1947  int x_off, int y_off, int block_w, int block_h, const MvField *current_mv, int cidx)
1948 {
1949  const HEVCContext *const s = lc->parent;
1950  const uint8_t *src1 = ref0->data[cidx+1];
1951  const uint8_t *src2 = ref1->data[cidx+1];
1952  ptrdiff_t src1stride = ref0->linesize[cidx+1];
1953  ptrdiff_t src2stride = ref1->linesize[cidx+1];
1954  int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) ||
1955  (s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag);
1956  int pic_width = sps->width >> sps->hshift[1];
1957  int pic_height = sps->height >> sps->vshift[1];
1958  const Mv *const mv0 = &current_mv->mv[0];
1959  const Mv *const mv1 = &current_mv->mv[1];
1960  int hshift = sps->hshift[1];
1961  int vshift = sps->vshift[1];
1962 
1963  intptr_t mx0 = av_zero_extend(mv0->x, 2 + hshift);
1964  intptr_t my0 = av_zero_extend(mv0->y, 2 + vshift);
1965  intptr_t mx1 = av_zero_extend(mv1->x, 2 + hshift);
1966  intptr_t my1 = av_zero_extend(mv1->y, 2 + vshift);
1967  intptr_t _mx0 = mx0 << (1 - hshift);
1968  intptr_t _my0 = my0 << (1 - vshift);
1969  intptr_t _mx1 = mx1 << (1 - hshift);
1970  intptr_t _my1 = my1 << (1 - vshift);
1971 
1972  int x_off0 = x_off + (mv0->x >> (2 + hshift));
1973  int y_off0 = y_off + (mv0->y >> (2 + vshift));
1974  int x_off1 = x_off + (mv1->x >> (2 + hshift));
1975  int y_off1 = y_off + (mv1->y >> (2 + vshift));
1976  int idx = hevc_pel_weight[block_w];
1977  src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << sps->pixel_shift);
1978  src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << sps->pixel_shift);
1979 
1980  if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
1981  x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
1982  y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
1983  const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
1984  int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << sps->pixel_shift));
1985  int buf_offset1 = EPEL_EXTRA_BEFORE *
1986  (edge_emu_stride + (1 << sps->pixel_shift));
1987 
1988  s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
1989  edge_emu_stride, src1stride,
1990  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1991  x_off0 - EPEL_EXTRA_BEFORE,
1992  y_off0 - EPEL_EXTRA_BEFORE,
1993  pic_width, pic_height);
1994 
1995  src1 = lc->edge_emu_buffer + buf_offset1;
1996  src1stride = edge_emu_stride;
1997  }
1998 
1999  if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
2000  x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
2001  y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
2002  const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
2003  int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << sps->pixel_shift));
2004  int buf_offset1 = EPEL_EXTRA_BEFORE *
2005  (edge_emu_stride + (1 << sps->pixel_shift));
2006 
2007  s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
2008  edge_emu_stride, src2stride,
2009  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
2010  x_off1 - EPEL_EXTRA_BEFORE,
2011  y_off1 - EPEL_EXTRA_BEFORE,
2012  pic_width, pic_height);
2013 
2014  src2 = lc->edge_emu_buffer2 + buf_offset1;
2015  src2stride = edge_emu_stride;
2016  }
2017 
2018  s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
2019  block_h, _mx0, _my0, block_w);
2020  if (!weight_flag)
2021  s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->cur_frame->f->linesize[cidx+1],
2022  src2, src2stride, lc->tmp,
2023  block_h, _mx1, _my1, block_w);
2024  else
2025  s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->cur_frame->f->linesize[cidx+1],
2026  src2, src2stride, lc->tmp,
2027  block_h,
2028  s->sh.chroma_log2_weight_denom,
2029  s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
2030  s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
2031  s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
2032  s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
2033  _mx1, _my1, block_w);
2034 }
2035 
2036 static void hevc_await_progress(const HEVCContext *s, const HEVCFrame *ref,
2037  const Mv *mv, int y0, int height)
2038 {
2039  if (s->avctx->active_thread_type == FF_THREAD_FRAME ) {
2040  int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
2041 
2042  ff_progress_frame_await(&ref->tf, y);
2043  }
2044 }
2045 
2047  const HEVCPPS *pps, const HEVCSPS *sps,
2048  int x0, int y0, int nPbW,
2049  int nPbH, int log2_cb_size, int part_idx,
2050  int merge_idx, MvField *mv)
2051 {
2052  const HEVCContext *const s = lc->parent;
2053  enum InterPredIdc inter_pred_idc = PRED_L0;
2054  int mvp_flag;
2055 
2056  ff_hevc_set_neighbour_available(lc, x0, y0, nPbW, nPbH, sps->log2_ctb_size);
2057  mv->pred_flag = 0;
2058  if (s->sh.slice_type == HEVC_SLICE_B)
2059  inter_pred_idc = ff_hevc_inter_pred_idc_decode(lc, nPbW, nPbH);
2060 
2061  if (inter_pred_idc != PRED_L1) {
2062  if (s->sh.nb_refs[L0])
2063  mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(lc, s->sh.nb_refs[L0]);
2064 
2065  mv->pred_flag = PF_L0;
2066  ff_hevc_hls_mvd_coding(lc, x0, y0, 0);
2067  mvp_flag = ff_hevc_mvp_lx_flag_decode(lc);
2068  ff_hevc_luma_mv_mvp_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size,
2069  part_idx, merge_idx, mv, mvp_flag, 0);
2070  mv->mv[0].x += lc->pu.mvd.x;
2071  mv->mv[0].y += lc->pu.mvd.y;
2072  }
2073 
2074  if (inter_pred_idc != PRED_L0) {
2075  if (s->sh.nb_refs[L1])
2076  mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(lc, s->sh.nb_refs[L1]);
2077 
2078  if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
2079  AV_ZERO32(&lc->pu.mvd);
2080  } else {
2081  ff_hevc_hls_mvd_coding(lc, x0, y0, 1);
2082  }
2083 
2084  mv->pred_flag += PF_L1;
2085  mvp_flag = ff_hevc_mvp_lx_flag_decode(lc);
2086  ff_hevc_luma_mv_mvp_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size,
2087  part_idx, merge_idx, mv, mvp_flag, 1);
2088  mv->mv[1].x += lc->pu.mvd.x;
2089  mv->mv[1].y += lc->pu.mvd.y;
2090  }
2091 }
2092 
2094  const HEVCLayerContext *l,
2095  const HEVCPPS *pps, const HEVCSPS *sps,
2096  int x0, int y0, int nPbW, int nPbH,
2097  int log2_cb_size, int partIdx, int idx)
2098 {
2099 #define POS(c_idx, x, y) \
2100  s->cur_frame->f->data[c_idx] ? \
2101  &s->cur_frame->f->data[c_idx][((y) >> sps->vshift[c_idx]) * linesize[c_idx] + \
2102  (((x) >> sps->hshift[c_idx]) << sps->pixel_shift)] : NULL
2103  const HEVCContext *const s = lc->parent;
2104  int merge_idx = 0;
2105  struct MvField current_mv = {{{ 0 }}};
2106 
2107  int min_pu_width = sps->min_pu_width;
2108 
2109  MvField *tab_mvf = s->cur_frame->tab_mvf;
2110  const RefPicList *refPicList = s->cur_frame->refPicList;
2111  const HEVCFrame *ref0 = NULL, *ref1 = NULL;
2112  const int *linesize = s->cur_frame->f->linesize;
2113  uint8_t *dst0 = s->cur_frame->f->data[0] + y0 * linesize[0] + (x0 << sps->pixel_shift);
2114  uint8_t *dst1 = POS(1, x0, y0);
2115  uint8_t *dst2 = POS(2, x0, y0);
2116  int log2_min_cb_size = sps->log2_min_cb_size;
2117  int min_cb_width = sps->min_cb_width;
2118  int x_cb = x0 >> log2_min_cb_size;
2119  int y_cb = y0 >> log2_min_cb_size;
2120  int x_pu, y_pu;
2121  int i, j;
2122 
2123  int skip_flag = SAMPLE_CTB(l->skip_flag, x_cb, y_cb);
2124 
2125  if (!skip_flag)
2127 
2128  if (skip_flag || lc->pu.merge_flag) {
2129  if (s->sh.max_num_merge_cand > 1)
2130  merge_idx = ff_hevc_merge_idx_decode(lc);
2131  else
2132  merge_idx = 0;
2133 
2134  ff_hevc_luma_mv_merge_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size,
2135  partIdx, merge_idx, &current_mv);
2136  } else {
2137  hevc_luma_mv_mvp_mode(lc, pps, sps, x0, y0, nPbW, nPbH, log2_cb_size,
2138  partIdx, merge_idx, &current_mv);
2139  }
2140 
2141  x_pu = x0 >> sps->log2_min_pu_size;
2142  y_pu = y0 >> sps->log2_min_pu_size;
2143 
2144  for (j = 0; j < nPbH >> sps->log2_min_pu_size; j++)
2145  for (i = 0; i < nPbW >> sps->log2_min_pu_size; i++)
2146  tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
2147 
2148  if (current_mv.pred_flag & PF_L0) {
2149  ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
2150  if (!ref0 || !ref0->f)
2151  return;
2152  hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
2153  }
2154  if (current_mv.pred_flag & PF_L1) {
2155  ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
2156  if (!ref1 || !ref1->f)
2157  return;
2158  hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
2159  }
2160 
2161  if (current_mv.pred_flag == PF_L0) {
2162  int x0_c = x0 >> sps->hshift[1];
2163  int y0_c = y0 >> sps->vshift[1];
2164  int nPbW_c = nPbW >> sps->hshift[1];
2165  int nPbH_c = nPbH >> sps->vshift[1];
2166 
2167  luma_mc_uni(lc, pps, sps, dst0, linesize[0], ref0->f,
2168  &current_mv.mv[0], x0, y0, nPbW, nPbH,
2169  s->sh.luma_weight_l0[current_mv.ref_idx[0]],
2170  s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
2171 
2172  if (sps->chroma_format_idc) {
2173  chroma_mc_uni(lc, pps, sps, dst1, linesize[1], ref0->f->data[1], ref0->f->linesize[1],
2174  0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
2175  s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
2176  chroma_mc_uni(lc, pps, sps, dst2, linesize[2], ref0->f->data[2], ref0->f->linesize[2],
2177  0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
2178  s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
2179  }
2180  } else if (current_mv.pred_flag == PF_L1) {
2181  int x0_c = x0 >> sps->hshift[1];
2182  int y0_c = y0 >> sps->vshift[1];
2183  int nPbW_c = nPbW >> sps->hshift[1];
2184  int nPbH_c = nPbH >> sps->vshift[1];
2185 
2186  luma_mc_uni(lc, pps, sps, dst0, linesize[0], ref1->f,
2187  &current_mv.mv[1], x0, y0, nPbW, nPbH,
2188  s->sh.luma_weight_l1[current_mv.ref_idx[1]],
2189  s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
2190 
2191  if (sps->chroma_format_idc) {
2192  chroma_mc_uni(lc, pps, sps, dst1, linesize[1], ref1->f->data[1], ref1->f->linesize[1],
2193  1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
2194  s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
2195 
2196  chroma_mc_uni(lc, pps, sps, dst2, linesize[2], ref1->f->data[2], ref1->f->linesize[2],
2197  1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
2198  s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
2199  }
2200  } else if (current_mv.pred_flag == PF_BI) {
2201  int x0_c = x0 >> sps->hshift[1];
2202  int y0_c = y0 >> sps->vshift[1];
2203  int nPbW_c = nPbW >> sps->hshift[1];
2204  int nPbH_c = nPbH >> sps->vshift[1];
2205 
2206  luma_mc_bi(lc, pps, sps, dst0, linesize[0], ref0->f,
2207  &current_mv.mv[0], x0, y0, nPbW, nPbH,
2208  ref1->f, &current_mv.mv[1], &current_mv);
2209 
2210  if (sps->chroma_format_idc) {
2211  chroma_mc_bi(lc, pps, sps, dst1, linesize[1], ref0->f, ref1->f,
2212  x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
2213 
2214  chroma_mc_bi(lc, pps, sps, dst2, linesize[2], ref0->f, ref1->f,
2215  x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
2216  }
2217  }
2218 }
2219 
2220 /**
2221  * 8.4.1
2222  */
2224  const HEVCSPS *sps,
2225  int x0, int y0, int pu_size,
2226  int prev_intra_luma_pred_flag)
2227 {
2228  const HEVCContext *const s = lc->parent;
2229  int x_pu = x0 >> sps->log2_min_pu_size;
2230  int y_pu = y0 >> sps->log2_min_pu_size;
2231  int min_pu_width = sps->min_pu_width;
2232  int size_in_pus = pu_size >> sps->log2_min_pu_size;
2233  int x0b = av_zero_extend(x0, sps->log2_ctb_size);
2234  int y0b = av_zero_extend(y0, sps->log2_ctb_size);
2235 
2236  int cand_up = (lc->ctb_up_flag || y0b) ?
2237  l->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
2238  int cand_left = (lc->ctb_left_flag || x0b) ?
2239  l->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
2240 
2241  int y_ctb = (y0 >> (sps->log2_ctb_size)) << (sps->log2_ctb_size);
2242 
2243  MvField *tab_mvf = s->cur_frame->tab_mvf;
2244  int intra_pred_mode;
2245  int candidate[3];
2246  int i, j;
2247 
2248  // intra_pred_mode prediction does not cross vertical CTB boundaries
2249  if ((y0 - 1) < y_ctb)
2250  cand_up = INTRA_DC;
2251 
2252  if (cand_left == cand_up) {
2253  if (cand_left < 2) {
2254  candidate[0] = INTRA_PLANAR;
2255  candidate[1] = INTRA_DC;
2256  candidate[2] = INTRA_ANGULAR_26;
2257  } else {
2258  candidate[0] = cand_left;
2259  candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
2260  candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
2261  }
2262  } else {
2263  candidate[0] = cand_left;
2264  candidate[1] = cand_up;
2265  if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
2266  candidate[2] = INTRA_PLANAR;
2267  } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
2268  candidate[2] = INTRA_DC;
2269  } else {
2270  candidate[2] = INTRA_ANGULAR_26;
2271  }
2272  }
2273 
2274  if (prev_intra_luma_pred_flag) {
2275  intra_pred_mode = candidate[lc->pu.mpm_idx];
2276  } else {
2277  if (candidate[0] > candidate[1])
2278  FFSWAP(uint8_t, candidate[0], candidate[1]);
2279  if (candidate[0] > candidate[2])
2280  FFSWAP(uint8_t, candidate[0], candidate[2]);
2281  if (candidate[1] > candidate[2])
2282  FFSWAP(uint8_t, candidate[1], candidate[2]);
2283 
2284  intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
2285  for (i = 0; i < 3; i++)
2286  if (intra_pred_mode >= candidate[i])
2287  intra_pred_mode++;
2288  }
2289 
2290  /* write the intra prediction units into the mv array */
2291  if (!size_in_pus)
2292  size_in_pus = 1;
2293  for (i = 0; i < size_in_pus; i++) {
2294  memset(&l->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
2295  intra_pred_mode, size_in_pus);
2296 
2297  for (j = 0; j < size_in_pus; j++) {
2298  tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
2299  }
2300  }
2301 
2302  return intra_pred_mode;
2303 }
2304 
2305 static av_always_inline void set_ct_depth(const HEVCSPS *sps, uint8_t *tab_ct_depth,
2306  int x0, int y0,
2307  int log2_cb_size, int ct_depth)
2308 {
2309  int length = (1 << log2_cb_size) >> sps->log2_min_cb_size;
2310  int x_cb = x0 >> sps->log2_min_cb_size;
2311  int y_cb = y0 >> sps->log2_min_cb_size;
2312  int y;
2313 
2314  for (y = 0; y < length; y++)
2315  memset(&tab_ct_depth[(y_cb + y) * sps->min_cb_width + x_cb],
2316  ct_depth, length);
2317 }
2318 
2319 static const uint8_t tab_mode_idx[] = {
2320  0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
2321  21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
2322 
2324  const HEVCLayerContext *l, const HEVCSPS *sps,
2325  int x0, int y0,
2326  int log2_cb_size)
2327 {
2328  static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
2329  uint8_t prev_intra_luma_pred_flag[4];
2330  int split = lc->cu.part_mode == PART_NxN;
2331  int pb_size = (1 << log2_cb_size) >> split;
2332  int side = split + 1;
2333  int chroma_mode;
2334  int i, j;
2335 
2336  for (i = 0; i < side; i++)
2337  for (j = 0; j < side; j++)
2338  prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(lc);
2339 
2340  for (i = 0; i < side; i++) {
2341  for (j = 0; j < side; j++) {
2342  if (prev_intra_luma_pred_flag[2 * i + j])
2343  lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(lc);
2344  else
2346 
2347  lc->pu.intra_pred_mode[2 * i + j] =
2348  luma_intra_pred_mode(lc, l, sps,
2349  x0 + pb_size * j, y0 + pb_size * i, pb_size,
2350  prev_intra_luma_pred_flag[2 * i + j]);
2351  }
2352  }
2353 
2354  if (sps->chroma_format_idc == 3) {
2355  for (i = 0; i < side; i++) {
2356  for (j = 0; j < side; j++) {
2357  lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc);
2358  if (chroma_mode != 4) {
2359  if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
2360  lc->pu.intra_pred_mode_c[2 * i + j] = 34;
2361  else
2362  lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
2363  } else {
2364  lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
2365  }
2366  }
2367  }
2368  } else if (sps->chroma_format_idc == 2) {
2369  int mode_idx;
2370  lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc);
2371  if (chroma_mode != 4) {
2372  if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
2373  mode_idx = 34;
2374  else
2375  mode_idx = intra_chroma_table[chroma_mode];
2376  } else {
2377  mode_idx = lc->pu.intra_pred_mode[0];
2378  }
2379  lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
2380  } else if (sps->chroma_format_idc != 0) {
2381  chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc);
2382  if (chroma_mode != 4) {
2383  if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
2384  lc->pu.intra_pred_mode_c[0] = 34;
2385  else
2386  lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
2387  } else {
2388  lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
2389  }
2390  }
2391 }
2392 
2394  const HEVCLayerContext *l,
2395  const HEVCSPS *sps,
2396  int x0, int y0,
2397  int log2_cb_size)
2398 {
2399  const HEVCContext *const s = lc->parent;
2400  int pb_size = 1 << log2_cb_size;
2401  int size_in_pus = pb_size >> sps->log2_min_pu_size;
2402  int min_pu_width = sps->min_pu_width;
2403  MvField *tab_mvf = s->cur_frame->tab_mvf;
2404  int x_pu = x0 >> sps->log2_min_pu_size;
2405  int y_pu = y0 >> sps->log2_min_pu_size;
2406  int j, k;
2407 
2408  if (size_in_pus == 0)
2409  size_in_pus = 1;
2410  for (j = 0; j < size_in_pus; j++)
2411  memset(&l->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
2412  if (lc->cu.pred_mode == MODE_INTRA)
2413  for (j = 0; j < size_in_pus; j++)
2414  for (k = 0; k < size_in_pus; k++)
2415  tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
2416 }
2417 
2419  const HEVCLayerContext *l,
2420  const HEVCPPS *pps, const HEVCSPS *sps,
2421  int x0, int y0, int log2_cb_size)
2422 {
2423  int cb_size = 1 << log2_cb_size;
2424  int log2_min_cb_size = sps->log2_min_cb_size;
2425  int length = cb_size >> log2_min_cb_size;
2426  int min_cb_width = sps->min_cb_width;
2427  int x_cb = x0 >> log2_min_cb_size;
2428  int y_cb = y0 >> log2_min_cb_size;
2429  int idx = log2_cb_size - 2;
2430  int qp_block_mask = (1 << (sps->log2_ctb_size - pps->diff_cu_qp_delta_depth)) - 1;
2431  int x, y, ret;
2432 
2433  lc->cu.x = x0;
2434  lc->cu.y = y0;
2435  lc->cu.pred_mode = MODE_INTRA;
2436  lc->cu.part_mode = PART_2Nx2N;
2437  lc->cu.intra_split_flag = 0;
2438 
2439  SAMPLE_CTB(l->skip_flag, x_cb, y_cb) = 0;
2440  for (x = 0; x < 4; x++)
2441  lc->pu.intra_pred_mode[x] = 1;
2442  if (pps->transquant_bypass_enable_flag) {
2444  if (lc->cu.cu_transquant_bypass_flag)
2445  set_deblocking_bypass(l->is_pcm, sps, x0, y0, log2_cb_size);
2446  } else
2447  lc->cu.cu_transquant_bypass_flag = 0;
2448 
2449  if (s->sh.slice_type != HEVC_SLICE_I) {
2450  const int x0b = av_zero_extend(x0, sps->log2_ctb_size);
2451  const int y0b = av_zero_extend(y0, sps->log2_ctb_size);
2452  uint8_t skip_flag = ff_hevc_skip_flag_decode(lc, l->skip_flag,
2453  x0b, y0b, x_cb, y_cb,
2454  min_cb_width);
2455 
2456  x = y_cb * min_cb_width + x_cb;
2457  for (y = 0; y < length; y++) {
2458  memset(&l->skip_flag[x], skip_flag, length);
2459  x += min_cb_width;
2460  }
2461  lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
2462  } else {
2463  x = y_cb * min_cb_width + x_cb;
2464  for (y = 0; y < length; y++) {
2465  memset(&l->skip_flag[x], 0, length);
2466  x += min_cb_width;
2467  }
2468  }
2469 
2470  if (SAMPLE_CTB(l->skip_flag, x_cb, y_cb)) {
2471  hls_prediction_unit(lc, l, pps, sps,
2472  x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
2473  intra_prediction_unit_default_value(lc, l, sps, x0, y0, log2_cb_size);
2474 
2475  if (!s->sh.disable_deblocking_filter_flag)
2476  ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_cb_size);
2477  } else {
2478  int pcm_flag = 0;
2479 
2480  if (s->sh.slice_type != HEVC_SLICE_I)
2482  if (lc->cu.pred_mode != MODE_INTRA ||
2483  log2_cb_size == sps->log2_min_cb_size) {
2484  lc->cu.part_mode = ff_hevc_part_mode_decode(lc, sps, log2_cb_size);
2485  lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
2486  lc->cu.pred_mode == MODE_INTRA;
2487  }
2488 
2489  if (lc->cu.pred_mode == MODE_INTRA) {
2490  if (lc->cu.part_mode == PART_2Nx2N && sps->pcm_enabled &&
2491  log2_cb_size >= sps->pcm.log2_min_pcm_cb_size &&
2492  log2_cb_size <= sps->pcm.log2_max_pcm_cb_size) {
2493  pcm_flag = ff_hevc_pcm_flag_decode(lc);
2494  }
2495  if (pcm_flag) {
2496  intra_prediction_unit_default_value(lc, l, sps, x0, y0, log2_cb_size);
2497  ret = hls_pcm_sample(lc, l, pps, x0, y0, log2_cb_size);
2498  if (sps->pcm_loop_filter_disabled)
2499  set_deblocking_bypass(l->is_pcm, sps, x0, y0, log2_cb_size);
