Go to the documentation of this file.
33 #include "config_components.h"
85 ht[
i].bits, ht[
i].values,
86 ht[
i].class == 1,
s->avctx);
90 if (ht[
i].
class < 2) {
91 memcpy(
s->raw_huffman_lengths[ht[
i].class][ht[
i].index],
93 memcpy(
s->raw_huffman_values[ht[
i].class][ht[
i].index],
94 ht[
i].values, ht[
i].length);
103 if (
len > 12 && buf[12] == 1)
104 s->interlace_polarity = 1;
105 if (
len > 12 && buf[12] == 2)
106 s->interlace_polarity = 0;
117 s->idsp.idct_permutation);
125 if (!
s->picture_ptr) {
129 s->picture_ptr =
s->picture;
138 s->first_picture = 1;
148 if (
s->extern_huff) {
153 "error using external huffman table, switching back to internal\n");
159 s->interlace_polarity = 1;
163 s->interlace_polarity = 1;
170 if (
s->smv_frames_per_jpeg <= 0) {
193 int len = bytestream2_get_be16u(&
s->gB);
212 uint8_t
b = bytestream2_get_byteu(&
s->gB);
218 if (
len < (1 + 64 * (1+pr)))
225 for (
i = 0;
i < 64;
i++) {
226 s->quant_matrixes[
index][
i] = pr ? bytestream2_get_be16u(&
s->gB) : bytestream2_get_byteu(&
s->gB);
227 if (
s->quant_matrixes[
index][
i] == 0) {
229 av_log(
s->avctx, log_level,
"dqt: 0 quant value\n");
237 s->quant_matrixes[
index][8]) >> 1;
240 len -= 1 + 64 * (1+pr);
249 uint8_t bits_table[17];
250 uint8_t val_table[256];
260 uint8_t
b = bytestream2_get_byteu(&
s->gB);
268 for (
i = 1;
i <= 16;
i++) {
269 bits_table[
i] = bytestream2_get_byteu(&
s->gB);
273 if (len < n || n > 256)
276 for (
i = 0;
i < n;
i++) {
277 v = bytestream2_get_byteu(&
s->gB);
287 val_table,
class > 0,
s->avctx)) < 0)
293 val_table, 0,
s->avctx)) < 0)
297 for (
i = 0;
i < 16;
i++)
298 s->raw_huffman_lengths[
class][
index][
i] = bits_table[
i + 1];
300 s->raw_huffman_values[
class][
index][
i] = val_table[
i];
313 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
314 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
321 bits = bytestream2_get_byteu(&
s->gB);
328 if (
s->avctx->bits_per_raw_sample !=
bits) {
330 s->avctx->bits_per_raw_sample =
bits;
335 if (
bits == 9 && !
s->pegasus_rct)
338 if(
s->lossless &&
s->avctx->lowres){
343 height = bytestream2_get_be16u(&
s->gB);
344 width = bytestream2_get_be16u(&
s->gB);
347 if (
s->interlaced &&
s->width ==
width &&
s->height ==
height + 1)
354 if (!
s->progressive && !