2500 
2501  if (ret < 0)
2502  return ret;
2503  } else {
2504  intra_prediction_unit(lc, l, sps, x0, y0, log2_cb_size);
2505  }
2506  } else {
2507  intra_prediction_unit_default_value(lc, l, sps, x0, y0, log2_cb_size);
2508  switch (lc->cu.part_mode) {
2509  case PART_2Nx2N:
2510  hls_prediction_unit(lc, l, pps, sps,
2511  x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
2512  break;
2513  case PART_2NxN:
2514  hls_prediction_unit(lc, l, pps, sps,
2515  x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
2516  hls_prediction_unit(lc, l, pps, sps,
2517  x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
2518  break;
2519  case PART_Nx2N:
2520  hls_prediction_unit(lc, l, pps, sps,
2521  x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
2522  hls_prediction_unit(lc, l, pps, sps,
2523  x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
2524  break;
2525  case PART_2NxnU:
2526  hls_prediction_unit(lc, l, pps, sps,
2527  x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
2528  hls_prediction_unit(lc, l, pps, sps,
2529  x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
2530  break;
2531  case PART_2NxnD:
2532  hls_prediction_unit(lc, l, pps, sps,
2533  x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
2534  hls_prediction_unit(lc, l, pps, sps,
2535  x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
2536  break;
2537  case PART_nLx2N:
2538  hls_prediction_unit(lc, l, pps, sps,
2539  x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
2540  hls_prediction_unit(lc, l, pps, sps,
2541  x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
2542  break;
2543  case PART_nRx2N:
2544  hls_prediction_unit(lc, l, pps, sps,
2545  x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
2546  hls_prediction_unit(lc, l, pps, sps,
2547  x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
2548  break;
2549  case PART_NxN:
2550  hls_prediction_unit(lc, l, pps, sps,
2551  x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
2552  hls_prediction_unit(lc, l, pps, sps,
2553  x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
2554  hls_prediction_unit(lc, l, pps, sps,
2555  x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
2556  hls_prediction_unit(lc, l, pps, sps,
2557  x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
2558  break;
2559  }
2560  }
2561 
2562  if (!pcm_flag) {
2563  int rqt_root_cbf = 1;
2564 
2565  if (lc->cu.pred_mode != MODE_INTRA &&
2566  !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
2567  rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(lc);
2568  }
2569  if (rqt_root_cbf) {
2570  const static int cbf[2] = { 0 };
2571  lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
2572  sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
2573  sps->max_transform_hierarchy_depth_inter;
2574  ret = hls_transform_tree(lc, l, pps, sps, x0, y0, x0, y0, x0, y0,
2575  log2_cb_size,
2576  log2_cb_size, 0, 0, cbf, cbf);
2577  if (ret < 0)
2578  return ret;
2579  } else {
2580  if (!s->sh.disable_deblocking_filter_flag)
2581  ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_cb_size);
2582  }
2583  }
2584  }
2585 
2586  if (pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
2587  ff_hevc_set_qPy(lc, l, pps, x0, y0, log2_cb_size);
2588 
2589  x = y_cb * min_cb_width + x_cb;
2590  for (y = 0; y < length; y++) {
2591  memset(&l->qp_y_tab[x], lc->qp_y, length);
2592  x += min_cb_width;
2593  }
2594 
2595  if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
2596  ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
2597  lc->qPy_pred = lc->qp_y;
2598  }
2599 
2600  set_ct_depth(sps, l->tab_ct_depth, x0, y0, log2_cb_size, lc->ct_depth);
2601 
2602  return 0;
2603 }
2604 
2606  const HEVCLayerContext *l,
2607  const HEVCPPS *pps, const HEVCSPS *sps,
2608  int x0, int y0,
2609  int log2_cb_size, int cb_depth)
2610 {
2611  const HEVCContext *const s = lc->parent;
2612  const int cb_size = 1 << log2_cb_size;
2613  int ret;
2614  int split_cu;
2615 
2616  lc->ct_depth = cb_depth;
2617  if (x0 + cb_size <= sps->width &&
2618  y0 + cb_size <= sps->height &&
2619  log2_cb_size > sps->log2_min_cb_size) {
2621  sps, cb_depth, x0, y0);
2622  } else {
2623  split_cu = (log2_cb_size > sps->log2_min_cb_size);
2624  }
2625  if (pps->cu_qp_delta_enabled_flag &&
2626  log2_cb_size >= sps->log2_ctb_size - pps->diff_cu_qp_delta_depth) {
2627  lc->tu.is_cu_qp_delta_coded = 0;
2628  lc->tu.cu_qp_delta = 0;
2629  }
2630 
2631  if (s->sh.cu_chroma_qp_offset_enabled_flag &&
2632  log2_cb_size >= sps->log2_ctb_size - pps->diff_cu_chroma_qp_offset_depth) {
2634  }
2635 
2636  if (split_cu) {
2637  int qp_block_mask = (1 << (sps->log2_ctb_size - pps->diff_cu_qp_delta_depth)) - 1;
2638  const int cb_size_split = cb_size >> 1;
2639  const int x1 = x0 + cb_size_split;
2640  const int y1 = y0 + cb_size_split;
2641 
2642  int more_data = 0;
2643 
2644  more_data = hls_coding_quadtree(lc, l, pps, sps,
2645  x0, y0, log2_cb_size - 1, cb_depth + 1);
2646  if (more_data < 0)
2647  return more_data;
2648 
2649  if (more_data && x1 < sps->width) {
2650  more_data = hls_coding_quadtree(lc, l, pps, sps,
2651  x1, y0, log2_cb_size - 1, cb_depth + 1);
2652  if (more_data < 0)
2653  return more_data;
2654  }
2655  if (more_data && y1 < sps->height) {
2656  more_data = hls_coding_quadtree(lc, l, pps, sps,
2657  x0, y1, log2_cb_size - 1, cb_depth + 1);
2658  if (more_data < 0)
2659  return more_data;
2660  }
2661  if (more_data && x1 < sps->width &&
2662  y1 < sps->height) {
2663  more_data = hls_coding_quadtree(lc, l, pps, sps,
2664  x1, y1, log2_cb_size - 1, cb_depth + 1);
2665  if (more_data < 0)
2666  return more_data;
2667  }
2668 
2669  if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
2670  ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
2671  lc->qPy_pred = lc->qp_y;
2672 
2673  if (more_data)
2674  return ((x1 + cb_size_split) < sps->width ||
2675  (y1 + cb_size_split) < sps->height);
2676  else
2677  return 0;
2678  } else {
2679  ret = hls_coding_unit(lc, s, l, pps, sps, x0, y0, log2_cb_size);
2680  if (ret < 0)
2681  return ret;
2682  if ((!((x0 + cb_size) %
2683  (1 << (sps->log2_ctb_size))) ||
2684  (x0 + cb_size >= sps->width)) &&
2685  (!((y0 + cb_size) %
2686  (1 << (sps->log2_ctb_size))) ||
2687  (y0 + cb_size >= sps->height))) {
2688  int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(lc);
2689  return !end_of_slice_flag;
2690  } else {
2691  return 1;
2692  }
2693  }
2694 
2695  return 0;
2696 }
2697 
2699  const HEVCLayerContext *l,
2700  const HEVCPPS *pps, const HEVCSPS *sps,
2701  int x_ctb, int y_ctb, int ctb_addr_ts)
2702 {
2703  const HEVCContext *const s = lc->parent;
2704  int ctb_size = 1 << sps->log2_ctb_size;
2705  int ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2706  int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
2707 
2708  l->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
2709 
2710  if (pps->entropy_coding_sync_enabled_flag) {
2711  if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
2712  lc->first_qp_group = 1;
2713  lc->end_of_tiles_x = sps->width;
2714  } else if (pps->tiles_enabled_flag) {
2715  if (ctb_addr_ts && pps->tile_id[ctb_addr_ts] != pps->tile_id[ctb_addr_ts - 1]) {
2716  int idxX = pps->col_idxX[x_ctb >> sps->log2_ctb_size];
2717  lc->end_of_tiles_x = x_ctb + (pps->column_width[idxX] << sps->log2_ctb_size);
2718  lc->first_qp_group = 1;
2719  }
2720  } else {
2721  lc->end_of_tiles_x = sps->width;
2722  }
2723 
2724  lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, sps->height);
2725 
2726  lc->boundary_flags = 0;
2727  if (pps->tiles_enabled_flag) {
2728  if (x_ctb > 0 && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
2730  if (x_ctb > 0 && l->tab_slice_address[ctb_addr_rs] != l->tab_slice_address[ctb_addr_rs - 1])
2732  if (y_ctb > 0 && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs - sps->ctb_width]])
2734  if (y_ctb > 0 && l->tab_slice_address[ctb_addr_rs] != l->tab_slice_address[ctb_addr_rs - sps->ctb_width])
2736  } else {
2737  if (ctb_addr_in_slice <= 0)
2739  if (ctb_addr_in_slice < sps->ctb_width)
2741  }
2742 
2743  lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
2744  lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
2745  lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= sps->ctb_width) && (pps->tile_id[ctb_addr_ts] == pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - sps->ctb_width]]));
2746  lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= sps->ctb_width) && (pps->tile_id[ctb_addr_ts] == pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - sps->ctb_width]]));
2747 }
2748 
2750 {
2751  HEVCLocalContext *const lc = &s->local_ctx[0];
2752  const HEVCLayerContext *const l = &s->layers[s->cur_layer];
2753  const HEVCPPS *const pps = s->pps;
2754  const HEVCSPS *const sps = pps->sps;
2755  const uint8_t *slice_data = gb->buffer + s->sh.data_offset;
2756  const size_t slice_size = get_bits_bytesize(gb, 1) - s->sh.data_offset;
2757  int ctb_size = 1 << sps->log2_ctb_size;
2758  int more_data = 1;
2759  int x_ctb = 0;
2760  int y_ctb = 0;
2761  int ctb_addr_ts = pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
2762  int ret;
2763 
2764  while (more_data && ctb_addr_ts < sps->ctb_size) {
2765  int ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2766 
2767  x_ctb = (ctb_addr_rs % ((sps->width + ctb_size - 1) >> sps->log2_ctb_size)) << sps->log2_ctb_size;
2768  y_ctb = (ctb_addr_rs / ((sps->width + ctb_size - 1) >> sps->log2_ctb_size)) << sps->log2_ctb_size;
2769  hls_decode_neighbour(lc, l, pps, sps, x_ctb, y_ctb, ctb_addr_ts);
2770 
2771  ret = ff_hevc_cabac_init(lc, pps, ctb_addr_ts, slice_data, slice_size, 0);
2772  if (ret < 0) {
2773  l->tab_slice_address[ctb_addr_rs] = -1;
2774  return ret;
2775  }
2776 
2777  hls_sao_param(lc, l, pps, sps,
2778  x_ctb >> sps->log2_ctb_size, y_ctb >> sps->log2_ctb_size);
2779 
2780  l->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
2781  l->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
2782  l->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
2783 
2784  more_data = hls_coding_quadtree(lc, l, pps, sps, x_ctb, y_ctb, sps->log2_ctb_size, 0);
2785  if (more_data < 0) {
2786  l->tab_slice_address[ctb_addr_rs] = -1;
2787  return more_data;
2788  }
2789 
2790 
2791  ctb_addr_ts++;
2792  ff_hevc_save_states(lc, pps, ctb_addr_ts);
2793  ff_hevc_hls_filters(lc, l, pps, x_ctb, y_ctb, ctb_size);
2794  }
2795 
2796  if (x_ctb + ctb_size >= sps->width &&
2797  y_ctb + ctb_size >= sps->height)
2798  ff_hevc_hls_filter(lc, l, pps, x_ctb, y_ctb, ctb_size);
2799 
2800  return ctb_addr_ts;
2801 }
2802 
2803 static int hls_decode_entry_wpp(AVCodecContext *avctx, void *hevc_lclist,
2804  int job, int thread)
2805 {
2806  HEVCLocalContext *lc = &((HEVCLocalContext*)hevc_lclist)[thread];
2807  const HEVCContext *const s = lc->parent;
2808  const HEVCLayerContext *const l = &s->layers[s->cur_layer];
2809  const HEVCPPS *const pps = s->pps;
2810  const HEVCSPS *const sps = pps->sps;
2811  int ctb_size = 1 << sps->log2_ctb_size;
2812  int more_data = 1;
2813  int ctb_row = job;
2814  int ctb_addr_rs = s->sh.slice_ctb_addr_rs + ctb_row * ((sps->width + ctb_size - 1) >> sps->log2_ctb_size);
2815  int ctb_addr_ts = pps->ctb_addr_rs_to_ts[ctb_addr_rs];
2816 
2817  const uint8_t *data = s->data + s->sh.offset[ctb_row];
2818  const size_t data_size = s->sh.size[ctb_row];
2819 
2820  int progress = 0;
2821 
2822  int ret;
2823 
2824  if (ctb_row)
2825  ff_init_cabac_decoder(&lc->cc, data, data_size);
2826 
2827  while(more_data && ctb_addr_ts < sps->ctb_size) {
2828  int x_ctb = (ctb_addr_rs % sps->ctb_width) << sps->log2_ctb_size;
2829  int y_ctb = (ctb_addr_rs / sps->ctb_width) << sps->log2_ctb_size;
2830 
2831  hls_decode_neighbour(lc, l, pps, sps, x_ctb, y_ctb, ctb_addr_ts);
2832 
2833  if (ctb_row)
2834  ff_thread_progress_await(&s->wpp_progress[ctb_row - 1],
2835  progress + SHIFT_CTB_WPP + 1);
2836 
2837  /* atomic_load's prototype requires a pointer to non-const atomic variable
2838  * (due to implementations via mutexes, where reads involve writes).
2839  * Of course, casting const away here is nevertheless safe. */
2840  if (atomic_load((atomic_int*)&s->wpp_err)) {
2841  ff_thread_progress_report(&s->wpp_progress[ctb_row], INT_MAX);
2842  return 0;
2843  }
2844 
2845  ret = ff_hevc_cabac_init(lc, pps, ctb_addr_ts, data, data_size, 1);
2846  if (ret < 0)
2847  goto error;
2848  hls_sao_param(lc, l, pps, sps,
2849  x_ctb >> sps->log2_ctb_size, y_ctb >> sps->log2_ctb_size);
2850 
2851  l->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
2852  l->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
2853  l->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
2854 
2855  more_data = hls_coding_quadtree(lc, l, pps, sps, x_ctb, y_ctb, sps->log2_ctb_size, 0);
2856 
2857  if (more_data < 0) {
2858  ret = more_data;
2859  goto error;
2860  }
2861 
2862  ctb_addr_ts++;
2863 
2864  ff_hevc_save_states(lc, pps, ctb_addr_ts);
2865  ff_thread_progress_report(&s->wpp_progress[ctb_row], ++progress);
2866  ff_hevc_hls_filters(lc, l, pps, x_ctb, y_ctb, ctb_size);
2867 
2868  if (!more_data && (x_ctb+ctb_size) < sps->width && ctb_row != s->sh.num_entry_point_offsets) {
2869  /* Casting const away here is safe, because it is an atomic operation. */
2870  atomic_store((atomic_int*)&s->wpp_err, 1);
2871  ff_thread_progress_report(&s->wpp_progress[ctb_row], INT_MAX);
2872  return 0;
2873  }
2874 
2875  if ((x_ctb+ctb_size) >= sps->width && (y_ctb+ctb_size) >= sps->height ) {
2876  ff_hevc_hls_filter(lc, l, pps, x_ctb, y_ctb, ctb_size);
2877  ff_thread_progress_report(&s->wpp_progress[ctb_row], INT_MAX);
2878  return ctb_addr_ts;
2879  }
2880  ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2881  x_ctb+=ctb_size;
2882 
2883  if(x_ctb >= sps->width) {
2884  break;
2885  }
2886  }
2887  ff_thread_progress_report(&s->wpp_progress[ctb_row], INT_MAX);
2888 
2889  return 0;
2890 error:
2891  l->tab_slice_address[ctb_addr_rs] = -1;
2892  /* Casting const away here is safe, because it is an atomic operation. */
2893  atomic_store((atomic_int*)&s->wpp_err, 1);
2894  ff_thread_progress_report(&s->wpp_progress[ctb_row], INT_MAX);
2895  return ret;
2896 }
2897 
2898 static int wpp_progress_init(HEVCContext *s, unsigned count)
2899 {
2900  if (s->nb_wpp_progress < count) {
2901  void *tmp = av_realloc_array(s->wpp_progress, count,
2902  sizeof(*s->wpp_progress));
2903  if (!tmp)
2904  return AVERROR(ENOMEM);
2905 
2906  s->wpp_progress = tmp;
2907  memset(s->wpp_progress + s->nb_wpp_progress, 0,
2908  (count - s->nb_wpp_progress) * sizeof(*s->wpp_progress));
2909 
2910  for (int i = s->nb_wpp_progress; i < count; i++) {
2911  int ret = ff_thread_progress_init(&s->wpp_progress[i], 1);
2912  if (ret < 0)
2913  return ret;
2914  s->nb_wpp_progress = i + 1;
2915  }
2916  }
2917 
2918  for (int i = 0; i < count; i++)
2919  ff_thread_progress_reset(&s->wpp_progress[i]);
2920 
2921  return 0;
2922 }
2923 
2924 static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
2925 {
2926  const HEVCPPS *const pps = s->pps;
2927  const HEVCSPS *const sps = pps->sps;
2928  const uint8_t *data = nal->data;
2929  int length = nal->size;
2930  int *ret;
2931  int64_t offset;
2932  int64_t startheader, cmpt = 0;
2933  int i, j, res = 0;
2934 
2935  if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * sps->ctb_width >= sps->ctb_width * sps->ctb_height) {
2936  av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
2937  s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
2938  sps->ctb_width, sps->ctb_height
2939  );
2940  return AVERROR_INVALIDDATA;
2941  }
2942 
2943  if (s->avctx->thread_count > s->nb_local_ctx) {
2944  HEVCLocalContext *tmp = av_malloc_array(s->avctx->thread_count, sizeof(*s->local_ctx));
2945 
2946  if (!tmp)
2947  return AVERROR(ENOMEM);
2948 
2949  memcpy(tmp, s->local_ctx, sizeof(*s->local_ctx) * s->nb_local_ctx);
2950  av_free(s->local_ctx);
2951  s->local_ctx = tmp;
2952 
2953  for (unsigned i = s->nb_local_ctx; i < s->avctx->thread_count; i++) {
2954  tmp = &s->local_ctx[i];
2955 
2956  memset(tmp, 0, sizeof(*tmp));
2957 
2958  tmp->logctx = s->avctx;
2959  tmp->parent = s;
2960  tmp->common_cabac_state = &s->cabac;
2961  }
2962 
2963  s->nb_local_ctx = s->avctx->thread_count;
2964  }
2965 
2966  offset = s->sh.data_offset;
2967 
2968  for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
2969  if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
2970  startheader--;
2971  cmpt++;
2972  }
2973  }
2974 
2975  for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
2976  offset += (s->sh.entry_point_offset[i - 1] - cmpt);
2977  for (j = 0, cmpt = 0, startheader = offset
2978  + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
2979  if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
2980  startheader--;
2981  cmpt++;
2982  }
2983  }
2984  s->sh.size[i] = s->sh.entry_point_offset[i] - cmpt;
2985  s->sh.offset[i] = offset;
2986 
2987  }
2988 
2989  offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
2990  if (length < offset) {
2991  av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
2992  return AVERROR_INVALIDDATA;
2993  }
2994  s->sh.size [s->sh.num_entry_point_offsets] = length - offset;
2995  s->sh.offset[s->sh.num_entry_point_offsets] = offset;
2996 
2997  s->sh.offset[0] = s->sh.data_offset;
2998  s->sh.size[0] = s->sh.offset[1] - s->sh.offset[0];
2999 
3000  s->data = data;
3001 
3002  for (i = 1; i < s->nb_local_ctx; i++) {
3003  s->local_ctx[i].first_qp_group = 1;
3004  s->local_ctx[i].qp_y = s->local_ctx[0].qp_y;
3005  }
3006 
3007  atomic_store(&s->wpp_err, 0);
3008  res = wpp_progress_init(s, s->sh.num_entry_point_offsets + 1);
3009  if (res < 0)
3010  return res;
3011 
3012  ret = av_calloc(s->sh.num_entry_point_offsets + 1, sizeof(*ret));
3013  if (!ret)
3014  return AVERROR(ENOMEM);
3015 
3016  if (pps->entropy_coding_sync_enabled_flag)
3017  s->avctx->execute2(s->avctx, hls_decode_entry_wpp, s->local_ctx, ret, s->sh.num_entry_point_offsets + 1);
3018 
3019  for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
3020  res += ret[i];
3021 
3022  av_free(ret);
3023  return res;
3024 }
3025 
3027  const H2645NAL *nal, GetBitContext *gb)
3028 {
3029  const HEVCPPS *pps = s->pps;
3030  int ret;
3031 
3032  if (!s->sh.first_slice_in_pic_flag)
3033  s->slice_idx += !s->sh.dependent_slice_segment_flag;
3034 
3035  if (!s->sh.dependent_slice_segment_flag && s->sh.slice_type != HEVC_SLICE_I) {
3036  ret = ff_hevc_slice_rpl(s);
3037  if (ret < 0) {
3038  av_log(s->avctx, AV_LOG_WARNING,
3039  "Error constructing the reference lists for the current slice.\n");
3040  return ret;
3041  }
3042  }
3043 
3044  s->slice_initialized = 1;
3045 
3046  if (s->avctx->hwaccel)
3047  return FF_HW_CALL(s->avctx, decode_slice, nal->raw_data, nal->raw_size);
3048 
3049  if (s->avctx->profile == AV_PROFILE_HEVC_SCC) {
3050  av_log(s->avctx, AV_LOG_ERROR,
3051  "SCC profile is not yet implemented in hevc native decoder.\n");
3052  return AVERROR_PATCHWELCOME;
3053  }
3054 
3055  if (s->sh.dependent_slice_segment_flag) {
3056  int ctb_addr_ts = pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
3057  int prev_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
3058  if (l->tab_slice_address[prev_rs] != s->sh.slice_addr) {
3059  av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
3060  return AVERROR_INVALIDDATA;
3061  }
3062  }
3063 
3064  s->local_ctx[0].first_qp_group = !s->sh.dependent_slice_segment_flag;
3065 
3066  if (!pps->cu_qp_delta_enabled_flag)
3067  s->local_ctx[0].qp_y = s->sh.slice_qp;
3068 
3069  s->local_ctx[0].tu.cu_qp_offset_cb = 0;
3070  s->local_ctx[0].tu.cu_qp_offset_cr = 0;
3071 
3072  if (s->avctx->active_thread_type == FF_THREAD_SLICE &&
3073  s->sh.num_entry_point_offsets > 0 &&
3074  pps->num_tile_rows == 1 && pps->num_tile_columns == 1)
3075  return hls_slice_data_wpp(s, nal);
3076 
3077  return hls_decode_entry(s, gb);
3078 }
3079 
3081 {
3082  const HEVCSPS *sps = s->cur_frame->pps->sps;
3083  AVFrame *out = s->cur_frame->f;
3084  int ret;
3085 
3086  // Decrement the mastering display and content light level flag when IRAP
3087  // frame has no_rasl_output_flag=1 so the side data persists for the entire
3088  // coded video sequence.
3089  if (IS_IRAP(s) && s->no_rasl_output_flag) {
3090  if (s->sei.common.mastering_display.present > 0)
3091  s->sei.common.mastering_display.present--;
3092 
3093  if (s->sei.common.content_light.present > 0)
3094  s->sei.common.content_light.present--;
3095  }
3096 
3097  ret = ff_h2645_sei_to_frame(out, &s->sei.common, AV_CODEC_ID_HEVC, s->avctx,
3098  &sps->vui.common,
3099  sps->bit_depth, sps->bit_depth_chroma,
3100  s->cur_frame->poc /* no poc_offset in HEVC */);
3101  if (ret < 0)
3102  return ret;
3103 
3104  if (s->sei.timecode.present) {
3105  uint32_t *tc_sd;
3106  char tcbuf[AV_TIMECODE_STR_SIZE];
3107  AVFrameSideData *tcside;
3109  sizeof(uint32_t) * 4, &tcside);
3110  if (ret < 0)
3111  return ret;
3112 
3113  if (tcside) {
3114  tc_sd = (uint32_t*)tcside->data;
3115  tc_sd[0] = s->sei.timecode.num_clock_ts;
3116 
3117  for (int i = 0; i < tc_sd[0]; i++) {
3118  int drop = s->sei.timecode.cnt_dropped_flag[i];
3119  int hh = s->sei.timecode.hours_value[i];
3120  int mm = s->sei.timecode.minutes_value[i];
3121  int ss = s->sei.timecode.seconds_value[i];
3122  int ff = s->sei.timecode.n_frames[i];
3123 
3124  tc_sd[i + 1] = av_timecode_get_smpte(s->avctx->framerate, drop, hh, mm, ss, ff);
3125  av_timecode_make_smpte_tc_string2(tcbuf, s->avctx->framerate, tc_sd[i + 1], 0, 0);
3126  av_dict_set(&out->metadata, "timecode", tcbuf, 0);
3127  }
3128  }
3129 
3130  s->sei.timecode.num_clock_ts = 0;
3131  }
3132 
3133  if (s->sei.common.dynamic_hdr_plus.info) {
3134  AVBufferRef *info_ref = av_buffer_ref(s->sei.common.dynamic_hdr_plus.info);
3135  if (!info_ref)
3136  return AVERROR(ENOMEM);
3137 
3139  if (ret < 0)
3140  return ret;
3141  }
3142 
3143  if (s->rpu_buf) {
3145  if (!rpu)
3146  return AVERROR(ENOMEM);
3147 
3148  s->rpu_buf = NULL;
3149  }
3150 
3151  if ((ret = ff_dovi_attach_side_data(&s->dovi_ctx, out)) < 0)
3152  return ret;
3153 
3154  if (s->sei.common.dynamic_hdr_vivid.info) {
3155  if (!av_frame_side_data_add(&out->side_data, &out->nb_side_data,
3157  &s->sei.common.dynamic_hdr_vivid.info,
3159  return AVERROR(ENOMEM);
3160  }
3161 
3162  return 0;
3163 }
3164 
3166 {
3167  int nal_idx = 0;
3168 
3169  for (int i = nal_idx; i < s->pkt.nb_nals; i++) {
3170  const H2645NAL *nal = &s->pkt.nals[i];
3171  const int layer_id = nal->nuh_layer_id;
3172  GetBitContext gb = nal->gb;
3173 
3174  if (layer_id > HEVC_MAX_NUH_LAYER_ID || s->vps->layer_idx[layer_id] < 0 ||
3175  !(s->layers_active_decode & (1 << s->vps->layer_idx[layer_id])))
3176  continue;
3177 
3178  switch (nal->type) {
3179  case HEVC_NAL_TRAIL_R:
3180  case HEVC_NAL_TRAIL_N:
3181  case HEVC_NAL_TSA_N:
3182  case HEVC_NAL_TSA_R:
3183  case HEVC_NAL_STSA_N:
3184  case HEVC_NAL_STSA_R:
3185  case HEVC_NAL_BLA_W_LP:
3186  case HEVC_NAL_BLA_W_RADL:
3187  case HEVC_NAL_BLA_N_LP:
3188  case HEVC_NAL_IDR_W_RADL:
3189  case HEVC_NAL_IDR_N_LP:
3190  case HEVC_NAL_CRA_NUT:
3191  case HEVC_NAL_RADL_N:
3192  case HEVC_NAL_RADL_R:
3193  case HEVC_NAL_RASL_N:
3194  case HEVC_NAL_RASL_R:
3195  if (!get_bits1(&gb)) // first_slice_segment_in_pic_flag
3196  continue;
3197  case HEVC_NAL_VPS:
3198  case HEVC_NAL_SPS:
3199  case HEVC_NAL_PPS:
3200  nal_idx = i;
3201  break;
3202  }
3203  }
3204 
3205  return nal_idx;
3206 }
3207 
3209  unsigned nal_idx)
3210 {
3211  const HEVCPPS *const pps = s->ps.pps_list[s->sh.pps_id];
3212  const HEVCSPS *const sps = pps->sps;
3213  int pic_size_in_ctb = ((sps->width >> sps->log2_min_cb_size) + 1) *
3214  ((sps->height >> sps->log2_min_cb_size) + 1);
3215  int new_sequence = (l == &s->layers[0]) &&
3216  (IS_IDR(s) || IS_BLA(s) || s->last_eos);
3217  int prev_layers_active_decode = s->layers_active_decode;
3218  int prev_layers_active_output = s->layers_active_output;
3219  int ret;
3220 
3221  if (sps->vps != s->vps && l != &s->layers[0]) {
3222  av_log(s->avctx, AV_LOG_ERROR, "VPS changed in a non-base layer\n");
3223  set_sps(s, l, NULL);
3224  return AVERROR_INVALIDDATA;
3225  }
3226 
3227  av_refstruct_replace(&s->pps, pps);
3228  if (l->sps != sps) {
3229  const HEVCSPS *sps_base = s->layers[0].sps;
3230  enum AVPixelFormat pix_fmt = sps->pix_fmt;
3231 
3232  if (l != &s->layers[0]) {
3233  if (!sps_base) {
3234  av_log(s->avctx, AV_LOG_ERROR,
3235  "Access unit starts with a non-base layer frame\n");
3236  return AVERROR_INVALIDDATA;
3237  }
3238 
3239  // Files produced by Vision Pro lack VPS extension VUI,
3240  // so the secondary layer has no range information.
3241  // This check avoids failing in such a case.
3242  if (sps_base->pix_fmt == AV_PIX_FMT_YUVJ420P &&
3243  sps->pix_fmt == AV_PIX_FMT_YUV420P &&
3244  !sps->vui.common.video_signal_type_present_flag)
3245  pix_fmt = sps_base->pix_fmt;
3246 
3247  // Ignore range mismatch between base layer and alpha layer
3248  if (ff_hevc_is_alpha_video(s) &&
3249  sps_base->pix_fmt == AV_PIX_FMT_YUV420P &&
3251  pix_fmt = sps_base->pix_fmt;
3252 
3253  if (pix_fmt != sps_base->pix_fmt ||
3254  sps->width != sps_base->width ||
3255  sps->height != sps_base->height) {
3256  av_log(s->avctx, AV_LOG_ERROR,
3257  "Base/non-base layer SPS have unsupported parameter combination\n");
3258  return AVERROR(ENOSYS);
3259  }
3260  }
3261 
3262  ff_hevc_clear_refs(l);
3263 
3264  ret = set_sps(s, l, sps);
3265  if (ret < 0)
3266  return ret;
3267 
3268  if (l == &s->layers[0]) {
3270 
3271  ret = get_format(s, sps);
3272  if (ret < 0) {
3273  set_sps(s, l, NULL);
3274  return ret;
3275  }
3276 
3277  new_sequence = 1;
3278  }
3279  }
3280 
3281  memset(l->horizontal_bs, 0, l->bs_width * l->bs_height);
3282  memset(l->vertical_bs, 0, l->bs_width * l->bs_height);
3283  memset(l->cbf_luma, 0, sps->min_tb_width * sps->min_tb_height);
3284  memset(l->is_pcm, 0, (sps->min_pu_width + 1) * (sps->min_pu_height + 1));
3285  memset(l->tab_slice_address, -1, pic_size_in_ctb * sizeof(*l->tab_slice_address));
3286 
3287  if (IS_IDR(s))
3288  ff_hevc_clear_refs(l);
3289 
3290  s->slice_idx = 0;
3291  s->first_nal_type = s->nal_unit_type;
3292  s->poc = s->sh.poc;
3293 
3294  if (IS_IRAP(s)) {
3295  s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) ||
3296  (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
3297  s->recovery_poc = HEVC_RECOVERY_END;
3298  }
3299 
3300  if (s->recovery_poc != HEVC_RECOVERY_END &&
3301  s->sei.recovery_point.has_recovery_poc) {
3302  if (s->recovery_poc == HEVC_RECOVERY_UNSPECIFIED)
3303  s->recovery_poc = s->poc + s->sei.recovery_point.recovery_poc_cnt;
3304  else if (s->poc >= s->recovery_poc)
3305  s->recovery_poc = HEVC_RECOVERY_END;
3306  }
3307 
3308  /* 8.3.1 */
3309  if (s->temporal_id == 0 &&
3310  s->nal_unit_type != HEVC_NAL_TRAIL_N &&
3311  s->nal_unit_type != HEVC_NAL_TSA_N &&
3312  s->nal_unit_type != HEVC_NAL_STSA_N &&
3313  s->nal_unit_type != HEVC_NAL_RADL_N &&
3314  s->nal_unit_type != HEVC_NAL_RADL_R &&
3315  s->nal_unit_type != HEVC_NAL_RASL_N &&
3316  s->nal_unit_type != HEVC_NAL_RASL_R)
3317  s->poc_tid0 = s->poc;
3318 
3319  if (pps->tiles_enabled_flag)
3320  s->local_ctx[0].end_of_tiles_x = pps->column_width[0] << sps->log2_ctb_size;
3321 
3322  if (new_sequence) {
3323  ret = ff_hevc_output_frames(s, prev_layers_active_decode, prev_layers_active_output,
3324  0, 0, s->sh.no_output_of_prior_pics_flag);
3325  if (ret < 0)
3326  return ret;
3327  }
3328 
3330  if (ret < 0)
3331  return ret;
3332 
3333  ret = ff_hevc_set_new_ref(s, l, s->poc);
3334  if (ret < 0)
3335  goto fail;
3336 
3337  ret = ff_hevc_frame_rps(s, l);
3338  if (ret < 0) {
3339  av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
3340  goto fail;
3341  }
3342 
3343  if (IS_IRAP(s))
3344  s->cur_frame->f->flags |= AV_FRAME_FLAG_KEY;
3345  else
3346  s->cur_frame->f->flags &= ~AV_FRAME_FLAG_KEY;
3347 
3348  s->cur_frame->needs_fg = ((s->sei.common.film_grain_characteristics &&
3349  s->sei.common.film_grain_characteristics->present) ||
3350  s->sei.common.aom_film_grain.enable) &&
3351  !(s->avctx->export_side_data & AV_CODEC_EXPORT_DATA_FILM_GRAIN) &&
3352  !s->avctx->hwaccel;
3353 
3354  ret = set_side_data(s);
3355  if (ret < 0)
3356  goto fail;
3357 
3358  if (s->cur_frame->needs_fg &&
3359  (s->sei.common.film_grain_characteristics && s->sei.common.film_grain_characteristics->present &&
3360  !ff_h274_film_grain_params_supported(s->sei.common.film_grain_characteristics->model_id,
3361  s->cur_frame->f->format) ||
3362  !av_film_grain_params_select(s->cur_frame->f))) {
3363  av_log_once(s->avctx, AV_LOG_WARNING, AV_LOG_DEBUG, &s->film_grain_warning_shown,
3364  "Unsupported film grain parameters. Ignoring film grain.\n");
3365  s->cur_frame->needs_fg = 0;
3366  }
3367 
3368  if (s->cur_frame->needs_fg) {
3369  s->cur_frame->frame_grain->format = s->cur_frame->f->format;
3370  s->cur_frame->frame_grain->width = s->cur_frame->f->width;
3371  s->cur_frame->frame_grain->height = s->cur_frame->f->height;
3372  if ((ret = ff_thread_get_buffer(s->avctx, s->cur_frame->frame_grain, 0)) < 0)
3373  goto fail;
3374 
3375  ret = av_frame_copy_props(s->cur_frame->frame_grain, s->cur_frame->f);
3376  if (ret < 0)
3377  goto fail;
3378  }
3379 
3380  s->cur_frame->f->pict_type = 3 - s->sh.slice_type;
3381 
3382  ret = ff_hevc_output_frames(s, s->layers_active_decode, s->layers_active_output,
3383  sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics,
3384  sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering, 0);
3385  if (ret < 0)
3386  goto fail;
3387 
3388  if (s->avctx->hwaccel) {
3389  AVCodecInternal *avci = s->avctx->internal;
3390  AVPacket *avpkt = avci->in_pkt;
3391  ret = FF_HW_CALL(s->avctx, start_frame,
3392  avpkt->buf, NULL, 0);
3393  if (ret < 0)
3394  goto fail;
3395  }
3396 
3397  // after starting the base-layer frame we know which layers will be decoded,
3398  // so we can now figure out which NALUs to wait for before we can call
3399  // ff_thread_finish_setup()
3400  if (l == &s->layers[0])
3401  s->finish_setup_nal_idx = find_finish_setup_nal(s);
3402 
3403  if (nal_idx >= s->finish_setup_nal_idx)
3404  ff_thread_finish_setup(s->avctx);
3405 
3406  return 0;
3407 
3408 fail:
3409  if (l->cur_frame)
3411  l->cur_frame = NULL;
3412  s->cur_frame = s->collocated_ref = NULL;
3413  s->slice_initialized = 0;
3414  return ret;
3415 }
3416 
3418 {
3420  char msg_buf[4 * (50 + 2 * 2 * 16 /* MD5-size */)];
3421  int pixel_shift;
3422  int err = 0;
3423  int i, j;
3424 
3425  if (!desc)
3426  return AVERROR(EINVAL);
3427 
3428  pixel_shift = desc->comp[0].depth > 8;
3429 
3430  /* the checksums are LE, so we have to byteswap for >8bpp formats
3431  * on BE arches */
3432 #if HAVE_BIGENDIAN
3433  if (pixel_shift && !s->checksum_buf) {
3434  av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
3435  FFMAX3(frame->linesize[0], frame->linesize[1],
3436  frame->linesize[2]));
3437  if (!s->checksum_buf)
3438  return AVERROR(ENOMEM);
3439  }
3440 #endif
3441 
3442  msg_buf[0] = '\0';
3443  for (i = 0; frame->data[i]; i++) {
3444  int width = s->avctx->coded_width;
3445  int height = s->avctx->coded_height;
3446  int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
3447  int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
3448  uint8_t md5[16];
3449 
3450  av_md5_init(s->md5_ctx);
3451  for (j = 0; j < h; j++) {
3452  const uint8_t *src = frame->data[i] + j * frame->linesize[i];
3453 #if HAVE_BIGENDIAN
3454  if (pixel_shift) {
3455  s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
3456  (const uint16_t *) src, w);
3457  src = s->checksum_buf;
3458  }
3459 #endif
3460  av_md5_update(s->md5_ctx, src, w << pixel_shift);
3461  }
3462  av_md5_final(s->md5_ctx, md5);
3463 
3464 #define MD5_PRI "%016" PRIx64 "%016" PRIx64
3465 #define MD5_PRI_ARG(buf) AV_RB64(buf), AV_RB64((const uint8_t*)(buf) + 8)
3466 
3467  if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
3468  av_strlcatf(msg_buf, sizeof(msg_buf),
3469  "plane %d - correct " MD5_PRI "; ",
3470  i, MD5_PRI_ARG(md5));
3471  } else {
3472  av_strlcatf(msg_buf, sizeof(msg_buf),
3473  "mismatching checksum of plane %d - " MD5_PRI " != " MD5_PRI "; ",
3474  i, MD5_PRI_ARG(md5), MD5_PRI_ARG(s->sei.picture_hash.md5[i]));
3475  err = AVERROR_INVALIDDATA;
3476  }
3477  }
3478 
3479  av_log(s->avctx, err < 0 ? AV_LOG_ERROR : AV_LOG_DEBUG,
3480  "Verifying checksum for frame with POC %d: %s\n",
3481  s->poc, msg_buf);
3482 
3483  return err;
3484  }
3485 
3487 {
3488  HEVCFrame *out = l->cur_frame;
3489  const AVFilmGrainParams *fgp;
3490  av_unused int ret;
3491 
3492  if (out->needs_fg) {
3493  av_assert0(out->frame_grain->buf[0]);
3494  fgp = av_film_grain_params_select(out->f);
3495  switch (fgp->type) {
3497  av_assert0(0);
3498  return AVERROR_BUG;
3500  ret = ff_h274_apply_film_grain(out->frame_grain, out->f, fgp);
3501  break;
3503  ret = ff_aom_apply_film_grain(out->frame_grain, out->f, fgp);
3504  break;
3505  }
3506  av_assert1(ret >= 0);
3507  }
3508 
3509  if (s->avctx->hwaccel) {
3510  ret = FF_HW_SIMPLE_CALL(s->avctx, end_frame);
3511  if (ret < 0) {
3512  av_log(s->avctx, AV_LOG_ERROR,
3513  "hardware accelerator failed to decode picture\n");
3514  return ret;
3515  }
3516  } else {
3517  if (s->avctx->err_recognition & AV_EF_CRCCHECK &&
3518  s->sei.picture_hash.is_md5) {
3519  ret = verify_md5(s, out->f);
3520  if (ret < 0 && s->avctx->err_recognition & AV_EF_EXPLODE)
3521  return ret;
3522  }
3523  }
3524  s->sei.picture_hash.is_md5 = 0;
3525 
3526  av_log(s->avctx, AV_LOG_DEBUG, "Decoded frame with POC %zu/%d.\n",
3527  l - s->layers, s->poc);
3528 
3529  return 0;
3530 }
3531 
3532 static int decode_slice(HEVCContext *s, unsigned nal_idx, GetBitContext *gb)
3533 {
3534  const int layer_idx = s->vps ? s->vps->layer_idx[s->nuh_layer_id] : 0;
3535  HEVCLayerContext *l;
3536  int ret;
3537 
3538  // skip layers not requested to be decoded
3539  // layers_active_decode can only change while decoding a base-layer frame,
3540  // so we can check it for non-base layers
3541  if (layer_idx < 0 ||
3542  (s->nuh_layer_id > 0 && !(s->layers_active_decode & (1 << layer_idx))))
3543  return 0;
3544 
3545  ret = hls_slice_header(&s->sh, s, gb);
3546  if (ret < 0) {
3547  // hls_slice_header() does not cleanup on failure thus the state now is inconsistent so we cannot use it on dependent slices
3548  s->slice_initialized = 0;
3549  return ret;
3550  }
3551 
3552  if ((s->avctx->skip_frame >= AVDISCARD_BIDIR && s->sh.slice_type == HEVC_SLICE_B) ||
3553  (s->avctx->skip_frame >= AVDISCARD_NONINTRA && s->sh.slice_type != HEVC_SLICE_I) ||
3554  (s->avctx->skip_frame >= AVDISCARD_NONKEY && !IS_IRAP(s)) ||
3555  ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
3556  s->no_rasl_output_flag)) {
3557  return 0;
3558  }
3559 
3560  // switching to a new layer, mark previous layer's frame (if any) as done
3561  if (s->cur_layer != layer_idx &&
3562  s->layers[s->cur_layer].cur_frame &&
3563  s->avctx->active_thread_type == FF_THREAD_FRAME)
3564  ff_progress_frame_report(&s->layers[s->cur_layer].cur_frame->tf, INT_MAX);
3565 
3566  s->cur_layer = layer_idx;
3567  l = &s->layers[s->cur_layer];
3568 
3569  if (s->sh.first_slice_in_pic_flag) {
3570  if (l->cur_frame) {
3571  av_log(s->avctx, AV_LOG_ERROR, "Two slices reporting being the first in the same frame.\n");
3572  return AVERROR_INVALIDDATA;
3573  }
3574 
3575  ret = hevc_frame_start(s, l, nal_idx);
3576  if (ret < 0)
3577  return ret;
3578  } else if (!l->cur_frame) {
3579  av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
3580  return AVERROR_INVALIDDATA;
3581  }
3582 
3583  if (s->nal_unit_type != s->first_nal_type) {
3584  av_log(s->avctx, AV_LOG_ERROR,
3585  "Non-matching NAL types of the VCL NALUs: %d %d\n",
3586  s->first_nal_type, s->nal_unit_type);
3587  return AVERROR_INVALIDDATA;
3588  }
3589 
3590  ret = decode_slice_data(s, l, &s->pkt.nals[nal_idx], gb);
3591  if (ret < 0)
3592  return ret;
3593 
3594  return 0;
3595 }
3596 
3597 static int decode_nal_unit(HEVCContext *s, unsigned nal_idx)
3598 {
3599  H2645NAL *nal = &s->pkt.nals[nal_idx];
3600  GetBitContext gb = nal->gb;
3601  int ret;
3602 
3603  s->nal_unit_type = nal->type;
3604  s->nuh_layer_id = nal->nuh_layer_id;
3605  s->temporal_id = nal->temporal_id;
3606 
3607  if (FF_HW_HAS_CB(s->avctx, decode_params) &&
3608  (s->nal_unit_type == HEVC_NAL_VPS ||
3609  s->nal_unit_type == HEVC_NAL_SPS ||
3610  s->nal_unit_type == HEVC_NAL_PPS ||
3611  s->nal_unit_type == HEVC_NAL_SEI_PREFIX ||
3612  s->nal_unit_type == HEVC_NAL_SEI_SUFFIX)) {
3613  ret = FF_HW_CALL(s->avctx, decode_params,
3614  nal->type, nal->raw_data, nal->raw_size);
3615  if (ret < 0)
3616  goto fail;
3617  }
3618 
3619  switch (s->nal_unit_type) {
3620  case HEVC_NAL_VPS:
3621  ret = ff_hevc_decode_nal_vps(&gb, s->avctx, &s->ps);
3622  if (ret < 0)
3623  goto fail;
3624  break;
3625  case HEVC_NAL_SPS:
3626  ret = ff_hevc_decode_nal_sps(&gb, s->avctx, &s->ps,
3627  nal->nuh_layer_id, s->apply_defdispwin);
3628  if (ret < 0)
3629  goto fail;
3630  break;
3631  case HEVC_NAL_PPS:
3632  ret = ff_hevc_decode_nal_pps(&gb, s->avctx, &s->ps);
3633  if (ret < 0)
3634  goto fail;
3635  break;
3636  case HEVC_NAL_SEI_PREFIX:
3637  case HEVC_NAL_SEI_SUFFIX:
3638  ret = ff_hevc_decode_nal_sei(&gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
3639  if (ret < 0)
3640  goto fail;
3641  break;
3642  case HEVC_NAL_TRAIL_R:
3643  case HEVC_NAL_TRAIL_N:
3644  case HEVC_NAL_TSA_N:
3645  case HEVC_NAL_TSA_R:
3646  case HEVC_NAL_STSA_N:
3647  case HEVC_NAL_STSA_R:
3648  case HEVC_NAL_BLA_W_LP:
3649  case HEVC_NAL_BLA_W_RADL:
3650  case HEVC_NAL_BLA_N_LP:
3651  case HEVC_NAL_IDR_W_RADL:
3652  case HEVC_NAL_IDR_N_LP:
3653  case HEVC_NAL_CRA_NUT:
3654  case HEVC_NAL_RADL_N:
3655  case HEVC_NAL_RADL_R:
3656  case HEVC_NAL_RASL_N:
3657  case HEVC_NAL_RASL_R:
3658  ret = decode_slice(s, nal_idx, &gb);
3659  if (ret < 0)
3660  goto fail;
3661  break;
3662  case HEVC_NAL_EOS_NUT:
3663  case HEVC_NAL_EOB_NUT:
3664  case HEVC_NAL_AUD:
3665  case HEVC_NAL_FD_NUT:
3666  case HEVC_NAL_UNSPEC62:
3667  break;
3668  default:
3669  av_log(s->avctx, AV_LOG_INFO,
3670  "Skipping NAL unit %d\n", s->nal_unit_type);
3671  }
3672 
3673  return 0;
3674 fail:
3675  if (ret == AVERROR_INVALIDDATA &&
3676  !(s->avctx->err_recognition & AV_EF_EXPLODE)) {
3677  av_log(s->avctx, AV_LOG_WARNING,
3678  "Skipping invalid undecodable NALU: %d\n", s->nal_unit_type);
3679  return 0;
3680  }
3681  return ret;
3682 }
3683 
3685 {
3686  s->recovery_poc = HEVC_RECOVERY_UNSPECIFIED;
3687  s->sei.recovery_point.has_recovery_poc = 0;
3688 }
3689 
3690 static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
3691 {
3692  int i, ret = 0;
3693  int eos_at_start = 1;
3694  int flags = (H2645_FLAG_IS_NALFF * !!s->is_nalff) | H2645_FLAG_SMALL_PADDING;
3695 
3696  s->cur_frame = s->collocated_ref = NULL;
3697  s->last_eos = s->eos;
3698  s->eos = 0;
3699  s->slice_initialized = 0;
3700  if (s->last_eos)
3702 
3703  for (int i = 0; i < FF_ARRAY_ELEMS(s->layers); i++) {
3704  HEVCLayerContext *l = &s->layers[i];
3705  l->cur_frame = NULL;
3706  }
3707 
3708  /* split the input packet into NAL units, so we know the upper bound on the
3709  * number of slices in the frame */
3710  ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx,
3711  s->nal_length_size, s->avctx->codec_id, flags);
3712  if (ret < 0) {
3713  av_log(s->avctx, AV_LOG_ERROR,
3714  "Error splitting the input into NAL units.\n");
3715  return ret;
3716  }
3717 
3718  for (i = 0; i < s->pkt.nb_nals; i++) {
3719  if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
3720  s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
3721  if (eos_at_start) {
3722  s->last_eos = 1;
3724  } else {
3725  s->eos = 1;
3726  }
3727  } else {
3728  eos_at_start = 0;
3729  }
3730  }
3731 
3732  /*
3733  * Check for RPU delimiter.