s->ls) {
356 if (
s->buf_size && (
width + 7) / 8 * ((
height + 7) / 8) >
s->buf_size * 4LL)
360 nb_components = bytestream2_get_byteu(&
s->gB);
361 if (nb_components <= 0 ||
364 if (
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
365 if (nb_components !=
s->nb_components) {
367 "nb_components changing in interlaced picture\n");
371 if (
s->ls && !(
bits <= 8 || nb_components == 1)) {
373 "JPEG-LS that is not <= 8 "
374 "bits/component or 16-bit gray");
378 if (
len != 3 * nb_components) {
379 av_log(
s->avctx,
AV_LOG_ERROR,
"decode_sof0: error, len(%d) mismatch %d components\n",
len, nb_components);
383 s->nb_components = nb_components;
386 for (
i = 0;
i < nb_components;
i++) {
388 s->component_id[
i] = bytestream2_get_byteu(&
s->gB);
389 uint8_t
b = bytestream2_get_byteu(&
s->gB);
391 v_count[
i] =
b & 0x0F;
393 if (h_count[
i] >
s->h_max)
394 s->h_max = h_count[
i];
395 if (v_count[
i] >
s->v_max)
396 s->v_max = v_count[
i];
397 s->quant_index[
i] = bytestream2_get_byteu(&
s->gB);
398 if (
s->quant_index[
i] >= 4) {
402 if (!h_count[
i] || !v_count[
i]) {
404 "Invalid sampling factor in component %d %d:%d\n",
405 i, h_count[
i], v_count[
i]);
410 i, h_count[
i], v_count[
i],
411 s->component_id[
i],
s->quant_index[
i]);
413 if ( nb_components == 4
414 &&
s->component_id[0] ==
'C'
415 &&
s->component_id[1] ==
'M'
416 &&
s->component_id[2] ==
'Y'
417 &&
s->component_id[3] ==
'K')
418 s->adobe_transform = 0;
420 if (
s->ls && (
s->h_max > 1 ||
s->v_max > 1)) {
426 if (nb_components == 2) {
440 memcmp(
s->h_count, h_count,
sizeof(h_count)) ||
441 memcmp(
s->v_count, v_count,
sizeof(v_count))) {
447 memcpy(
s->h_count, h_count,
sizeof(h_count));
448 memcpy(
s->v_count, v_count,
sizeof(v_count));
453 if (
s->first_picture &&
454 (
s->multiscope != 2 ||
s->avctx->pkt_timebase.den >= 25 *
s->avctx->pkt_timebase.num) &&
455 s->orig_height != 0 &&
456 s->height < ((
s->orig_height * 3) / 4)) {
458 s->bottom_field =
s->interlace_polarity;
469 (
s->avctx->codec_tag ==
MKTAG(
'A',
'V',
'R',
'n') ||
470 s->avctx->codec_tag ==
MKTAG(
'A',
'V',
'D',
'J')) &&
474 s->first_picture = 0;
480 s->avctx->height =
s->avctx->coded_height /
s->smv_frames_per_jpeg;
481 if (
s->avctx->height <= 0)
484 if (
s->bayer &&
s->progressive) {
489 if (
s->got_picture &&
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
490 if (
s->progressive) {
495 if (
s->v_max == 1 &&
s->h_max == 1 &&
s->lossless==1 && (nb_components==3 || nb_components==4))
497 else if (!
s->lossless)
500 pix_fmt_id = ((unsigned)
s->h_count[0] << 28) | (
s->v_count[0] << 24) |
501 (
s->h_count[1] << 20) | (
s->v_count[1] << 16) |
502 (
s->h_count[2] << 12) | (
s->v_count[2] << 8) |
503 (
s->h_count[3] << 4) |
s->v_count[3];
507 if (!(pix_fmt_id & 0xD0D0D0D0))
508 pix_fmt_id -= (pix_fmt_id & 0xF0F0F0F0) >> 1;
509 if (!(pix_fmt_id & 0x0D0D0D0D))
510 pix_fmt_id -= (pix_fmt_id & 0x0F0F0F0F) >> 1;
512 for (
i = 0;
i < 8;
i++) {
513 int j = 6 + (
i&1) - (
i&6);
514 int is = (pix_fmt_id >> (4*
i)) & 0xF;
515 int js = (pix_fmt_id >> (4*j)) & 0xF;
517 if (
is == 1 && js != 2 && (i < 2 || i > 5))
518 js = (pix_fmt_id >> ( 8 + 4*(
i&1))) & 0xF;
519 if (
is == 1 && js != 2 && (i < 2 || i > 5))
520 js = (pix_fmt_id >> (16 + 4*(
i&1))) & 0xF;
522 if (
is == 1 && js == 2) {
523 if (
i & 1)
s->upscale_h[j/2] = 1;
524 else s->upscale_v[j/2] = 1;
529 if (pix_fmt_id != 0x11110000 && pix_fmt_id != 0x11000000)
533 switch (pix_fmt_id) {
543 if (
s->adobe_transform == 0
544 ||
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
558 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
570 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