3734  *
3735  * Dolby Vision RPUs masquerade as unregistered NALs of type 62.
3736  *
3737  * We have to do this check here an create the rpu buffer, since RPUs are appended
3738  * to the end of an AU; they are the last non-EOB/EOS NAL in the AU.
3739  */
3740  if (s->pkt.nb_nals > 1 && s->pkt.nals[s->pkt.nb_nals - 1].type == HEVC_NAL_UNSPEC62 &&
3741  s->pkt.nals[s->pkt.nb_nals - 1].size > 2 && !s->pkt.nals[s->pkt.nb_nals - 1].nuh_layer_id
3742  && !s->pkt.nals[s->pkt.nb_nals - 1].temporal_id) {
3743  H2645NAL *nal = &s->pkt.nals[s->pkt.nb_nals - 1];
3744  if (s->rpu_buf) {
3745  av_buffer_unref(&s->rpu_buf);
3746  av_log(s->avctx, AV_LOG_WARNING, "Multiple Dolby Vision RPUs found in one AU. Skipping previous.\n");
3747  }
3748 
3749  s->rpu_buf = av_buffer_alloc(nal->raw_size - 2);
3750  if (!s->rpu_buf) {
3751  ret = AVERROR(ENOMEM);
3752  goto fail;
3753  }
3754  memcpy(s->rpu_buf->data, nal->raw_data + 2, nal->raw_size - 2);
3755 
3756  ret = ff_dovi_rpu_parse(&s->dovi_ctx, nal->data + 2, nal->size - 2,
3757  s->avctx->err_recognition);
3758  if (ret < 0) {
3759  av_buffer_unref(&s->rpu_buf);
3760  av_log(s->avctx, AV_LOG_WARNING, "Error parsing DOVI NAL unit.\n");
3761  /* ignore */
3762  }
3763  }
3764 
3765  /* decode the NAL units */
3766  for (i = 0; i < s->pkt.nb_nals; i++) {
3767  H2645NAL *nal = &s->pkt.nals[i];
3768 
3769  if (s->avctx->skip_frame >= AVDISCARD_ALL ||
3770  (s->avctx->skip_frame >= AVDISCARD_NONREF && ff_hevc_nal_is_nonref(nal->type)))
3771  continue;
3772 
3773  ret = decode_nal_unit(s, i);
3774  if (ret < 0) {
3775  av_log(s->avctx, AV_LOG_WARNING,
3776  "Error parsing NAL unit #%d.\n", i);
3777  goto fail;
3778  }
3779  }
3780 
3781 fail:
3782  for (int i = 0; i < FF_ARRAY_ELEMS(s->layers); i++) {
3783  HEVCLayerContext *l = &s->layers[i];
3784 
3785  if (!l->cur_frame)
3786  continue;
3787 
3788  if (ret >= 0)
3789  ret = hevc_frame_end(s, l);
3790 
3791  if (s->avctx->active_thread_type == FF_THREAD_FRAME)
3792  ff_progress_frame_report(&l->cur_frame->tf, INT_MAX);
3793  }
3794 
3795  return ret;
3796 }
3797 
3798 static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first)
3799 {
3800  int ret, i;
3801 
3802  ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
3803  &s->nal_length_size, s->avctx->err_recognition,
3804  s->apply_defdispwin, s->avctx);
3805  if (ret < 0)
3806  return ret;
3807 
3808  /* export stream parameters from the first SPS */
3809  for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
3810  if (first && s->ps.sps_list[i]) {
3811  const HEVCSPS *sps = s->ps.sps_list[i];
3813 
3814  ret = export_multilayer(s, sps->vps);
3815  if (ret < 0)
3816  return ret;
3817 
3818  break;
3819  }
3820  }
3821 
3822  /* export stream parameters from SEI */
3824  if (ret < 0)
3825  return ret;
3826 
3827  return 0;
3828 }
3829 
3831 {
3832  HEVCContext *s = avctx->priv_data;
3833  AVCodecInternal *avci = avctx->internal;
3834  AVPacket *avpkt = avci->in_pkt;
3835 
3836  int ret;
3837  uint8_t *sd;
3838  size_t sd_size;
3839 
3840  s->pkt_dts = AV_NOPTS_VALUE;
3841 
3842  if (av_container_fifo_can_read(s->output_fifo))
3843  goto do_output;
3844 
3845  av_packet_unref(avpkt);
3846  ret = ff_decode_get_packet(avctx, avpkt);
3847  if (ret == AVERROR_EOF) {
3848  ret = ff_hevc_output_frames(s, s->layers_active_decode,
3849  s->layers_active_output, 0, 0, 0);
3850  if (ret < 0)
3851  return ret;
3852  goto do_output;
3853  } else if (ret < 0)
3854  return ret;
3855 
3856  s->pkt_dts = avpkt->dts;
3857 
3858  sd = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, &sd_size);
3859  if (sd && sd_size > 0) {
3860  ret = hevc_decode_extradata(s, sd, sd_size, 0);
3861  if (ret < 0)
3862  return ret;
3863  }
3864 
3865  sd = av_packet_get_side_data(avpkt, AV_PKT_DATA_DOVI_CONF, &sd_size);
3866  if (sd && sd_size >= sizeof(s->dovi_ctx.cfg)) {
3867  int old = s->dovi_ctx.cfg.dv_profile;
3868  s->dovi_ctx.cfg = *(AVDOVIDecoderConfigurationRecord *) sd;
3869  if (old)
3870  av_log(avctx, AV_LOG_DEBUG,
3871  "New DOVI configuration record from input packet (profile %d -> %u).\n",
3872  old, s->dovi_ctx.cfg.dv_profile);
3873  }
3874 
3875  ret = decode_nal_units(s, avpkt->data, avpkt->size);
3876  if (ret < 0)
3877  return ret;
3878 
3879 do_output:
3880  if (av_container_fifo_read(s->output_fifo, frame, 0) >= 0) {
3883 
3884  return 0;
3885  }
3886 
3887  return avci->draining ? AVERROR_EOF : AVERROR(EAGAIN);
3888 }
3889 
3891 {
3892  int ret;
3893 
3894  ff_progress_frame_ref(&dst->tf, &src->tf);
3895 
3896  if (src->needs_fg) {
3897  ret = av_frame_ref(dst->frame_grain, src->frame_grain);
3898  if (ret < 0) {
3899  ff_hevc_unref_frame(dst, ~0);
3900  return ret;
3901  }
3902  dst->needs_fg = 1;
3903  }
3904 
3905  dst->pps = av_refstruct_ref_c(src->pps);
3906  dst->tab_mvf = av_refstruct_ref(src->tab_mvf);
3907  dst->rpl_tab = av_refstruct_ref(src->rpl_tab);
3908  dst->rpl = av_refstruct_ref(src->rpl);
3909  dst->nb_rpl_elems = src->nb_rpl_elems;
3910 
3911  dst->poc = src->poc;
3912  dst->ctb_count = src->ctb_count;
3913  dst->flags = src->flags;
3914 
3915  dst->base_layer_frame = src->base_layer_frame;
3916 
3917  av_refstruct_replace(&dst->hwaccel_picture_private,
3918  src->hwaccel_picture_private);
3919 
3920  return 0;
3921 }
3922 
3924 {
3925  HEVCContext *s = avctx->priv_data;
3926 
3927  for (int i = 0; i < FF_ARRAY_ELEMS(s->layers); i++) {
3928  pic_arrays_free(&s->layers[i]);
3929  av_refstruct_unref(&s->layers[i].sps);
3930  }
3931 
3932  av_refstruct_unref(&s->vps);
3933  av_refstruct_unref(&s->pps);
3934 
3935  ff_dovi_ctx_unref(&s->dovi_ctx);
3936  av_buffer_unref(&s->rpu_buf);
3937 
3938  av_freep(&s->md5_ctx);
3939 
3940  av_container_fifo_free(&s->output_fifo);
3941 
3942  for (int layer = 0; layer < FF_ARRAY_ELEMS(s->layers); layer++) {
3943  HEVCLayerContext *l = &s->layers[layer];
3944  for (int i = 0; i < FF_ARRAY_ELEMS(l->DPB); i++) {
3945  ff_hevc_unref_frame(&l->DPB[i], ~0);
3947  }
3948  }
3949 
3950  ff_hevc_ps_uninit(&s->ps);
3951 
3952  for (int i = 0; i < s->nb_wpp_progress; i++)
3953  ff_thread_progress_destroy(&s->wpp_progress[i]);
3954  av_freep(&s->wpp_progress);
3955 
3956  av_freep(&s->sh.entry_point_offset);
3957  av_freep(&s->sh.offset);
3958  av_freep(&s->sh.size);
3959 
3960  av_freep(&s->local_ctx);
3961 
3962  ff_h2645_packet_uninit(&s->pkt);
3963 
3964  ff_hevc_reset_sei(&s->sei);
3965 
3966  return 0;
3967 }
3968 
3970 {
3971  HEVCContext *s = avctx->priv_data;
3972 
3973  s->avctx = avctx;
3974 
3975  s->local_ctx = av_mallocz(sizeof(*s->local_ctx));
3976  if (!s->local_ctx)
3977  return AVERROR(ENOMEM);
3978  s->nb_local_ctx = 1;
3979 
3980  s->local_ctx[0].parent = s;
3981  s->local_ctx[0].logctx = avctx;
3982  s->local_ctx[0].common_cabac_state = &s->cabac;
3983 
3984  s->output_fifo = av_container_fifo_alloc_avframe(0);
3985  if (!s->output_fifo)
3986  return AVERROR(ENOMEM);
3987 
3988  for (int layer = 0; layer < FF_ARRAY_ELEMS(s->layers); layer++) {
3989  HEVCLayerContext *l = &s->layers[layer];
3990  for (int i = 0; i < FF_ARRAY_ELEMS(l->DPB); i++) {
3991  l->DPB[i].frame_grain = av_frame_alloc();
3992  if (!l->DPB[i].frame_grain)
3993  return AVERROR(ENOMEM);
3994  }
3995  }
3996 
3997  s->md5_ctx = av_md5_alloc();
3998  if (!s->md5_ctx)
3999  return AVERROR(ENOMEM);
4000 
4001  ff_bswapdsp_init(&s->bdsp);
4002 
4003  s->dovi_ctx.logctx = avctx;
4004  s->eos = 0;
4005 
4006  ff_hevc_reset_sei(&s->sei);
4007 
4008  return 0;
4009 }
4010 
4011 #if HAVE_THREADS
4012 static int hevc_update_thread_context(AVCodecContext *dst,
4013  const AVCodecContext *src)
4014 {
4015  HEVCContext *s = dst->priv_data;
4016  HEVCContext *s0 = src->priv_data;
4017  int ret;
4018 
4019  for (int layer = 0; layer < FF_ARRAY_ELEMS(s->layers); layer++) {
4020  HEVCLayerContext *l = &s->layers[layer];
4021  const HEVCLayerContext *l0 = &s0->layers[layer];
4022  for (int i = 0; i < FF_ARRAY_ELEMS(l->DPB); i++) {
4023  ff_hevc_unref_frame(&l->DPB[i], ~0);
4024  if (l0->DPB[i].f) {
4025  ret = hevc_ref_frame(&l->DPB[i], &l0->DPB[i]);
4026  if (ret < 0)
4027  return ret;
4028  }
4029  }
4030 
4031  if (l->sps != l0->sps) {
4032  ret = set_sps(s, l, l0->sps);
4033  if (ret < 0)
4034  return ret;
4035  }
4036  }
4037 
4038  for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
4039  av_refstruct_replace(&s->ps.vps_list[i], s0->ps.vps_list[i]);
4040 
4041  for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
4042  av_refstruct_replace(&s->ps.sps_list[i], s0->ps.sps_list[i]);
4043 
4044  for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
4045  av_refstruct_replace(&s->ps.pps_list[i], s0->ps.pps_list[i]);
4046 
4047  // PPS do not persist between frames
4048  av_refstruct_unref(&s->pps);
4049 
4050  s->poc_tid0 = s0->poc_tid0;
4051  s->eos = s0->eos;
4052  s->no_rasl_output_flag = s0->no_rasl_output_flag;
4053 
4054  s->is_nalff = s0->is_nalff;
4055  s->nal_length_size = s0->nal_length_size;
4056  s->layers_active_decode = s0->layers_active_decode;
4057  s->layers_active_output = s0->layers_active_output;
4058 
4059  s->film_grain_warning_shown = s0->film_grain_warning_shown;
4060 
4061  if (s->nb_view_ids != s0->nb_view_ids ||
4062  memcmp(s->view_ids, s0->view_ids, sizeof(*s->view_ids) * s->nb_view_ids)) {
4063  av_freep(&s->view_ids);
4064  s->nb_view_ids = 0;
4065 
4066  if (s0->nb_view_ids) {
4067  s->view_ids = av_memdup(s0->view_ids, s0->nb_view_ids * sizeof(*s0->view_ids));
4068  if (!s->view_ids)
4069  return AVERROR(ENOMEM);
4070  s->nb_view_ids = s0->nb_view_ids;
4071  }
4072  }
4073 
4074  ret = ff_h2645_sei_ctx_replace(&s->sei.common, &s0->sei.common);
4075  if (ret < 0)
4076  return ret;
4077 
4078  ret = av_buffer_replace(&s->sei.common.dynamic_hdr_plus.info,
4080  if (ret < 0)
4081  return ret;
4082 
4083  ret = av_buffer_replace(&s->rpu_buf, s0->rpu_buf);
4084  if (ret < 0)
4085  return ret;
4086 
4087  ff_dovi_ctx_replace(&s->dovi_ctx, &s0->dovi_ctx);
4088 
4089  ret = av_buffer_replace(&s->sei.common.dynamic_hdr_vivid.info,
4091  if (ret < 0)
4092  return ret;
4093 
4094  s->sei.common.frame_packing = s0->sei.common.frame_packing;
4095  s->sei.common.display_orientation = s0->sei.common.display_orientation;
4096  s->sei.common.alternative_transfer = s0->sei.common.alternative_transfer;
4097  s->sei.tdrdi = s0->sei.tdrdi;
4098  s->sei.recovery_point = s0->sei.recovery_point;
4099  s->recovery_poc = s0->recovery_poc;
4100 
4101  return 0;
4102 }
4103 #endif
4104 
4106 {
4107  int ret;
4108 
4109  if (sei->tdrdi.present) {
4110  AVBufferRef *buf;
4111  size_t size;
4112  AV3DReferenceDisplaysInfo *tdrdi = av_tdrdi_alloc(sei->tdrdi.num_ref_displays, &size);
4113 
4114  if (!tdrdi)
4115  return AVERROR(ENOMEM);
4116 
4117  buf = av_buffer_create((uint8_t *)tdrdi, size, NULL, NULL, 0);
4118  if (!buf) {
4119  av_free(tdrdi);
4120  return AVERROR(ENOMEM);
4121  }
4122 
4123  tdrdi->prec_ref_display_width = sei->tdrdi.prec_ref_display_width;
4124  tdrdi->ref_viewing_distance_flag = sei->tdrdi.ref_viewing_distance_flag;
4125  tdrdi->prec_ref_viewing_dist = sei->tdrdi.prec_ref_viewing_dist;
4126  tdrdi->num_ref_displays = sei->tdrdi.num_ref_displays;
4127  for (int i = 0; i < sei->tdrdi.num_ref_displays; i++) {
4128  AV3DReferenceDisplay *display = av_tdrdi_get_display(tdrdi, i);
4129 
4130  display->left_view_id = sei->tdrdi.left_view_id[i];
4131  display->right_view_id = sei->tdrdi.right_view_id[i];
4132  display->exponent_ref_display_width = sei->tdrdi.exponent_ref_display_width[i];
4133  display->mantissa_ref_display_width = sei->tdrdi.mantissa_ref_display_width[i];
4134  display->exponent_ref_viewing_distance = sei->tdrdi.exponent_ref_viewing_distance[i];
4135  display->mantissa_ref_viewing_distance = sei->tdrdi.mantissa_ref_viewing_distance[i];
4136  display->additional_shift_present_flag = sei->tdrdi.additional_shift_present_flag[i];
4137  display->num_sample_shift = sei->tdrdi.num_sample_shift[i];
4138  }
4141  if (ret < 0) {
4142  av_buffer_unref(&buf);
4143  return ret;
4144  }
4145  }
4146 
4147  ret = ff_h2645_sei_to_context(avctx, &sei->common);
4148  if (ret < 0)
4149  return ret;
4150 
4151  return 0;
4152 }
4153 
4155 {
4156  HEVCContext *s = avctx->priv_data;
4157  int ret;
4158 
4159  ret = hevc_init_context(avctx);
4160  if (ret < 0)
4161  return ret;
4162 
4163  s->sei.picture_timing.picture_struct = 0;
4164  s->eos = 1;
4165 
4166  atomic_init(&s->wpp_err, 0);
4167 
4168  if (!avctx->internal->is_copy) {
4169  const AVPacketSideData *sd;
4170 
4171  if (avctx->extradata_size > 0 && avctx->extradata) {
4172  ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1);
4173  if (ret < 0) {
4174  return ret;
4175  }
4176 
4177  ret = hevc_sei_to_context(avctx, &s->sei);
4178  if (ret < 0)
4179  return ret;
4180  }
4181 
4183  if (sd && sd->size >= sizeof(s->dovi_ctx.cfg))
4184  s->dovi_ctx.cfg = *(AVDOVIDecoderConfigurationRecord *) sd->data;
4185  }
4186 
4187  return 0;
4188 }
4189 
4191 {
4192  HEVCContext *s = avctx->priv_data;
4194  ff_hevc_reset_sei(&s->sei);
4195  ff_dovi_ctx_flush(&s->dovi_ctx);
4196  av_buffer_unref(&s->rpu_buf);
4197  s->eos = 1;
4198 
4199  if (FF_HW_HAS_CB(avctx, flush))
4200  FF_HW_SIMPLE_CALL(avctx, flush);
4201 }
4202 
4203 #define OFFSET(x) offsetof(HEVCContext, x)
4204 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
4205 
4206 static const AVOption options[] = {
4207  { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
4208  AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
4209  { "strict-displaywin", "strictly apply default display window size", OFFSET(apply_defdispwin),
4210  AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
4211  { "view_ids", "Array of view IDs that should be decoded and output; a single -1 to decode all views",
4212  .offset = OFFSET(view_ids), .type = AV_OPT_TYPE_INT | AV_OPT_TYPE_FLAG_ARRAY,
4213  .min = -1, .max = INT_MAX, .flags = PAR },
4214  { "view_ids_available", "Array of available view IDs is exported here",
4215  .offset = OFFSET(view_ids_available), .type = AV_OPT_TYPE_UINT | AV_OPT_TYPE_FLAG_ARRAY,
4217  { "view_pos_available", "Array of view positions for view_ids_available is exported here, as AVStereo3DView",
4218  .offset = OFFSET(view_pos_available), .type = AV_OPT_TYPE_UINT | AV_OPT_TYPE_FLAG_ARRAY,
4219  .flags = PAR | AV_OPT_FLAG_EXPORT | AV_OPT_FLAG_READONLY, .unit = "view_pos" },
4220  { "unspecified", .type = AV_OPT_TYPE_CONST, .default_val = { .i64 = AV_STEREO3D_VIEW_UNSPEC }, .unit = "view_pos" },
4221  { "left", .type = AV_OPT_TYPE_CONST, .default_val = { .i64 = AV_STEREO3D_VIEW_LEFT }, .unit = "view_pos" },
4222  { "right", .type = AV_OPT_TYPE_CONST, .default_val = { .i64 = AV_STEREO3D_VIEW_RIGHT }, .unit = "view_pos" },
4223 
4224  { NULL },
4225 };
4226 
4227 static const AVClass hevc_decoder_class = {
4228  .class_name = "HEVC decoder",
4229  .item_name = av_default_item_name,
4230  .option = options,
4231  .version = LIBAVUTIL_VERSION_INT,
4232 };
4233 
4235  .p.name = "hevc",
4236  CODEC_LONG_NAME("HEVC (High Efficiency Video Coding)"),
4237  .p.type = AVMEDIA_TYPE_VIDEO,
4238  .p.id = AV_CODEC_ID_HEVC,
4239  .priv_data_size = sizeof(HEVCContext),
4240  .p.priv_class = &hevc_decoder_class,
4241  .init = hevc_decode_init,
4242  .close = hevc_decode_free,
4244  .flush = hevc_decode_flush,
4245  UPDATE_THREAD_CONTEXT(hevc_update_thread_context),
4246  .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
4248  .caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING |
4251  .p.profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
4252  .hw_configs = (const AVCodecHWConfigInternal *const []) {
4253 #if CONFIG_HEVC_DXVA2_HWACCEL
4254  HWACCEL_DXVA2(hevc),
4255 #endif
4256 #if CONFIG_HEVC_D3D11VA_HWACCEL
4257  HWACCEL_D3D11VA(hevc),
4258 #endif
4259 #if CONFIG_HEVC_D3D11VA2_HWACCEL
4260  HWACCEL_D3D11VA2(hevc),
4261 #endif
4262 #if CONFIG_HEVC_D3D12VA_HWACCEL
4263  HWACCEL_D3D12VA(hevc),
4264 #endif
4265 #if CONFIG_HEVC_NVDEC_HWACCEL
4266  HWACCEL_NVDEC(hevc),
4267 #endif
4268 #if CONFIG_HEVC_VAAPI_HWACCEL
4269  HWACCEL_VAAPI(hevc),
4270 #endif
4271 #if CONFIG_HEVC_VDPAU_HWACCEL
4272  HWACCEL_VDPAU(hevc),
4273 #endif
4274 #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
4275  HWACCEL_VIDEOTOOLBOX(hevc),
4276 #endif
4277 #if CONFIG_HEVC_VULKAN_HWACCEL
4278  HWACCEL_VULKAN(hevc),
4279 #endif
4280  NULL
4281  },
4282 };
error
static void error(const char *err)
Definition: target_bsf_fuzzer.c:32
HEVCLayerContext::tab_ct_depth
uint8_t * tab_ct_depth
Definition: hevcdec.h:466
HEVC_NAL_AUD
@ HEVC_NAL_AUD
Definition: hevc.h:64
flags
const SwsFlags flags[]
Definition: swscale.c:61
HWACCEL_D3D12VA
#define HWACCEL_D3D12VA(codec)
Definition: hwconfig.h:80
ff_get_coded_side_data
const AVPacketSideData * ff_get_coded_side_data(const AVCodecContext *avctx, enum AVPacketSideDataType type)
Get side data of the given type from a decoding context.
Definition: decode.c:1352
ff_hevc_decode_extradata
int ff_hevc_decode_extradata(const uint8_t *data, int size, HEVCParamSets *ps, HEVCSEI *sei, int *is_nalff, int *nal_length_size, int err_recognition, int apply_defdispwin, void *logctx)
Definition: parse.c:79
hwconfig.h
ff_progress_frame_report
void ff_progress_frame_report(ProgressFrame *f, int n)
Notify later decoding threads when part of their reference frame is ready.
Definition: decode.c:1913
HEVCLayerContext::horizontal_bs
uint8_t * horizontal_bs
Definition: hevcdec.h:480
av_packet_unref
void av_packet_unref(AVPacket *pkt)
Wipe the packet.
Definition: packet.c:433
export_multilayer
static int export_multilayer(HEVCContext *s, const HEVCVPS *vps)
Definition: hevcdec.c:415
hevc_decoder_class
static const AVClass hevc_decoder_class
Definition: hevcdec.c:4227
SliceHeader::beta_offset
int beta_offset
beta_offset_div2 * 2
Definition: hevcdec.h:259
bswapdsp.h
FF_ENABLE_DEPRECATION_WARNINGS
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:73
L1
F H1 F F H1 F F F F H1<-F-------F-------F v v v H2 H3 H2 ^ ^ ^ F-------F-------F-> H1<-F-------F-------F|||||||||F H1 F|||||||||F H1 Funavailable fullpel samples(outside the picture for example) shall be equalto the closest available fullpel sampleSmaller pel interpolation:--------------------------if diag_mc is set then points which lie on a line between 2 vertically, horizontally or diagonally adjacent halfpel points shall be interpolatedlinearly with rounding to nearest and halfway values rounded up.points which lie on 2 diagonals at the same time should only use the onediagonal not containing the fullpel point F--> O q O<--h1-> O q O<--F v \/v \/v O O O O O O O|/|\|q q q q q|/|\|O O O O O O O ^/\ ^/\ ^ h2--> O q O<--h3-> O q O<--h2 v \/v \/v O O O O O O O|\|/|q q q q q|\|/|O O O O O O O ^/\ ^/\ ^ F--> O q O<--h1-> O q O<--Fthe remaining points shall be bilinearly interpolated from theup to 4 surrounding halfpel and fullpel points, again rounding should be tonearest and halfway values rounded upcompliant Snow decoders MUST support 1-1/8 pel luma and 1/2-1/16 pel chromainterpolation at leastOverlapped block motion compensation:-------------------------------------FIXMELL band prediction:===================Each sample in the LL0 subband is predicted by the median of the left, top andleft+top-topleft samples, samples outside the subband shall be considered tobe 0. To reverse this prediction in the decoder apply the following.for(y=0;y< height;y++){ for(x=0;x< width;x++){ sample[y][x]+=median(sample[y-1][x], sample[y][x-1], sample[y-1][x]+sample[y][x-1]-sample[y-1][x-1]);}}sample[-1][ *]=sample[ *][-1]=0;width, height here are the width and height of the LL0 subband not of the finalvideoDequantization:===============FIXMEWavelet Transform:==================Snow supports 2 wavelet transforms, the symmetric biorthogonal 5/3 integertransform and an integer approximation of the symmetric biorthogonal 9/7daubechies wavelet.2D IDWT(inverse discrete wavelet transform) --------------------------------------------The 2D IDWT applies a 2D filter recursively, each time combining the4 lowest frequency subbands into a single subband until only 1 subbandremains.The 2D filter is done by first applying a 1D filter in the vertical directionand then applying it in the horizontal one. --------------- --------------- --------------- ---------------|LL0|HL0|||||||||||||---+---|HL1||L0|H0|HL1||LL1|HL1|||||LH0|HH0|||||||||||||-------+-------|-> L1 H1 LH1 HH1 LH1 HH1 LH1 HH1 L1
Definition: snow.txt:554
ff_hevc_dsp_init
void ff_hevc_dsp_init(HEVCDSPContext *hevcdsp, int bit_depth)
Definition: dsp.c:128
ff_decode_get_packet
int ff_decode_get_packet(AVCodecContext *avctx, AVPacket *pkt)
Called by decoders to get the next packet for decoding.
Definition: decode.c:245
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:216
AV_TIMECODE_STR_SIZE
#define AV_TIMECODE_STR_SIZE
Definition: timecode.h:33
ff_hevc_luma_mv_mvp_mode
void ff_hevc_luma_mv_mvp_mode(HEVCLocalContext *lc, const HEVCPPS *pps, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv, int mvp_lx_flag, int LX)
Definition: mvs.c:589
HEVCLocalContext
Definition: hevcdec.h:391
AV_PIX_FMT_CUDA
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
Definition: pixfmt.h:260
AV3DReferenceDisplay::num_sample_shift
int16_t num_sample_shift
The recommended additional horizontal shift for a stereo pair corresponding to the n-th reference bas...
Definition: tdrdi.h:141
HEVCLayerContext::bs_height
int bs_height
Definition: hevcdec.h:459
SliceHeader::slice_act_cr_qp_offset
int slice_act_cr_qp_offset
Definition: hevcdec.h:255
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:71
AV_EF_EXPLODE
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: defs.h:51
AV_STEREO3D_VIEW_LEFT
@ AV_STEREO3D_VIEW_LEFT
Frame contains only the left view.
Definition: stereo3d.h:158
ff_hevc_merge_flag_decode
int ff_hevc_merge_flag_decode(HEVCLocalContext *lc)
Definition: cabac.c:747
av_clip
#define av_clip
Definition: common.h:100
ff_thread_progress_report
void ff_thread_progress_report(ThreadProgress *pro, int n)
This function is a no-op in no-op mode; otherwise it notifies other threads that a certain level of p...
Definition: threadprogress.c:53
atomic_store
#define atomic_store(object, desired)
Definition: stdatomic.h:85
FF_CODEC_CAP_INIT_CLEANUP
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: codec_internal.h:42
SliceHeader::chroma_offset_l1
int16_t chroma_offset_l1[16][2]
Definition: hevcdec.h:284
get_bits_left
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:689
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
ff_dovi_ctx_unref
void ff_dovi_ctx_unref(DOVIContext *s)
Completely reset a DOVIContext, preserving only logctx.
Definition: dovi_rpu.c:30
threadprogress.h
decode_slice
static int decode_slice(HEVCContext *s, unsigned nal_idx, GetBitContext *gb)
Definition: hevcdec.c:3532
MD5_PRI_ARG
#define MD5_PRI_ARG(buf)
AVCodecContext::colorspace
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:659
av_container_fifo_alloc_avframe
AVContainerFifo * av_container_fifo_alloc_avframe(unsigned flags)
Allocate an AVContainerFifo instance for AVFrames.
Definition: container_fifo.c:215
ff_hevc_end_of_slice_flag_decode
int ff_hevc_end_of_slice_flag_decode(HEVCLocalContext *lc)
Definition: cabac.c:563
PART_NxN
@ PART_NxN
Definition: hevcdec.h:98
AVCodecContext::decoded_side_data
AVFrameSideData ** decoded_side_data
Array containing static side data, such as HDR10 CLL / MDCV structures.
Definition: avcodec.h:1924
ff_hevc_cu_qp_delta_sign_flag
int ff_hevc_cu_qp_delta_sign_flag(HEVCLocalContext *lc)
Definition: cabac.c:613
SliceHeader::slice_act_y_qp_offset
int slice_act_y_qp_offset
Definition: hevcdec.h:253
ff_get_format
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
Definition: decode.c:1203
decode_reset_recovery_point
static void decode_reset_recovery_point(HEVCContext *s)
Definition: hevcdec.c:3684
out
FILE * out
Definition: movenc.c:55
HEVCContext::layers_active_output
unsigned layers_active_output
Definition: hevcdec.h:503
HEVC_RECOVERY_UNSPECIFIED
#define HEVC_RECOVERY_UNSPECIFIED
Definition: hevcdec.h:79
HEVCWindow::bottom_offset
unsigned int bottom_offset
Definition: ps.h:95
SAO_BAND
@ SAO_BAND
Definition: hevcdec.h:164
HEVCParamSets::pps_list
const HEVCPPS * pps_list[HEVC_MAX_PPS_COUNT]
RefStruct references.
Definition: ps.h:514
ff_hevc_profiles
const AVProfile ff_hevc_profiles[]
Definition: profiles.c:97
ff_hevc_set_neighbour_available
void ff_hevc_set_neighbour_available(HEVCLocalContext *lc, int x0, int y0, int nPbW, int nPbH, int log2_ctb_size)
Definition: mvs.c:43
AV_PKT_DATA_NEW_EXTRADATA
@ AV_PKT_DATA_NEW_EXTRADATA
The AV_PKT_DATA_NEW_EXTRADATA is used to notify the codec or the format that the extradata buffer was...
Definition: packet.h:56
chroma_mc_uni
static void chroma_mc_uni(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, uint8_t *dst0, ptrdiff_t dststride, const uint8_t *src0, ptrdiff_t srcstride, int reflist, int x_off, int y_off, int block_w, int block_h, const struct MvField *current_mv, int chroma_weight, int chroma_offset)
8.5.3.2.2.2 Chroma sample uniprediction interpolation process
Definition: hevcdec.c:1873
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:3447
AVERROR_EOF
#define AVERROR_EOF
End of file.
Definition: error.h:57
av_clip_uintp2
#define av_clip_uintp2
Definition: common.h:124
ff_h2645_sei_to_frame
int ff_h2645_sei_to_frame(AVFrame *frame, H2645SEI *sei, enum AVCodecID codec_id, AVCodecContext *avctx, const H2645VUI *vui, unsigned bit_depth_luma, unsigned bit_depth_chroma, int seed)
Definition: h2645_sei.c:702
ff_h274_apply_film_grain
int ff_h274_apply_film_grain(AVFrame *out_frame, const AVFrame *in_frame, const AVFilmGrainParams *params)
Definition: h274.c:245
src1
const pixel * src1
Definition: h264pred_template.c:420
get_bits_long
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:419
HEVCLocalContext::ctb_up_flag
uint8_t ctb_up_flag
Definition: hevcdec.h:423
ff_dovi_rpu_parse
int ff_dovi_rpu_parse(DOVIContext *s, const uint8_t *rpu, size_t rpu_size, int err_recognition)
Parse the contents of a Dolby Vision RPU and update the parsed values in the DOVIContext struct.
Definition: dovi_rpudec.c:347
hevc_await_progress
static void hevc_await_progress(const HEVCContext *s, const HEVCFrame *ref, const Mv *mv, int y0, int height)
Definition: hevcdec.c:2036
int64_t
long long int64_t
Definition: coverity.c:34
HEVCLayerContext::tab_ipm
uint8_t * tab_ipm
Definition: hevcdec.h:470
mv
static const int8_t mv[256][2]
Definition: 4xm.c:81
SliceHeader::num_entry_point_offsets
int num_entry_point_offsets
Definition: hevcdec.h:268
av_tdrdi_get_display
static av_always_inline AV3DReferenceDisplay * av_tdrdi_get_display(AV3DReferenceDisplaysInfo *tdrdi, unsigned int idx)
Definition: tdrdi.h:145
HEVCFrame::frame_grain
AVFrame * frame_grain
Definition: hevcdec.h:367
ff_hevc_decode_short_term_rps
int ff_hevc_decode_short_term_rps(GetBitContext *gb, AVCodecContext *avctx, ShortTermRPS *rps, const HEVCSPS *sps, int is_slice_header)
Definition: ps.c:89
hls_slice_header
static int hls_slice_header(SliceHeader *sh, const HEVCContext *s, GetBitContext *gb)
Definition: hevcdec.c:769
AV_FRAME_DATA_FILM_GRAIN_PARAMS
@ AV_FRAME_DATA_FILM_GRAIN_PARAMS
Film grain parameters for a frame, described by AVFilmGrainParams.
Definition: frame.h:188
PART_2NxnU
@ PART_2NxnU
Definition: hevcdec.h:99
av_unused
#define av_unused
Definition: attributes.h:151
AV_FRAME_DATA_S12M_TIMECODE
@ AV_FRAME_DATA_S12M_TIMECODE
Timecode which conforms to SMPTE ST 12-1.
Definition: frame.h:152
av_frame_free
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:64
ff_hevc_flush_dpb
void ff_hevc_flush_dpb(HEVCContext *s)
Drop all frames currently in DPB.
Definition: refs.c:76
container_fifo.h
AV3DReferenceDisplay
Data structure for single deference display information.
Definition: tdrdi.h:100
HEVCLayerContext::bs_width
int bs_width
Definition: hevcdec.h:458
H2645NAL::nuh_layer_id
int nuh_layer_id
Definition: h2645_parse.h:67
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:427
pixdesc.h
AVCodecContext::color_trc
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:652
TransformUnit::cu_qp_delta
int cu_qp_delta
Definition: hevcdec.h:334
AVPacketSideData
This structure stores auxiliary information for decoding, presenting, or otherwise processing the cod...
Definition: packet.h:409
w
uint8_t w
Definition: llviddspenc.c:38
HWACCEL_DXVA2
#define HWACCEL_DXVA2(codec)
Definition: hwconfig.h:64
AVCOL_RANGE_JPEG
@ AVCOL_RANGE_JPEG
Full range content.
Definition: pixfmt.h:767
AVPacket::data
uint8_t * data
Definition: packet.h:558
set_deblocking_bypass
static void set_deblocking_bypass(uint8_t *is_pcm, const HEVCSPS *sps, int x0, int y0, int log2_cb_size)
Definition: hevcdec.c:1512
HEVC_NAL_BLA_N_LP
@ HEVC_NAL_BLA_N_LP
Definition: hevc.h:47
SAOParams::offset_sign
int offset_sign[3][4]
sao_offset_sign
Definition: dsp.h:36
AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:590
INTRA_DC
@ INTRA_DC
Definition: hevcdec.h:126
hevc_decode_flush
static av_cold void hevc_decode_flush(AVCodecContext *avctx)
Definition: hevcdec.c:4190
AVOption
AVOption.
Definition: opt.h:429
HWACCEL_D3D11VA2
#define HWACCEL_D3D11VA2(codec)
Definition: hwconfig.h:66
ff_h2645_packet_uninit
void ff_h2645_packet_uninit(H2645Packet *pkt)
Free all the allocated memory in the packet.
Definition: h2645_parse.c:604
AVCOL_TRC_UNSPECIFIED
@ AVCOL_TRC_UNSPECIFIED
Definition: pixfmt.h:664
ff_hevc_pred_mode_decode
int ff_hevc_pred_mode_decode(HEVCLocalContext *lc)
Definition: cabac.c:634
HEVCContext::no_rasl_output_flag
int no_rasl_output_flag
Definition: hevcdec.h:532
data
const char data[16]
Definition: mxf.c:149
Mv::y
int16_t y
vertical component of motion vector
Definition: hevcdec.h:305
HEVC_NAL_TSA_N
@ HEVC_NAL_TSA_N
Definition: hevc.h:31
AV_FRAME_DATA_DOVI_RPU_BUFFER
@ AV_FRAME_DATA_DOVI_RPU_BUFFER
Dolby Vision RPU raw data, suitable for passing to x265 or other libraries.
Definition: frame.h:201
HEVC_NAL_IDR_N_LP
@ HEVC_NAL_IDR_N_LP
Definition: hevc.h:49
AV_PIX_FMT_YUV420P10
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:539
SAO_EDGE
@ SAO_EDGE
Definition: hevcdec.h:165
atomic_int
intptr_t atomic_int
Definition: stdatomic.h:55
ff_aom_apply_film_grain
int ff_aom_apply_film_grain(AVFrame *out, const AVFrame *in, const AVFilmGrainParams *params)
Definition: aom_film_grain.c:68
SliceHeader::slice_temporal_mvp_enabled_flag
uint8_t slice_temporal_mvp_enabled_flag
Definition: hevcdec.h:235
AV_PIX_FMT_D3D11VA_VLD
@ AV_PIX_FMT_D3D11VA_VLD
HW decoding through Direct3D11 via old API, Picture.data[3] contains a ID3D11VideoDecoderOutputView p...
Definition: pixfmt.h:254
TransformUnit::is_cu_qp_delta_coded
uint8_t is_cu_qp_delta_coded
Definition: hevcdec.h:342
FFCodec
Definition: codec_internal.h:127
ff_hevc_output_frames
int ff_hevc_output_frames(HEVCContext *s, unsigned layers_active_decode, unsigned layers_active_output, unsigned max_output, unsigned max_dpb, int discard)
Find frames in the DPB that are ready for output and either write them to the output FIFO or drop the...
Definition: refs.c:265
hevc_receive_frame
static int hevc_receive_frame(AVCodecContext *avctx, AVFrame *frame)
Definition: hevcdec.c:3830
ff_hevc_hls_filters
void ff_hevc_hls_filters(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, int x_ctb, int y_ctb, int ctb_size)
Definition: filter.c:912
FF_HW_SIMPLE_CALL
#define FF_HW_SIMPLE_CALL(avctx, function)
Definition: hwaccel_internal.h:176
SliceHeader::slice_loop_filter_across_slices_enabled_flag
uint8_t slice_loop_filter_across_slices_enabled_flag
Definition: hevcdec.h:244
ff_hevc_sao_type_idx_decode
int ff_hevc_sao_type_idx_decode(HEVCLocalContext *lc)
Definition: cabac.c:521
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
av_buffer_ref
AVBufferRef * av_buffer_ref(const AVBufferRef *buf)
Create a new reference to an AVBuffer.
Definition: buffer.c:103
HEVCLocalContext::ctb_up_left_flag
uint8_t ctb_up_left_flag
Definition: hevcdec.h:425
HEVC_NAL_IDR_W_RADL
@ HEVC_NAL_IDR_W_RADL
Definition: hevc.h:48
find_finish_setup_nal
static int find_finish_setup_nal(const HEVCContext *s)
Definition: hevcdec.c:3165
H2645NAL::temporal_id
int temporal_id
HEVC only, nuh_temporal_id_plus_1 - 1.
Definition: h2645_parse.h:62
H2645_FLAG_SMALL_PADDING
@ H2645_FLAG_SMALL_PADDING
Definition: h2645_parse.h:98
av_timecode_get_smpte
uint32_t av_timecode_get_smpte(AVRational rate, int drop, int hh, int mm, int ss, int ff)
Convert sei info to SMPTE 12M binary representation.
Definition: timecode.c:70
RefPicList
Definition: hevcdec.h:194
AV_STEREO3D_VIEW_RIGHT
@ AV_STEREO3D_VIEW_RIGHT
Frame contains only the right view.
Definition: stereo3d.h:163
av_strlcatf
size_t av_strlcatf(char *dst, size_t size, const char *fmt,...)
Definition: avstring.c:103
AV_STEREO3D_VIEW_UNSPEC
@ AV_STEREO3D_VIEW_UNSPEC
Content is unspecified.
Definition: stereo3d.h:168
init_get_bits
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:512
ff_hevc_prev_intra_luma_pred_flag_decode
int ff_hevc_prev_intra_luma_pred_flag_decode(HEVCLocalContext *lc)
Definition: cabac.c:702
PF_INTRA
@ PF_INTRA
Definition: hevcdec.h:118
AV_PIX_FMT_VULKAN
@ AV_PIX_FMT_VULKAN
Vulkan hardware images.
Definition: pixfmt.h:379
set_sps
static int set_sps(HEVCContext *s, HEVCLayerContext *l, const HEVCSPS *sps)
Definition: hevcdec.c:739
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:448
verify_md5
static int verify_md5(HEVCContext *s, AVFrame *frame)
Definition: hevcdec.c:3417
MODE_SKIP
@ MODE_SKIP
Definition: hevcdec.h:108
HEVCLayerContext::skip_flag
uint8_t * skip_flag
Definition: hevcdec.h:465
av_memdup
void * av_memdup(const void *p, size_t size)
Duplicate a buffer with av_malloc().
Definition: mem.c:304
HEVCLocalContext::end_of_tiles_x
int end_of_tiles_x
Definition: hevcdec.h:426
AV_PKT_DATA_DOVI_CONF
@ AV_PKT_DATA_DOVI_CONF
DOVI configuration ref: dolby-vision-bitstreams-within-the-iso-base-media-file-format-v2....
Definition: packet.h:280
CodingUnit::x
int x
Definition: hevcdec.h:291
tab_mode_idx
static const uint8_t tab_mode_idx[]
Definition: hevcdec.c:2319
skip_bits
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:379
AV3DReferenceDisplaysInfo
This structure describes information about the reference display width(s) and reference viewing dista...
Definition: tdrdi.h:53
BOUNDARY_LEFT_TILE
#define BOUNDARY_LEFT_TILE
Definition: hevcdec.h:440
AVCodecContext::framerate
AVRational framerate
Definition: avcodec.h:551
golomb.h
exp golomb vlc stuff
AVCodecInternal::is_copy
int is_copy
When using frame-threaded decoding, this field is set for the first worker thread (e....
Definition: internal.h:54
hls_coding_unit
static int hls_coding_unit(HEVCLocalContext *lc, const HEVCContext *s, const HEVCLayerContext *l, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int log2_cb_size)
Definition: hevcdec.c:2418
AVPacketSideData::size
size_t size
Definition: packet.h:411
PART_2Nx2N
@ PART_2Nx2N
Definition: hevcdec.h:95
get_bits
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:333
intra_prediction_unit
static void intra_prediction_unit(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCSPS *sps, int x0, int y0, int log2_cb_size)
Definition: hevcdec.c:2323
hevc_decode_free
static av_cold int hevc_decode_free(AVCodecContext *avctx)
Definition: hevcdec.c:3923
mx
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t mx
Definition: dsp.h:57
HEVCLocalContext::ctb_up_right_flag
uint8_t ctb_up_right_flag
Definition: hevcdec.h:424
HEVCLayerContext::tab_slice_address
int32_t * tab_slice_address
Definition: hevcdec.h:476
ff_hevc_decoder
const FFCodec ff_hevc_decoder
Definition: hevcdec.c:4234
HEVCLayerContext::sao_pixel_buffer_v
uint8_t * sao_pixel_buffer_v[3]
Definition: hevcdec.h:484
ff_hevc_compute_poc
int ff_hevc_compute_poc(const HEVCSPS *sps, int pocTid0, int poc_lsb, int nal_unit_type)
Compute POC of the current frame and return it.
Definition: ps.c:2446
FFCodec::p
AVCodec p
The public AVCodec.
Definition: codec_internal.h:131
HEVCLayerContext::sao_pixel_buffer_h
uint8_t * sao_pixel_buffer_h[3]
Definition: hevcdec.h:483
PRED_BI
@ PRED_BI
Definition: hevcdec.h:114
ff_hevc_split_transform_flag_decode
int ff_hevc_split_transform_flag_decode(HEVCLocalContext *lc, int log2_trafo_size)
Definition: cabac.c:821
av_ceil_log2
#define av_ceil_log2
Definition: common.h:97
fail
#define fail()
Definition: checkasm.h:206
PredictionUnit::intra_pred_mode_c
uint8_t intra_pred_mode_c[4]
Definition: hevcdec.h:329
H2645SEI::dynamic_hdr_vivid
HEVCSEIDynamicHDRVivid dynamic_hdr_vivid
Definition: h2645_sei.h:132
md5
struct AVMD5 * md5
Definition: movenc.c:57
InterPredIdc
InterPredIdc
Definition: hevcdec.h:111
MODE_INTER
@ MODE_INTER
Definition: hevcdec.h:106
timecode.h
HEVCWindow::left_offset
unsigned int left_offset
Definition: ps.h:92
GetBitContext
Definition: get_bits.h:109
SliceHeader::luma_log2_weight_denom
uint8_t luma_log2_weight_denom
Definition: hevcdec.h:272
ff_hevc_hls_mvd_coding
void ff_hevc_hls_mvd_coding(HEVCLocalContext *lc, int x0, int y0, int log2_cb_size)
Definition: cabac.c:1493
HEVCLocalContext::pu
PredictionUnit pu
Definition: hevcdec.h:436
HEVC_NAL_SEI_SUFFIX
@ HEVC_NAL_SEI_SUFFIX
Definition: hevc.h:69
HEVC_MAX_REFS
@ HEVC_MAX_REFS
Definition: hevc.h:122
H2645_FLAG_IS_NALFF
@ H2645_FLAG_IS_NALFF
Definition: h2645_parse.h:97
av_film_grain_params_select
const AVFilmGrainParams * av_film_grain_params_select(const AVFrame *frame)
Select the most appropriate film grain parameters set for the frame, taking into account the frame's ...
Definition: film_grain_params.c:53
TransformUnit::res_scale_val
int res_scale_val
Definition: hevcdec.h:336
SliceHeader::short_term_ref_pic_set_size
int short_term_ref_pic_set_size
Definition: hevcdec.h:226
ff_hevc_cu_chroma_qp_offset_idx
int ff_hevc_cu_chroma_qp_offset_idx(HEVCLocalContext *lc, int chroma_qp_offset_list_len_minus1)
Definition: cabac.c:623
val
static double val(void *priv, double ch)
Definition: aeval.c:77
ff_hevc_sao_offset_abs_decode
int ff_hevc_sao_offset_abs_decode(HEVCLocalContext *lc, int bit_depth)
Definition: cabac.c:541
HWACCEL_VDPAU
#define HWACCEL_VDPAU(codec)
Definition: hwconfig.h:72
ff_videodsp_init
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:39
AVCodecContext::coded_height
int coded_height
Definition: avcodec.h:607
SliceHeader::long_term_ref_pic_set_size
int long_term_ref_pic_set_size
Definition: hevcdec.h:229
hls_cross_component_pred
static int hls_cross_component_pred(HEVCLocalContext *lc, int idx)
Definition: hevcdec.c:1284
HEVCParamSets::sps_list
const HEVCSPS * sps_list[HEVC_MAX_SPS_COUNT]
RefStruct references.
Definition: ps.h:513
ss
#define ss(width, name, subs,...)
Definition: cbs_vp9.c:202
hls_transform_tree
static int hls_transform_tree(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int trafo_depth, int blk_idx, const int *base_cbf_cb, const int *base_cbf_cr)
Definition: hevcdec.c:1528
HEVC_NAL_SEI_PREFIX
@ HEVC_NAL_SEI_PREFIX
Definition: hevc.h:68
av_reduce
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
wpp_progress_init
static int wpp_progress_init(HEVCContext *s, unsigned count)
Definition: hevcdec.c:2898
ff_hevc_luma_mv_merge_mode
void ff_hevc_luma_mv_merge_mode(HEVCLocalContext *lc, const HEVCPPS *pps, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv)
Definition: mvs.c:482
AVRational::num
int num
Numerator.
Definition: rational.h:59
progressframe.h
refstruct.h
ff_hevc_pred_init
void ff_hevc_pred_init(HEVCPredContext *hpc, int bit_depth)
Definition: pred.c:43
ff_frame_new_side_data_from_buf
int ff_frame_new_side_data_from_buf(const AVCodecContext *avctx, AVFrame *frame, enum AVFrameSideDataType type, AVBufferRef **buf)
Similar to ff_frame_new_side_data, but using an existing buffer ref.
Definition: decode.c:2152
SliceHeader::slice_segment_addr
unsigned int slice_segment_addr
address (in raster order) of the first block in the current slice segment
Definition: hevcdec.h:209
av_frame_alloc
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:52
AV_PIX_FMT_YUV444P10
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:542
pic_arrays_free
static void pic_arrays_free(HEVCLayerContext *l)
NOTE: Each function hls_foo correspond to the function foo in the specification (HLS stands for High ...
Definition: hevcdec.c:73
first
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But first
Definition: rate_distortion.txt:12
FF_CODEC_CAP_USES_PROGRESSFRAMES
#define FF_CODEC_CAP_USES_PROGRESSFRAMES
The decoder might make use of the ProgressFrame API.
Definition: codec_internal.h:68
AVCodecContext::color_primaries
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:645
hls_decode_entry_wpp
static int hls_decode_entry_wpp(AVCodecContext *avctx, void *hevc_lclist, int job, int thread)
Definition: hevcdec.c:2803
ff_hevc_mvp_lx_flag_decode
int ff_hevc_mvp_lx_flag_decode(HEVCLocalContext *lc)
Definition: cabac.c:778
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:210
HEVC_SLICE_B
@ HEVC_SLICE_B
Definition: hevc.h:96
HEVCLayerContext::vertical_bs
uint8_t * vertical_bs
Definition: hevcdec.h:481
set_side_data
static int set_side_data(HEVCContext *s)
Definition: hevcdec.c:3080
QPEL_EXTRA_AFTER
#define QPEL_EXTRA_AFTER
Definition: hevcdec.h:63
film_grain_params.h
FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a)
Definition: sinewin_tablegen.c:29
av_cold
#define av_cold
Definition: attributes.h:106
luma_mc_uni
static void luma_mc_uni(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, uint8_t *dst, ptrdiff_t dststride, const AVFrame *ref, const Mv *mv, int x_off, int y_off, int block_w, int block_h, int luma_weight, int luma_offset)
8.5.3.2.2.1 Luma sample unidirectional interpolation process
Definition: hevcdec.c:1715
TransformUnit::intra_pred_mode
int intra_pred_mode
Definition: hevcdec.h:339
HEVCSEIDynamicHDRPlus::info
AVBufferRef * info
Definition: h2645_sei.h:46
ff_hevc_is_alpha_video
int ff_hevc_is_alpha_video(const HEVCContext *s)
Definition: hevcdec.c:454
AV_FRAME_FLAG_KEY
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
Definition: frame.h:642
SliceHeader::cabac_init_flag
uint8_t cabac_init_flag
Definition: hevcdec.h:242
DBParams::beta_offset
int beta_offset
Definition: hevcdec.h:350
H2645NAL::size
int size
Definition: h2645_parse.h:36
DBParams::tc_offset
int tc_offset
Definition: hevcdec.h:351
AVCodecContext::extradata_size
int extradata_size
Definition: avcodec.h:515
AVCodecContext::has_b_frames
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:697
ff_hevc_decode_nal_sei
int ff_hevc_decode_nal_sei(GetBitContext *gb, void *logctx, HEVCSEI *s, const HEVCParamSets *ps, enum HEVCNALUnitType type)
Definition: sei.c:303
ff_progress_frame_ref
void ff_progress_frame_ref(ProgressFrame *dst, const ProgressFrame *src)
Set dst->f to src->f and make dst a co-owner of src->f.
Definition: decode.c:1888
AV_FRAME_SIDE_DATA_FLAG_NEW_REF
#define AV_FRAME_SIDE_DATA_FLAG_NEW_REF
Create a new reference to the passed in buffer instead of taking ownership of it.
Definition: frame.h:1058
QPEL_EXTRA_BEFORE
#define QPEL_EXTRA_BEFORE
Definition: hevcdec.h:62
stereo3d.h
HEVCLayerContext::cur_frame
HEVCFrame * cur_frame
Definition: hevcdec.h:454
AV_PIX_FMT_DXVA2_VLD
@ AV_PIX_FMT_DXVA2_VLD
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer.
Definition: pixfmt.h:134
HEVCLocalContext::parent
const struct HEVCContext * parent
Definition: hevcdec.h:399
s
#define s(width, name)
Definition: cbs_vp9.c:198
HEVCSPS::height
int height
Definition: ps.h:351
AV_PIX_FMT_YUVA420P
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:108
SAO_NOT_APPLIED
@ SAO_NOT_APPLIED
Definition: hevcdec.h:163
AV_PROFILE_HEVC_SCC
#define AV_PROFILE_HEVC_SCC
Definition: defs.h:164
set_ct_depth
static av_always_inline void set_ct_depth(const HEVCSPS *sps, uint8_t *tab_ct_depth, int x0, int y0, int log2_cb_size, int ct_depth)
Definition: hevcdec.c:2305
ff_hevc_part_mode_decode
int ff_hevc_part_mode_decode(HEVCLocalContext *lc, const HEVCSPS *sps, int log2_cb_size)
Definition: cabac.c:660
av_realloc_array
void * av_realloc_array(void *ptr, size_t nmemb, size_t size)
Definition: mem.c:217
SliceHeader::luma_offset_l1
int16_t luma_offset_l1[16]
Definition: hevcdec.h:283
AV_ZERO32
#define AV_ZERO32(d)
Definition: intreadwrite.h:662
AVCodecContext::nb_decoded_side_data
int nb_decoded_side_data
Definition: avcodec.h:1925
ff_hevc_merge_idx_decode
int ff_hevc_merge_idx_decode(HEVCLocalContext *lc)
Definition: cabac.c:736
HEVCSEI::common
H2645SEI common
Definition: sei.h:107
pix_fmt
static enum AVPixelFormat pix_fmt
Definition: demux_decode.c:41
ff_hevc_nal_is_nonref
static av_always_inline int ff_hevc_nal_is_nonref(enum HEVCNALUnitType type)
Definition: hevcdec.h:653
ff_thread_get_buffer
int ff_thread_get_buffer(AVCodecContext *avctx, AVFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
Definition: pthread_frame.c:1037
HEVCSEI
Definition: sei.h:106
HEVC_NAL_VPS
@ HEVC_NAL_VPS
Definition: hevc.h:61
HEVC_NAL_UNSPEC62
@ HEVC_NAL_UNSPEC62
Definition: hevc.h:91
export_stream_params_from_sei
static int export_stream_params_from_sei(HEVCContext *s)
Definition: hevcdec.c:387
hevc_frame_start
static int hevc_frame_start(HEVCContext *s, HEVCLayerContext *l, unsigned nal_idx)
Definition: hevcdec.c:3208
ff_hevc_save_states
void ff_hevc_save_states(HEVCLocalContext *lc, const HEVCPPS *pps, int ctb_addr_ts)
Definition: cabac.c:402
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:41
pix_fmts
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:298
ff_hevc_skip_flag_decode
int ff_hevc_skip_flag_decode(HEVCLocalContext *lc, uint8_t *skip_flag, int x0, int y0, int x_cb, int y_cb, int min_cb_width)
Definition: cabac.c:573
SliceHeader::slice_rps
ShortTermRPS slice_rps
Definition: hevcdec.h:227
AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUVA444P12
Definition: pixfmt.h:594
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:231
AVPacketSideData::data
uint8_t * data
Definition: packet.h:410
AV_PIX_FMT_FLAG_ALPHA
#define AV_PIX_FMT_FLAG_ALPHA
The pixel format has an alpha channel.
Definition: pixdesc.h:147
ff_progress_frame_await
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_progress_frame_await() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_progress_frame_report() has been called on them. This includes draw_edges(). Porting codecs to frame threading
decode.h
ff_hevc_cbf_cb_cr_decode
int ff_hevc_cbf_cb_cr_decode(HEVCLocalContext *lc, int trafo_depth)
Definition: cabac.c:826
hevc.h
IS_IDR
#define IS_IDR(s)
Definition: hevcdec.h:74
H2645NAL::data
const uint8_t * data
Definition: h2645_parse.h:35
av_container_fifo_read
int av_container_fifo_read(AVContainerFifo *cf, void *obj, unsigned flags)
Read the next available object from the FIFO into obj.
Definition: container_fifo.c:122
AV_FRAME_DATA_3D_REFERENCE_DISPLAYS
@ AV_FRAME_DATA_3D_REFERENCE_DISPLAYS
This side data contains information about the reference display width(s) and reference viewing distan...
Definition: frame.h:256
RefPicList::ref
struct HEVCFrame * ref[HEVC_MAX_REFS]
Definition: hevcdec.h:195
H2645NAL::skipped_bytes_pos
int * skipped_bytes_pos
Definition: h2645_parse.h:71
HEVCWindow::top_offset
unsigned int top_offset
Definition: ps.h:94
export_stream_params
static void export_stream_params(HEVCContext *s, const HEVCSPS *sps)
Definition: hevcdec.c:331
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:73
SliceHeader::size
int * size
Definition: hevcdec.h:267
SliceHeader::collocated_list
uint8_t collocated_list
Definition: hevcdec.h:245
atomic_load
#define atomic_load(object)
Definition: stdatomic.h:93
SliceHeader::luma_offset_l0
int16_t luma_offset_l0[16]
Definition: hevcdec.h:280
AVCOL_PRI_UNSPECIFIED
@ AVCOL_PRI_UNSPECIFIED
Definition: pixfmt.h:639
AV_FILM_GRAIN_PARAMS_NONE
@ AV_FILM_GRAIN_PARAMS_NONE
Definition: film_grain_params.h:25
AVDISCARD_BIDIR
@ AVDISCARD_BIDIR
discard all bidirectional frames
Definition: defs.h:229
HEVCLayerContext::tab_mvf_pool
struct AVRefStructPool * tab_mvf_pool
Definition: hevcdec.h:486
get_se_golomb
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:239
INTRA_ANGULAR_26
@ INTRA_ANGULAR_26
Definition: hevcdec.h:151
H2645NAL::type
int type
NAL unit type.
Definition: h2645_parse.h:52
SliceHeader::chroma_weight_l1
int16_t chroma_weight_l1[16][2]
Definition: hevcdec.h:277
CodingUnit::max_trafo_depth
uint8_t max_trafo_depth
MaxTrafoDepth.
Definition: hevcdec.h:299
AV_FRAME_DATA_DYNAMIC_HDR_VIVID
@ AV_FRAME_DATA_DYNAMIC_HDR_VIVID
HDR Vivid dynamic metadata associated with a video frame.
Definition: frame.h:215
CODEC_LONG_NAME
#define CODEC_LONG_NAME(str)
Definition: codec_internal.h:331
tmp
static uint8_t tmp[40]
Definition: aes_ctr.c:52
SliceHeader::slice_ctb_addr_rs
int slice_ctb_addr_rs
Definition: hevcdec.h:286
SliceHeader::poc
int poc
Definition: hevcdec.h:216
ff_hevc_hls_residual_coding
void ff_hevc_hls_residual_coding(HEVCLocalContext *lc, const HEVCPPS *pps, int x0, int y0, int log2_trafo_size, enum ScanType scan_idx, int c_idx)
Definition: cabac.c:981
my
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t my
Definition: dsp.h:57
ff_hevc_decode_nal_vps
int ff_hevc_decode_nal_vps(GetBitContext *gb, AVCodecContext *avctx, HEVCParamSets *ps)
Definition: ps.c:761
FF_CODEC_PROPERTY_FILM_GRAIN
#define FF_CODEC_PROPERTY_FILM_GRAIN
Definition: avcodec.h:1640
AV_PIX_FMT_YUVA422P10LE
@ AV_PIX_FMT_YUVA422P10LE
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:184
hevc_ref_frame
static int hevc_ref_frame(HEVCFrame *dst, const HEVCFrame *src)
Definition: hevcdec.c:3890
if
if(ret)
Definition: filter_design.txt:179
hevc_decode_init
static av_cold int hevc_decode_init(AVCodecContext *avctx)
Definition: hevcdec.c:4154
srcstride
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t const uint8_t ptrdiff_t srcstride
Definition: dsp.h:88
SliceHeader::pic_output_flag
uint8_t pic_output_flag
Definition: hevcdec.h:220
AV_CODEC_CAP_FRAME_THREADS
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: codec.h:95
AVDISCARD_ALL
@ AVDISCARD_ALL
discard all
Definition: defs.h:232
GetBitContext::buffer
const uint8_t * buffer
Definition: get_bits.h:110
pred_weight_table
static int pred_weight_table(SliceHeader *sh, void *logctx, const HEVCSPS *sps, GetBitContext *gb)
Definition: hevcdec.c:174
PredictionUnit::rem_intra_luma_pred_mode
int rem_intra_luma_pred_mode
Definition: hevcdec.h:325
AVPacket::buf
AVBufferRef * buf
A reference to the reference-counted buffer where the packet data is stored.
Definition: packet.h:541
HEVCContext::sei
HEVCSEI sei
Definition: hevcdec.h:511
H2645NAL::raw_size
int raw_size
Definition: h2645_parse.h:44
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
ff_thread_progress_await
void ff_thread_progress_await(const ThreadProgress *pro_c, int n)
This function is a no-op in no-op mode; otherwise it waits until other threads have reached a certain...
Definition: threadprogress.c:64
IS_BLA
#define IS_BLA(s)
Definition: hevcdec.h:75
HEVCLayerContext::deblock
DBParams * deblock
Definition: hevcdec.h:462
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:76
ff_bswapdsp_init
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
NULL
#define NULL
Definition: coverity.c:32
parse.h
AVERROR_PATCHWELCOME
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:64
av_frame_copy_props
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:599
SAOParams::offset_abs
int offset_abs[3][4]
sao_offset_abs
Definition: dsp.h:35
AVCodecContext::color_range
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:669
av_buffer_unref
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it.
Definition: buffer.c:139
HEVCLocalContext::tmp
int16_t tmp[MAX_PB_SIZE *MAX_PB_SIZE]
Definition: hevcdec.h:432
CTB
#define CTB(tab, x, y)
Definition: hevcdec.c:1194
hwaccel_internal.h
LongTermRPS::poc
int poc[32]
Definition: hevcdec.h:188
AVCHROMA_LOC_LEFT
@ AVCHROMA_LOC_LEFT
MPEG-2/4 4:2:0, H.264 default for 4:2:0.
Definition: pixfmt.h:788
CodingUnit::cu_transquant_bypass_flag
uint8_t cu_transquant_bypass_flag
Definition: hevcdec.h:300
is_pcm
static int is_pcm(enum AVCodecID codec_id)
Definition: mxfdec.c:2551
HEVC_SLICE_I
@ HEVC_SLICE_I
Definition: hevc.h:98
AVCodecContext::internal
struct AVCodecInternal * internal
Private context used for internal data.
Definition: avcodec.h:466
ff_hevc_decode_nal_pps
int ff_hevc_decode_nal_pps(GetBitContext *gb, AVCodecContext *avctx, HEVCParamSets *ps)
Definition: ps.c:2162
AV_PIX_FMT_YUVJ420P
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:85
HEVCLocalContext::first_qp_group
uint8_t first_qp_group
Definition: hevcdec.h:396
ff_h2645_sei_to_context
int ff_h2645_sei_to_context(AVCodecContext *avctx, H2645SEI *sei)
Definition: h2645_sei.c:896
do_output
static void do_output(BM3DContext *s, uint8_t *dst, int dst_linesize, int plane, int nb_jobs)
Definition: vf_bm3d.c:630
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:241
HEVCLayerContext::cbf_luma
uint8_t * cbf_luma
Definition: hevcdec.h:469
get_bits1
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:386
HEVC_NAL_STSA_N
@ HEVC_NAL_STSA_N
Definition: hevc.h:33
profiles.h
ff_hevc_reset_sei
static void ff_hevc_reset_sei(HEVCSEI *sei)
Reset SEI values that are stored on the Context.
Definition: sei.h:128
AV3DReferenceDisplay::exponent_ref_display_width
uint8_t exponent_ref_display_width
The exponent part of the reference display width of the n-th reference display.
Definition: tdrdi.h:114
ff_hevc_res_scale_sign_flag
int ff_hevc_res_scale_sign_flag(HEVCLocalContext *lc, int idx)
Definition: cabac.c:861
ff_set_sar
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:106
L0
#define L0
Definition: hevcdec.h:56
flush
void(* flush)(AVBSFContext *ctx)
Definition: dts2pts.c:370
LongTermRPS::poc_msb_present
uint8_t poc_msb_present[32]
Definition: hevcdec.h:189
HEVC_NAL_EOS_NUT
@ HEVC_NAL_EOS_NUT
Definition: hevc.h:65
options
Definition: swscale.c:43
HEVCContext::film_grain_warning_shown
int film_grain_warning_shown
Definition: hevcdec.h:577
ff_log2
#define ff_log2
Definition: intmath.h:51
av_frame_new_side_data_from_buf
AVFrameSideData * av_frame_new_side_data_from_buf(AVFrame *frame, enum AVFrameSideDataType type, AVBufferRef *buf)
Add a new side data to a frame from an existing AVBufferRef.
Definition: frame.c:638
PART_Nx2N
@ PART_Nx2N
Definition: hevcdec.h:97
ff_hevc_ref_idx_lx_decode
int ff_hevc_ref_idx_lx_decode(HEVCLocalContext *lc, int num_ref_idx_lx)
Definition: cabac.c:762
RefPicListTab
Definition: hevcdec.h:201
UPDATE_THREAD_CONTEXT
#define UPDATE_THREAD_CONTEXT(func)
Definition: codec_internal.h:340
BOUNDARY_UPPER_TILE
#define BOUNDARY_UPPER_TILE
Definition: hevcdec.h:442
AV_PIX_FMT_D3D12
@ AV_PIX_FMT_D3D12
Hardware surfaces for Direct3D 12.
Definition: pixfmt.h:440
decode_nal_unit
static int decode_nal_unit(HEVCContext *s, unsigned nal_idx)
Definition: hevcdec.c:3597
aom_film_grain.h
vps
static int FUNC() vps(CodedBitstreamContext *ctx, RWContext *rw, H265RawVPS *current)
Definition: cbs_h265_syntax_template.c:423
AV_OPT_TYPE_UINT
@ AV_OPT_TYPE_UINT
Underlying C type is unsigned int.
Definition: opt.h:335
h274.h
HEVCContext::is_nalff
int is_nalff
this flag is != 0 if bitstream is encapsulated as a format defined in 14496-15
Definition: hevcdec.h:560
AV_EF_CRCCHECK
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data,...
Definition: defs.h:48
FF_HW_HAS_CB
#define FF_HW_HAS_CB(avctx, function)
Definition: hwaccel_internal.h:179
SliceHeader::nb_refs
unsigned int nb_refs[2]
Definition: hevcdec.h:237
Mv::x
int16_t x
horizontal component of motion vector
Definition: hevcdec.h:304
sei
static int FUNC() sei(CodedBitstreamContext *ctx, RWContext *rw, H264RawSEI *current)
Definition: cbs_h264_syntax_template.c:858
AVCodecContext::level
int level
Encoding level descriptor.
Definition: avcodec.h:1628
PF_BI
@ PF_BI
Definition: hevcdec.h:121
ff_hevc_sao_eo_class_decode
int ff_hevc_sao_eo_class_decode(HEVCLocalContext *lc)
Definition: cabac.c:556
H2645SEI::display_orientation
H2645SEIDisplayOrientation display_orientation
Definition: h2645_sei.h:136
SAMPLE_CTB
#define SAMPLE_CTB(tab, x, y)
Definition: hevcdec.h:72
HEVCWindow
Definition: ps.h:91
SCAN_HORIZ
@ SCAN_HORIZ
Definition: hevcdec.h:178
av_buffer_create
AVBufferRef * av_buffer_create(uint8_t *data, size_t size, void(*free)(void *opaque, uint8_t *data), void *opaque, int flags)
Create an AVBuffer from an existing array.
Definition: buffer.c:55
get_bits_bytesize
static int get_bits_bytesize(const GetBitContext *s, int round_up)
Get the size of the GetBitContext's buffer in bytes.
Definition: get_bits.h:264
PAR
#define PAR
Definition: hevcdec.c:4204
HEVCLocalContext::edge_emu_buffer
uint8_t edge_emu_buffer[(MAX_PB_SIZE+7) *EDGE_EMU_BUFFER_STRIDE *2]
Definition: hevcdec.h:429
IS_IRAP
#define IS_IRAP(s)
Definition: hevcdec.h:77
SAOParams::offset_val
int16_t offset_val[3][5]
SaoOffsetVal.
Definition: dsp.h:42
HEVCSEI::recovery_point
HEVCSEIRecoveryPoint recovery_point
Definition: sei.h:113
LongTermRPS::used
uint8_t used[32]
Definition: hevcdec.h:190
HEVC_NAL_RASL_R
@ HEVC_NAL_RASL_R
Definition: hevc.h:38
SliceHeader::colour_plane_id
uint8_t colour_plane_id
Definition: hevcdec.h:221
PART_nLx2N
@ PART_nLx2N
Definition: hevcdec.h:101
ff_hevc_cabac_init
int ff_hevc_cabac_init(HEVCLocalContext *lc, const HEVCPPS *pps, int ctb_addr_ts, const uint8_t *data, size_t size, int is_wpp)
Definition: cabac.c:454
HEVCContext::nal_length_size
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
Definition: hevcdec.h:574
luma_mc_bi
static void luma_mc_bi(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, uint8_t *dst, ptrdiff_t dststride, const AVFrame *ref0, const Mv *mv0, int x_off, int y_off, int block_w, int block_h, const AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
8.5.3.2.2.1 Luma sample bidirectional interpolation process
Definition: hevcdec.c:1779
SliceHeader::dependent_slice_segment_flag
uint8_t dependent_slice_segment_flag
Definition: hevcdec.h:219
HEVCSEITDRDI
Definition: sei.h:82
ff_hevc_set_new_ref
int ff_hevc_set_new_ref(HEVCContext *s, HEVCLayerContext *l, int poc)
Definition: refs.c:209
SliceHeader::slice_act_cb_qp_offset
int slice_act_cb_qp_offset
Definition: hevcdec.h:254
AVDISCARD_NONKEY
@ AVDISCARD_NONKEY
discard all frames except keyframes
Definition: defs.h:231
SliceHeader::first_slice_in_pic_flag
uint8_t first_slice_in_pic_flag
Definition: hevcdec.h:218
HEVCLocalContext::ctb_left_flag
uint8_t ctb_left_flag
Definition: hevcdec.h:422
AV_CODEC_CAP_DR1
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
H2645SEI::frame_packing
H2645SEIFramePacking frame_packing
Definition: h2645_sei.h:135
AVPacket::size
int size
Definition: packet.h:559
BOUNDARY_UPPER_SLICE
#define BOUNDARY_UPPER_SLICE
Definition: hevcdec.h:441
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:94
ff_dovi_attach_side_data
int ff_dovi_attach_side_data(DOVIContext *s, AVFrame *frame)
Attach the decoded AVDOVIMetadata as side data to an AVFrame.
Definition: dovi_rpudec.c:64
hevcdec.h
ff_hevc_frame_rps
int ff_hevc_frame_rps(HEVCContext *s, HEVCLayerContext *l)
Construct the reference picture sets for the current frame.
Definition: refs.c:534
height
#define height
Definition: dsp.h:89
av_frame_ref
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:278
codec_internal.h
dst
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
Definition: dsp.h:87
HEVC_NAL_RASL_N
@ HEVC_NAL_RASL_N
Definition: hevc.h:37
HEVC_MAX_NUH_LAYER_ID
@ HEVC_MAX_NUH_LAYER_ID
Definition: hevc.h:110
HEVCSEITDRDI::right_view_id
uint16_t right_view_id[32]
Definition: sei.h:88
AV_OPT_TYPE_FLAG_ARRAY
@ AV_OPT_TYPE_FLAG_ARRAY
May be combined with another regular option type to declare an array option.
Definition: opt.h:346
AV_PIX_FMT_YUV422P10LE
@ AV_PIX_FMT_YUV422P10LE
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:158
HEVCSEITDRDI::left_view_id
uint16_t left_view_id[32]
Definition: sei.h:87
ff_hevc_unref_frame
void ff_hevc_unref_frame(HEVCFrame *frame, int flags)
Definition: refs.c:35
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:424
INTRA_PLANAR
@ INTRA_PLANAR
Definition: hevcdec.h:125
PART_2NxnD
@ PART_2NxnD
Definition: hevcdec.h:100
AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:544
HEVC_NAL_SPS
@ HEVC_NAL_SPS
Definition: hevc.h:62
FF_CODEC_CAP_EXPORTS_CROPPING
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
Definition: codec_internal.h:60
size
int size
Definition: twinvq_data.h:10344
SCAN_VERT
@ SCAN_VERT
Definition: hevcdec.h:179
ff_hevc_pcm_flag_decode
int ff_hevc_pcm_flag_decode(HEVCLocalContext *lc)
Definition: cabac.c:697
ff_hevc_deblocking_boundary_strengths
void ff_hevc_deblocking_boundary_strengths(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, int x0, int y0, int log2_trafo_size)
Definition: filter.c:742
AV_NOPTS_VALUE
#define AV_NOPTS_VALUE
Undefined timestamp value.
Definition: avutil.h:247
H2645NAL::gb
GetBitContext gb
Definition: h2645_parse.h:47
SliceHeader::collocated_ref_idx
unsigned int collocated_ref_idx
Definition: hevcdec.h:247
HEVCContext::nb_view_ids
unsigned nb_view_ids
Definition: hevcdec.h:566
SliceHeader::entry_point_offset
unsigned * entry_point_offset
Definition: hevcdec.h:265
ff_frame_new_side_data
int ff_frame_new_side_data(const AVCodecContext *avctx, AVFrame *frame, enum AVFrameSideDataType type, size_t size, AVFrameSideData **psd)
Wrapper around av_frame_new_side_data, which rejects side data overridden by the demuxer.
Definition: decode.c:2114
hls_decode_neighbour
static void hls_decode_neighbour(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, const HEVCSPS *sps, int x_ctb, int y_ctb, int ctb_addr_ts)
Definition: hevcdec.c:2698
ff_frame_new_side_data_from_buf_ext
int ff_frame_new_side_data_from_buf_ext(const AVCodecContext *avctx, AVFrameSideData ***sd, int *nb_sd, enum AVFrameSideDataType type, AVBufferRef **buf)
Same as ff_frame_new_side_data_from_buf, but taking a AVFrameSideData array directly instead of an AV...
Definition: decode.c:2133
H2645NAL
Definition: h2645_parse.h:34
hls_slice_data_wpp
static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
Definition: hevcdec.c:2924
AV_PIX_FMT_YUV444P12
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:546
AVFrameSideData::data
uint8_t * data
Definition: frame.h:284
TransformUnit::chroma_mode_c
int chroma_mode_c
Definition: hevcdec.h:341
SUBDIVIDE
#define SUBDIVIDE(x, y, idx)
AVFilmGrainParams
This structure describes how to handle film grain synthesis in video for specific codecs.
Definition: film_grain_params.h:201
FF_THREAD_SLICE
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:1573
SliceHeader::short_term_ref_pic_set_sps_flag
int short_term_ref_pic_set_sps_flag
RPS coded in the slice header itself is stored here.
Definition: hevcdec.h:225
AVCHROMA_LOC_UNSPECIFIED
@ AVCHROMA_LOC_UNSPECIFIED
Definition: pixfmt.h:787
SliceHeader::no_output_of_prior_pics_flag
uint8_t no_output_of_prior_pics_flag
Definition: hevcdec.h:234
AVCodecHWConfigInternal
Definition: hwconfig.h:25
MvField
Definition: hevcdec.h:308
QPEL_EXTRA
#define QPEL_EXTRA
Definition: hevcdec.h:64
HEVC_NAL_PPS
@ HEVC_NAL_PPS
Definition: hevc.h:63
PF_L1
@ PF_L1
Definition: hevcdec.h:120
split
static char * split(char *message, char delim)
Definition: af_channelmap.c:89
HEVC_NAL_STSA_R
@ HEVC_NAL_STSA_R
Definition: hevc.h:34
av_frame_remove_side_data
void av_frame_remove_side_data(AVFrame *frame, enum AVFrameSideDataType type)
Remove and free all side data instances of the given type.
Definition: frame.c:725
AVPacket::dts
int64_t dts
Decompression timestamp in AVStream->time_base units; the time at which the packet is decompressed.
Definition: packet.h:557
av_refstruct_ref
void * av_refstruct_ref(void *obj)
Create a new reference to an object managed via this API, i.e.
Definition: refstruct.c:140
AV_PIX_FMT_YUVA444P
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:174
HEVCContext::dovi_ctx
DOVIContext dovi_ctx
Dolby Vision decoding context.
Definition: hevcdec.h:583
SliceHeader::chroma_weight_l0
int16_t chroma_weight_l0[16][2]
Definition: hevcdec.h:276
options
static const AVOption options[]
Definition: hevcdec.c:4206
AV_CODEC_CAP_SLICE_THREADS
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:99
AV_PIX_FMT_YUVA444P10
#define AV_PIX_FMT_YUVA444P10
Definition: pixfmt.h:592
HWACCEL_D3D11VA
#define HWACCEL_D3D11VA(codec)
Definition: hwconfig.h:78
offset
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Definition: writing_filters.txt:86
attributes.h
ff_hevc_cbf_luma_decode
int ff_hevc_cbf_luma_decode(HEVCLocalContext *lc, int trafo_depth)
Definition: cabac.c:831
AV_PIX_FMT_D3D11
@ AV_PIX_FMT_D3D11
Hardware surfaces for Direct3D11.
Definition: pixfmt.h:336
AVCodecInternal
Definition: internal.h:49
HEVCContext::ps
HEVCParamSets ps
Definition: hevcdec.h:510
av_buffer_alloc
AVBufferRef * av_buffer_alloc(size_t size)
Allocate an AVBuffer of the given size using av_malloc().
Definition: buffer.c:77
HWACCEL_NVDEC
#define HWACCEL_NVDEC(codec)
Definition: hwconfig.h:68
av_zero_extend
#define av_zero_extend
Definition: common.h:151
ff_dovi_ctx_flush
av_cold void ff_dovi_ctx_flush(DOVIContext *s)
Partially reset the internal state.
Definition: dovi_rpu.c:43
TransformUnit::cu_qp_offset_cb
int8_t cu_qp_offset_cb
Definition: hevcdec.h:344
SliceHeader::chroma_log2_weight_denom
int16_t chroma_log2_weight_denom
Definition: hevcdec.h:273
AV_PIX_FMT_VAAPI
@ AV_PIX_FMT_VAAPI
Hardware acceleration through VA-API, data[3] contains a VASurfaceID.
Definition: pixfmt.h:126
MvField::pred_flag
int8_t pred_flag
Definition: hevcdec.h:311
HEVCLocalContext::ct_depth
int ct_depth
Definition: hevcdec.h:434
SAOParams::eo_class
int eo_class[3]
sao_eo_class
Definition: dsp.h:40
AV_LOG_INFO
#define AV_LOG_INFO
Standard information.
Definition: log.h:221
FF_THREAD_FRAME
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:1572
av_refstruct_unref
void av_refstruct_unref(void *objp)
Decrement the reference count of the underlying object and automatically free the object if there are...
Definition: refstruct.c:120
AV_OPT_FLAG_READONLY
#define AV_OPT_FLAG_READONLY
The option may not be set through the AVOptions API, only read.
Definition: opt.h:368
ff_init_cabac_decoder
int ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:162
ff_hevc_ps_uninit
void ff_hevc_ps_uninit(HEVCParamSets *ps)
Definition: ps.c:2434
AV_PIX_FMT_VDPAU
@ AV_PIX_FMT_VDPAU
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:194
PART_nRx2N
@ PART_nRx2N
Definition: hevcdec.h:102
setup_multilayer
static int setup_multilayer(HEVCContext *s, const HEVCVPS *vps)
Definition: hevcdec.c:473
EPEL_EXTRA_BEFORE
#define EPEL_EXTRA_BEFORE
Definition: hevcdec.h:59
AV_PIX_FMT_VIDEOTOOLBOX
@ AV_PIX_FMT_VIDEOTOOLBOX
hardware decoding through Videotoolbox
Definition: pixfmt.h:305
SliceHeader::slice_cb_qp_offset
int slice_cb_qp_offset
Definition: hevcdec.h:250
SliceHeader
Definition: hevcdec.h:205
ff_hevc_frame_nb_refs
int ff_hevc_frame_nb_refs(const SliceHeader *sh, const HEVCPPS *pps, unsigned layer_idx)
Get the number of candidate references for the current frame.
Definition: refs.c:614
MODE_INTRA
#define MODE_INTRA
Definition: vp3.c:85
HEVCLayerContext::filter_slice_edges
uint8_t * filter_slice_edges
Definition: hevcdec.h:474
HEVCLayerContext::qp_y_tab
int8_t * qp_y_tab
Definition: hevcdec.h:478
av_md5_init
void av_md5_init(AVMD5 *ctx)
Initialize MD5 hashing.
Definition: md5.c:143
ff_hevc_cu_transquant_bypass_flag_decode
int ff_hevc_cu_transquant_bypass_flag_decode(HEVCLocalContext *lc)
Definition: cabac.c:568
HEVC_NAL_TSA_R
@ HEVC_NAL_TSA_R
Definition: hevc.h:32
AV3DReferenceDisplay::right_view_id
uint16_t right_view_id
The ViewId of the left view of a stereo pair corresponding to the n-th reference display.
Definition: tdrdi.h:109
SliceHeader::slice_sample_adaptive_offset_flag
uint8_t slice_sample_adaptive_offset_flag[3]
Definition: hevcdec.h:239
AVDISCARD_NONINTRA
@ AVDISCARD_NONINTRA
discard all non intra frames
Definition: defs.h:230
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
decode_nal_units
static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
Definition: hevcdec.c:3690
av_timecode_make_smpte_tc_string2
char * av_timecode_make_smpte_tc_string2(char *buf, AVRational rate, uint32_t tcsmpte, int prevent_df, int skip_field)
Get the timecode string from the SMPTE timecode format.
Definition: timecode.c:131
hevc_pel_weight
static const uint8_t hevc_pel_weight[65]
Definition: hevcdec.c:61
HEVCFrame
Definition: hevcdec.h:360
AVCodecContext::extradata
uint8_t * extradata
Out-of-band global headers that may be used by some codecs.
Definition: avcodec.h:514
HEVCFrame::tf
ProgressFrame tf
Definition: hevcdec.h:365
av_packet_get_side_data
uint8_t * av_packet_get_side_data(const AVPacket *pkt, enum AVPacketSideDataType type, size_t *size)
Get side information from packet.
Definition: packet.c:253
HEVCLayerContext
Definition: hevcdec.h:452
internal.h
EPEL_EXTRA_AFTER
#define EPEL_EXTRA_AFTER
Definition: hevcdec.h:60
src2
const pixel * src2
Definition: h264pred_template.c:421
av_malloc_array
#define av_malloc_array(a, b)
Definition: tableprint_vlc.h:32
ff_hevc_no_residual_syntax_flag_decode
int ff_hevc_no_residual_syntax_flag_decode(HEVCLocalContext *lc)
Definition: cabac.c:783
SliceHeader::offset
int * offset
Definition: hevcdec.h:266
HEVCSEITDRDI::num_ref_displays
uint8_t num_ref_displays
Definition: sei.h:86
common.h
HEVCContext::view_ids
int * view_ids
Definition: hevcdec.h:565
AVCodecInternal::in_pkt
AVPacket * in_pkt
This packet is used to hold the packet given to decoders implementing the .decode API; it is unused b...
Definition: internal.h:83
av_assert1
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:57
SliceHeader::mvd_l1_zero_flag
uint8_t mvd_l1_zero_flag
Definition: hevcdec.h:240
ff_hevc_mpm_idx_decode
int ff_hevc_mpm_idx_decode(HEVCLocalContext *lc)
Definition: cabac.c:707
delta
float delta
Definition: vorbis_enc_data.h:430
md5.h
AV_CODEC_ID_HEVC
@ AV_CODEC_ID_HEVC
Definition: codec_id.h:228
chroma_mc_bi
static void chroma_mc_bi(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, uint8_t *dst0, ptrdiff_t dststride, const AVFrame *ref0, const AVFrame *ref1, int x_off, int y_off, int block_w, int block_h, const MvField *current_mv, int cidx)
8.5.3.2.2.2 Chroma sample bidirectional interpolation process
Definition: hevcdec.c:1943
av_always_inline
#define av_always_inline
Definition: attributes.h:63
ff_thread_progress_init
av_cold int ff_thread_progress_init(ThreadProgress *pro, int init_mode)
Initialize a ThreadProgress.
Definition: threadprogress.c:33
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
PF_L0
@ PF_L0
Definition: hevcdec.h:119
EDGE_EMU_BUFFER_STRIDE
#define EDGE_EMU_BUFFER_STRIDE
Definition: hevcdec.h:66
cabac_functions.h
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:256
AV3DReferenceDisplay::mantissa_ref_display_width
uint8_t mantissa_ref_display_width
The mantissa part of the reference display width of the n-th reference display.
Definition: tdrdi.h:119
SET_SAO
#define SET_SAO(elem, value)
Definition: hevcdec.c:1196
SliceHeader::data_offset
unsigned data_offset
Definition: hevcdec.h:287
HEVCLocalContext::qp_y
int8_t qp_y
Definition: hevcdec.h:415
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:179
HEVCSPS::width
int width
coded frame dimension in various units
Definition: ps.h:350
av_buffer_replace
int av_buffer_replace(AVBufferRef **pdst, const AVBufferRef *src)
Ensure dst refers to the same data as src.
Definition: buffer.c:233
AVCodecContext::chroma_sample_location
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
Definition: avcodec.h:676
HEVCSEI::tdrdi
HEVCSEITDRDI tdrdi
Definition: sei.h:112
SliceHeader::chroma_offset_l0
int16_t chroma_offset_l0[16][2]
Definition: hevcdec.h:281
AVCOL_SPC_UNSPECIFIED
@ AVCOL_SPC_UNSPECIFIED
Definition: pixfmt.h:693
SliceHeader::list_entry_lx
unsigned int list_entry_lx[2][32]
Definition: hevcdec.h:231
AVCodecContext::height
int height
Definition: avcodec.h:592
HEVCSEIDynamicHDRVivid::info
AVBufferRef * info
Definition: h2645_sei.h:50
AVCodecContext::pix_fmt
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:631
av_md5_final
void av_md5_final(AVMD5 *ctx, uint8_t *dst)
Finish hashing and output digest value.
Definition: md5.c:188
HEVCContext::recovery_poc
int recovery_poc
Definition: hevcdec.h:529
AVCOL_RANGE_MPEG
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
Definition: pixfmt.h:750
av_calloc
void * av_calloc(size_t nmemb, size_t size)
Definition: mem.c:264
HEVCFrame::f
AVFrame * f
Definition: hevcdec.h:363
HWACCEL_VIDEOTOOLBOX
#define HWACCEL_VIDEOTOOLBOX(codec)
Definition: hwconfig.h:74
ff_hevc_cu_chroma_qp_offset_flag
int ff_hevc_cu_chroma_qp_offset_flag(HEVCLocalContext *lc)
Definition: cabac.c:618
hls_coding_quadtree
static int hls_coding_quadtree(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int log2_cb_size, int cb_depth)
Definition: hevcdec.c:2605
SAOParams
Definition: dsp.h:34
hls_decode_entry
static int hls_decode_entry(HEVCContext *s, GetBitContext *gb)
Definition: hevcdec.c:2749
SliceHeader::short_term_rps
const ShortTermRPS * short_term_rps
Definition: hevcdec.h:228
hls_prediction_unit
static void hls_prediction_unit(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int partIdx, int idx)
Definition: hevcdec.c:2093
hls_transform_unit
static int hls_transform_unit(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
Definition: hevcdec.c:1300
stride
#define stride
Definition: h264pred_template.c:536
SliceHeader::cu_chroma_qp_offset_enabled_flag
uint8_t cu_chroma_qp_offset_enabled_flag
Definition: hevcdec.h:257
decode_lt_rps
static int decode_lt_rps(const HEVCSPS *sps, LongTermRPS *rps, GetBitContext *gb, int cur_poc, int poc_lsb)
Definition: hevcdec.c:274
ff_hevc_sao_merge_flag_decode
int ff_hevc_sao_merge_flag_decode(HEVCLocalContext *lc)
Definition: cabac.c:516
HEVCLayerContext::sps
const HEVCSPS * sps
Definition: hevcdec.h:456
ret
ret
Definition: filter_design.txt:187
H2645NAL::raw_data
const uint8_t * raw_data
Definition: h2645_parse.h:45
FFSWAP
#define FFSWAP(type, a, b)
Definition: macros.h:52
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:81
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:265
PRED_L1
@ PRED_L1
Definition: hevcdec.h:113
PredictionUnit::mvd
Mv mvd
Definition: hevcdec.h:327
SliceHeader::disable_deblocking_filter_flag
uint8_t disable_deblocking_filter_flag
slice_header_disable_deblocking_filter_flag
Definition: hevcdec.h:243
HEVCLocalContext::edge_emu_buffer2
uint8_t edge_emu_buffer2[(MAX_PB_SIZE+7) *EDGE_EMU_BUFFER_STRIDE *2]
Definition: hevcdec.h:431
HEVC_NAL_EOB_NUT
@ HEVC_NAL_EOB_NUT
Definition: hevc.h:66
sps
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
Definition: cbs_h264_syntax_template.c:260
ff_hevc_set_qPy
void ff_hevc_set_qPy(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, int xBase, int yBase, int log2_cb_size)
Definition: filter.c:122
align_get_bits
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:555
av_container_fifo_free
void av_container_fifo_free(AVContainerFifo **pcf)
Free a AVContainerFifo and everything in it.
Definition: container_fifo.c:101
hls_sao_param
static void hls_sao_param(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, const HEVCSPS *sps, int rx, int ry)
Definition: hevcdec.c:1208
av_refstruct_pool_alloc
AVRefStructPool * av_refstruct_pool_alloc(size_t size, unsigned flags)
Equivalent to av_refstruct_pool_alloc(size, flags, NULL, NULL, NULL, NULL, NULL)
Definition: refstruct.c:335
pos
unsigned int pos
Definition: spdifenc.c:414
AV3DReferenceDisplay::mantissa_ref_viewing_distance
uint8_t mantissa_ref_viewing_distance
The mantissa part of the reference viewing distance of the n-th reference display.
Definition: tdrdi.h:129
SliceHeader::max_num_merge_cand
uint8_t max_num_merge_cand
5 - 5_minus_max_num_merge_cand
Definition: hevcdec.h:262
ff_thread_progress_destroy
av_cold void ff_thread_progress_destroy(ThreadProgress *pro)
Destroy a ThreadProgress.
Definition: threadprogress.c:44
SliceHeader::luma_weight_l0
int16_t luma_weight_l0[16]
Definition: hevcdec.h:275
ff_thread_finish_setup
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:543
ff_hevc_sao_band_position_decode
int ff_hevc_sao_band_position_decode(HEVCLocalContext *lc)
Definition: cabac.c:531
HEVCLocalContext::boundary_flags
int boundary_flags
Definition: hevcdec.h:445
U
#define U(x)
Definition: vpx_arith.h:37
HWACCEL_VULKAN
#define HWACCEL_VULKAN(codec)
Definition: hwconfig.h:76
LongTermRPS
Definition: hevcdec.h:187
SliceHeader::slice_type
enum HEVCSliceType slice_type
Definition: hevcdec.h:213
AV_FRAME_DATA_DYNAMIC_HDR_PLUS
@ AV_FRAME_DATA_DYNAMIC_HDR_PLUS
HDR dynamic metadata associated with a video frame.
Definition: frame.h:159
AVCodecContext
main external API structure.
Definition: avcodec.h:431
get_ue_golomb_31
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:120
HEVCContext::layers_active_decode
unsigned layers_active_decode
Definition: hevcdec.h:502
SliceHeader::slice_qp
int8_t slice_qp
Definition: hevcdec.h:270
HEVC_NAL_CRA_NUT
@ HEVC_NAL_CRA_NUT
Definition: hevc.h:50
ff_hevc_inter_pred_idc_decode
int ff_hevc_inter_pred_idc_decode(HEVCLocalContext *lc, int nPbW, int nPbH)
Definition: cabac.c:752
AV_FILM_GRAIN_PARAMS_H274
@ AV_FILM_GRAIN_PARAMS_H274
The union is valid when interpreted as AVFilmGrainH274Params (codec.h274)
Definition: film_grain_params.h:35
FF_CODEC_RECEIVE_FRAME_CB
#define FF_CODEC_RECEIVE_FRAME_CB(func)
Definition: codec_internal.h:354
av_refstruct_ref_c
const void * av_refstruct_ref_c(const void *obj)
Analog of av_refstruct_ref(), but for constant objects.
Definition: refstruct.c:149
ff_hevc_decode_nal_sps
int ff_hevc_decode_nal_sps(GetBitContext *gb, AVCodecContext *avctx, HEVCParamSets *ps, unsigned nuh_layer_id, int apply_defdispwin)
Definition: ps.c:1700
ff_h274_film_grain_params_supported
static int ff_h274_film_grain_params_supported(int model_id, enum AVPixelFormat pix_fmt)
Check whether ff_h274_apply_film_grain() supports the given parameter combination.
Definition: h274.h:39
PredictionUnit::merge_flag
uint8_t merge_flag
Definition: hevcdec.h:328
av_refstruct_replace
void av_refstruct_replace(void *dstp, const void *src)
Ensure *dstp refers to the same object as src.
Definition: refstruct.c:160
av_md5_alloc
struct AVMD5 * av_md5_alloc(void)
Allocate an AVMD5 context.
Definition: md5.c:50
AVRational::den
int den
Denominator.
Definition: rational.h:60
SliceHeader::slice_cr_qp_offset
int slice_cr_qp_offset
Definition: hevcdec.h:251
AV_PIX_FMT_NONE
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:72
map_to_alpha_format
static enum AVPixelFormat map_to_alpha_format(HEVCContext *s, enum AVPixelFormat pix_fmt)
Definition: hevcdec.c:549
FF_HW_CALL
#define FF_HW_CALL(avctx, function,...)
Definition: hwaccel_internal.h:173
HEVCContext
Definition: hevcdec.h:490
AV_PIX_FMT_YUVA422P12
#define AV_PIX_FMT_YUVA422P12
Definition: pixfmt.h:593
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Underlying C type is int.
Definition: opt.h:259
AVCodecContext::profile
int profile
profile
Definition: avcodec.h:1618
HWACCEL_MAX
#define HWACCEL_MAX
CodingUnit::pred_mode
enum PredMode pred_mode
PredMode.
Definition: hevcdec.h:294
HEVCContext::layers
HEVCLayerContext layers[HEVC_VPS_MAX_LAYERS]
Definition: hevcdec.h:498
SliceHeader::pic_order_cnt_lsb
int pic_order_cnt_lsb
Definition: hevcdec.h:215
HEVCLayerContext::DPB
HEVCFrame DPB[32]
Definition: hevcdec.h:453
AV3DReferenceDisplay::additional_shift_present_flag
uint8_t additional_shift_present_flag
An array of flags to indicates that the information about additional horizontal shift of the left and...
Definition: tdrdi.h:135
HEVCContext::rpu_buf
AVBufferRef * rpu_buf
0 or 1 Dolby Vision RPUs.
Definition: hevcdec.h:582
HEVCLocalContext::qPy_pred
int qPy_pred
Definition: hevcdec.h:418
ff_hevc_split_coding_unit_flag_decode
int ff_hevc_split_coding_unit_flag_decode(HEVCLocalContext *lc, uint8_t *tab_ct_depth, const HEVCSPS *sps, int ct_depth, int x0, int y0)
Definition: cabac.c:639
SCAN_DIAG
@ SCAN_DIAG
Definition: hevcdec.h:177
intra_prediction_unit_default_value
static void intra_prediction_unit_default_value(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCSPS *sps, int x0, int y0, int log2_cb_size)
Definition: hevcdec.c:2393
SliceHeader::rpl_modification_flag
uint8_t rpl_modification_flag[2]
Definition: hevcdec.h:233
ref
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:117
pps
uint64_t pps
Definition: dovi_rpuenc.c:36
SAOParams::type_idx
uint8_t type_idx[3]
sao_type_idx
Definition: dsp.h:44
AVCodecContext::export_side_data
int export_side_data
Bit set of AV_CODEC_EXPORT_DATA_* flags, which affects the kind of metadata exported in frame,...
Definition: avcodec.h:1774
HEVCWindow::right_offset
unsigned int right_offset
Definition: ps.h:93
AV_CODEC_CAP_DELAY
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: codec.h:76
av_tdrdi_alloc
AV3DReferenceDisplaysInfo * av_tdrdi_alloc(unsigned int nb_displays, size_t *out_size)
Allocate a AV3DReferenceDisplaysInfo structure and initialize its fields to default values.
Definition: tdrdi.c:25
MD5_PRI
#define MD5_PRI
ff_thread_progress_reset
static void ff_thread_progress_reset(ThreadProgress *pro)
Reset the ThreadProgress.progress counter; must only be called if the ThreadProgress is not in use in...
Definition: threadprogress.h:72
Windows::Graphics::DirectX::Direct3D11::p
IDirect3DDxgiInterfaceAccess _COM_Outptr_ void ** p
Definition: vsrc_gfxcapture_winrt.hpp:53
FF_CODEC_PROPERTY_CLOSED_CAPTIONS
#define FF_CODEC_PROPERTY_CLOSED_CAPTIONS
Definition: avcodec.h:1639
av_md5_update
void av_md5_update(AVMD5 *ctx, const uint8_t *src, size_t len)
Update hash value.
Definition: md5.c:153
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:78
HEVCLocalContext::tu
TransformUnit tu
Definition: hevcdec.h:420
av_container_fifo_can_read
size_t av_container_fifo_can_read(const AVContainerFifo *cf)
Definition: container_fifo.c:185
CodingUnit::y
int y
Definition: hevcdec.h:292
src0
const pixel *const src0
Definition: h264pred_template.c:419
AVCodecInternal::draining
int draining
decoding: AVERROR_EOF has been returned from ff_decode_get_packet(); must not be used by decoders tha...
Definition: internal.h:139
HEVC_SCALABILITY_AUXILIARY
@ HEVC_SCALABILITY_AUXILIARY
Definition: hevc.h:169
av_log_once
void av_log_once(void *avcl, int initial_level, int subsequent_level, int *state, const char *fmt,...)
Definition: log.c:450
FF_DISABLE_DEPRECATION_WARNINGS
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:72
ff_hevc_cu_qp_delta_abs
int ff_hevc_cu_qp_delta_abs(HEVCLocalContext *lc)
Definition: cabac.c:586
MvField::mv
Mv mv[2]
mvL0, vvL1
Definition: hevcdec.h:309
AVCodecContext::coded_width
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:607
SliceHeader::inter_layer_pred
uint8_t inter_layer_pred
Definition: hevcdec.h:222
desc
const char * desc
Definition: libsvtav1.c:79
Mv
Definition: hevcdec.h:303
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:200
ff_hevc_clear_refs
void ff_hevc_clear_refs(HEVCLayerContext *l)
Mark all frames in DPB as unused for reference.
Definition: refs.c:67
MvField::ref_idx
int8_t ref_idx[2]
refIdxL0, refIdxL1
Definition: hevcdec.h:310
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:77
mem.h
PRED_L0
@ PRED_L0
Definition: hevcdec.h:112
AVBufferRef
A reference to a data buffer.
Definition: buffer.h:82
get_bitsz
static av_always_inline int get_bitsz(GetBitContext *s, int n)
Read 0-25 bits.
Definition: get_bits.h:349
AV3DReferenceDisplay::exponent_ref_viewing_distance
uint8_t exponent_ref_viewing_distance
The exponent part of the reference viewing distance of the n-th reference display.
Definition: tdrdi.h:124
HEVC_RECOVERY_END
#define HEVC_RECOVERY_END
Definition: hevcdec.h:80
HEVC_MAX_PPS_COUNT
@ HEVC_MAX_PPS_COUNT
Definition: hevc.h:117
HEVCVPS
Definition: ps.h:171
get_ue_golomb_long
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:104
hevc_decode_extradata
static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first)
Definition: hevcdec.c:3798
EPEL_EXTRA
#define EPEL_EXTRA
Definition: hevcdec.h:61
ff_h2645_sei_ctx_replace
int ff_h2645_sei_ctx_replace(H2645SEI *dst, const H2645SEI *src)
Definition: h2645_sei.c:504
ff_hevc_slice_rpl
int ff_hevc_slice_rpl(HEVCContext *s)
Construct the reference picture list(s) for the current slice.
Definition: refs.c:343
HEVCContext::eos
int eos
current packet contains an EOS/EOB NAL
Definition: hevcdec.h:527
get_format
static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
Definition: hevcdec.c:577
HEVCLayerContext::sao
SAOParams * sao
Definition: hevcdec.h:461
HEVCSPS
Definition: ps.h:255
AVFrameSideData
Structure to hold side data for an AVFrame.
Definition: frame.h:282
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
pic_arrays_init
static int pic_arrays_init(HEVCLayerContext *l, const HEVCSPS *sps)
Definition: hevcdec.c:102
HEVCPPS
Definition: ps.h:374
HEVC_NAL_TRAIL_R
@ HEVC_NAL_TRAIL_R
Definition: hevc.h:30
CodingUnit::part_mode
enum PartMode part_mode
PartMode.
Definition: hevcdec.h:295
HEVC_NAL_RADL_R
@ HEVC_NAL_RADL_R
Definition: hevc.h:36
av_free
#define av_free(p)
Definition: tableprint_vlc.h:34
av_refstruct_pool_uninit
static void av_refstruct_pool_uninit(AVRefStructPool **poolp)
Mark the pool as being available for freeing.
Definition: refstruct.h:292
hevc_init_context
static av_cold int hevc_init_context(AVCodecContext *avctx)
Definition: hevcdec.c:3969
SliceHeader::tc_offset
int tc_offset
tc_offset_div2 * 2
Definition: hevcdec.h:260
LongTermRPS::nb_refs
uint8_t nb_refs
Definition: hevcdec.h:191
AV_OPT_FLAG_EXPORT
#define AV_OPT_FLAG_EXPORT
The option is intended for exporting values to the caller.
Definition: opt.h:363
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:458
AVPacket
This structure stores compressed data.
Definition: packet.h:535
AV_OPT_TYPE_BOOL
@ AV_OPT_TYPE_BOOL
Underlying C type is int.
Definition: opt.h:327
TransformUnit::cross_pf
uint8_t cross_pf
Definition: hevcdec.h:346
HEVCLocalContext::cu
CodingUnit cu
Definition: hevcdec.h:435
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
av_dict_set
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
Definition: dict.c:86
av_fast_malloc
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:557
H2645SEI::dynamic_hdr_plus
HEVCSEIDynamicHDRPlus dynamic_hdr_plus
Definition: h2645_sei.h:131
SliceHeader::pps_id
unsigned int pps_id
Definition: hevcdec.h:206
SliceHeader::luma_weight_l1
int16_t luma_weight_l1[16]
Definition: hevcdec.h:278
hevc_luma_mv_mvp_mode
static void hevc_luma_mv_mvp_mode(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv)
Definition: hevcdec.c:2046
HWACCEL_VAAPI
#define HWACCEL_VAAPI(codec)
Definition: hwconfig.h:70
HEVCParamSets::vps_list
const HEVCVPS * vps_list[HEVC_MAX_VPS_COUNT]
RefStruct references.
Definition: ps.h:512
FFMAX3
#define FFMAX3(a, b, c)
Definition: macros.h:48
OFFSET
#define OFFSET(x)
Definition: hevcdec.c:4203
ff_hevc_log2_res_scale_abs
int ff_hevc_log2_res_scale_abs(HEVCLocalContext *lc, int idx)
Definition: cabac.c:851
AVCodecContext::width
int width
picture width / height.
Definition: avcodec.h:592
int32_t
int32_t
Definition: audioconvert.c:56
decode_slice_data
static int decode_slice_data(HEVCContext *s, const HEVCLayerContext *l, const H2645NAL *nal, GetBitContext *gb)
Definition: hevcdec.c:3026
PredictionUnit::mpm_idx
int mpm_idx
Definition: hevcdec.h:324
AVERROR_BUG
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:52
AVCodecContext::properties
attribute_deprecated unsigned properties
Properties of the stream that gets decoded.
Definition: avcodec.h:1637
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
Definition: frame.h:472
ff_hevc_sao_offset_sign_decode
int ff_hevc_sao_offset_sign_decode(HEVCLocalContext *lc)
Definition: cabac.c:551
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
PredictionUnit::chroma_mode_c
uint8_t chroma_mode_c[4]
Definition: hevcdec.h:330
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:61
skip_bytes
static const av_unused uint8_t * skip_bytes(CABACContext *c, int n)
Skip n bytes and reset the decoder.
Definition: cabac_functions.h:203
PredictionUnit::intra_pred_mode
uint8_t intra_pred_mode[4]
Definition: hevcdec.h:326
TransformUnit::is_cu_chroma_qp_offset_coded
uint8_t is_cu_chroma_qp_offset_coded
Definition: hevcdec.h:343
h
h
Definition: vp9dsp_template.c:2070
hevc_frame_end
static int hevc_frame_end(HEVCContext *s, HEVCLayerContext *l)
Definition: hevcdec.c:3486
BOUNDARY_LEFT_SLICE
#define BOUNDARY_LEFT_SLICE
Definition: hevcdec.h:439
ff_h2645_packet_split
int ff_h2645_packet_split(H2645Packet *pkt, const uint8_t *buf, int length, void *logctx, int nal_length_size, enum AVCodecID codec_id, int flags)
Split an input packet into NAL units.
Definition: h2645_parse.c:466
SliceHeader::slice_qp_delta
int slice_qp_delta
Definition: hevcdec.h:249
SliceHeader::slice_addr
unsigned int slice_addr
address (in raster order) of the first block in the current slice
Definition: hevcdec.h:211
SliceHeader::use_integer_mv_flag
uint8_t use_integer_mv_flag
Definition: hevcdec.h:263
avstring.h
atomic_init
#define atomic_init(obj, value)
Definition: stdatomic.h:33
HEVCLayerContext::rpl_tab_pool
struct AVRefStructPool * rpl_tab_pool
Definition: hevcdec.h:487
ff_hevc_hls_filter
void ff_hevc_hls_filter(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, int x, int y, int ctb_size)
Definition: filter.c:872
width
#define width
Definition: dsp.h:89
TransformUnit::intra_pred_mode_c
int intra_pred_mode_c
Definition: hevcdec.h:340
AV3DReferenceDisplay::left_view_id
uint16_t left_view_id
The ViewId of the left view of a stereo pair corresponding to the n-th reference display.
Definition: tdrdi.h:104
AVDISCARD_NONREF
@ AVDISCARD_NONREF
discard all non reference
Definition: defs.h:228
HEVC_NAL_RADL_N
@ HEVC_NAL_RADL_N
Definition: hevc.h:35
AV_FILM_GRAIN_PARAMS_AV1
@ AV_FILM_GRAIN_PARAMS_AV1
The union is valid when interpreted as AVFilmGrainAOMParams (codec.aom)
Definition: film_grain_params.h:30
hevc_sei_to_context
static int hevc_sei_to_context(AVCodecContext *avctx, HEVCSEI *sei)
Definition: hevcdec.c:4105
hls_pcm_sample
static int hls_pcm_sample(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, int x0, int y0, int log2_cb_size)
Definition: hevcdec.c:1656
HEVCLocalContext::end_of_tiles_y
int end_of_tiles_y
Definition: hevcdec.h:427
AVFilmGrainParams::type
enum AVFilmGrainParamsType type
Specifies the codec for which this structure is valid.
Definition: film_grain_params.h:205
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
Definition: opt.h:299
HEVCContext::poc_tid0
int poc_tid0
Definition: hevcdec.h:525
CodingUnit::intra_split_flag
uint8_t intra_split_flag
IntraSplitFlag.
Definition: hevcdec.h:298
H2645SEI::alternative_transfer
H2645SEIAlternativeTransfer alternative_transfer
Definition: h2645_sei.h:137
POS
#define POS(c_idx, x, y)
HEVCSPS::pix_fmt
enum AVPixelFormat pix_fmt
Definition: ps.h:268
SHIFT_CTB_WPP
#define SHIFT_CTB_WPP
Definition: hevcdec.h:45
av_color_transfer_name
const char * av_color_transfer_name(enum AVColorTransferCharacteristic transfer)
Definition: pixdesc.c:3802
ff_hevc_intra_chroma_pred_mode_decode
int ff_hevc_intra_chroma_pred_mode_decode(HEVCLocalContext *lc)
Definition: cabac.c:725
luma_intra_pred_mode
static int luma_intra_pred_mode(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCSPS *sps, int x0, int y0, int pu_size, int prev_intra_luma_pred_flag)
8.4.1
Definition: hevcdec.c:2223
PART_2NxN
@ PART_2NxN
Definition: hevcdec.h:96
av_frame_side_data_add
AVFrameSideData * av_frame_side_data_add(AVFrameSideData ***sd, int *nb_sd, enum AVFrameSideDataType type, AVBufferRef **buf, unsigned int flags)
Add a new side data entry to an array from an existing AVBufferRef.
Definition: side_data.c:223
src
#define src
Definition: vp8dsp.c:248
AV_CODEC_EXPORT_DATA_FILM_GRAIN
#define AV_CODEC_EXPORT_DATA_FILM_GRAIN
Decoding only.
Definition: avcodec.h:400
SliceHeader::long_term_rps
LongTermRPS long_term_rps
Definition: hevcdec.h:230
AV_PIX_FMT_YUVA422P
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:173
HEVCLayerContext::is_pcm
uint8_t * is_pcm
Definition: hevcdec.h:471
HEVC_NAL_FD_NUT
@ HEVC_NAL_FD_NUT
Definition: hevc.h:67
HEVC_NAL_BLA_W_RADL
@ HEVC_NAL_BLA_W_RADL
Definition: hevc.h:46
tdrdi.h
HEVC_NAL_TRAIL_N
@ HEVC_NAL_TRAIL_N
Definition: hevc.h:29
av_get_pix_fmt_name
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:3367
HEVC_SLICE_P
@ HEVC_SLICE_P
Definition: hevc.h:97
HEVCLocalContext::cc
CABACContext cc
Definition: hevcdec.h:401
TransformUnit::cu_qp_offset_cr
int8_t cu_qp_offset_cr
Definition: hevcdec.h:345
ff_dovi_ctx_replace
void ff_dovi_ctx_replace(DOVIContext *s, const DOVIContext *s0)
Definition: dovi_rpu.c:59
HEVC_NAL_BLA_W_LP
@ HEVC_NAL_BLA_W_LP
Definition: hevc.h:45
AVDOVIDecoderConfigurationRecord
Definition: dovi_meta.h:55
ff_hevc_rem_intra_luma_pred_mode_decode
int ff_hevc_rem_intra_luma_pred_mode_decode(HEVCLocalContext *lc)
Definition: cabac.c:715