581 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
583 s->upscale_v[1] =
s->upscale_v[2] = 1;
584 s->upscale_h[1] =
s->upscale_h[2] = 1;
585 }
else if (
s->adobe_transform == 2 &&
s->bits <= 8) {
587 s->upscale_v[1] =
s->upscale_v[2] = 1;
588 s->upscale_h[1] =
s->upscale_h[2] = 1;
607 if (
s->adobe_transform == 0 ||
s->component_id[0] ==
'R' &&
608 s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
634 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
638 s->upscale_v[1] =
s->upscale_v[2] = 1;
640 if (pix_fmt_id == 0x14111100)
641 s->upscale_v[1] =
s->upscale_v[2] = 1;
649 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
653 s->upscale_h[1] =
s->upscale_h[2] = 1;
663 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B')
667 s->upscale_h[0] =
s->upscale_h[2] = 2;
674 s->upscale_h[1] =
s->upscale_h[2] = 2;
691 if (pix_fmt_id == 0x42111100) {
694 s->upscale_h[1] =
s->upscale_h[2] = 1;
695 }
else if (pix_fmt_id == 0x24111100) {
698 s->upscale_v[1] =
s->upscale_v[2] = 1;
699 }
else if (pix_fmt_id == 0x23111100) {
702 s->upscale_v[1] =
s->upscale_v[2] = 2;
714 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
715 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
723 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
724 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
725 if (
s->nb_components == 3) {
727 }
else if (
s->nb_components != 1) {
730 }
else if ((
s->palette_index ||
s->force_pal8) &&
s->bits <= 8)
732 else if (
s->bits <= 8)
744 if (
s->avctx->pix_fmt ==
s->hwaccel_sw_pix_fmt && !size_change) {
745 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
748 #if CONFIG_MJPEG_NVDEC_HWACCEL
751 #if CONFIG_MJPEG_VAAPI_HWACCEL
758 if (
s->hwaccel_pix_fmt < 0)
761 s->hwaccel_sw_pix_fmt =
s->avctx->pix_fmt;
762 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
782 memset(
s->picture_ptr->data[1], 0, 1024);
784 for (
i = 0;
i < 4;
i++)
785 s->linesize[
i] =
s->picture_ptr->linesize[
i] <<
s->interlaced;
787 ff_dlog(
s->avctx,
"%d %d %d %d %d %d\n",
788 s->width,
s->height,
s->linesize[0],
s->linesize[1],
789 s->interlaced,
s->avctx->height);
793 if ((
s->rgb && !
s->lossless && !
s->ls) ||
794 (!
s->rgb &&
s->ls &&
s->nb_components > 1) ||
802 if (
s->progressive) {
803 int bw = (
width +
s->h_max * 8 - 1) / (
s->h_max * 8);
804 int bh = (
height +
s->v_max * 8 - 1) / (
s->v_max * 8);
805 for (
i = 0;
i <
s->nb_components;
i++) {
806 int size = bw * bh *
s->h_count[
i] *
s->v_count[
i];
811 if (!
s->blocks[
i] || !
s->last_nnz[
i])
813 s->block_stride[
i] = bw *
s->h_count[
i];
815 memset(
s->coefs_finished, 0,
sizeof(
s->coefs_finished));
818 if (
s->avctx->hwaccel) {
820 s->hwaccel_picture_private =
822 if (!
s->hwaccel_picture_private)
826 s->raw_image_buffer_size);
838 if (code < 0 || code > 16) {
840 "mjpeg_decode_dc: bad vlc: %d\n", dc_index);
850 int dc_index,
int ac_index, uint16_t *quant_matrix)
859 val =
val * (unsigned)quant_matrix[0] +
s->last_dc[component];
860 s->last_dc[component] =
val;
869 i += ((unsigned)
code) >> 4;
877 int sign = (~cache) >> 31;
887 j =
s->permutated_scantable[
i];
897 int component,
int dc_index,
898 uint16_t *quant_matrix,
int Al)
901 s->bdsp.clear_block(
block);
906 val = (
val * (quant_matrix[0] << Al)) +
s->last_dc[component];
907 s->last_dc[component] =
val;
914 uint8_t *last_nnz,
int ac_index,
915 uint16_t *quant_matrix,
916 int ss,
int se,
int Al,
int *EOBRUN)
928 for (
i =
ss; ;
i++) {
939 int sign = (~cache) >> 31;
947 j =
s->permutated_scantable[
se];
954 j =
s->permutated_scantable[
i];
985 #define REFINE_BIT(j) { \
986 UPDATE_CACHE(re, &s->gb); \
987 sign = block[j] >> 15; \
988 block[j] += SHOW_UBITS(re, &s->gb, 1) * \
989 ((quant_matrix[i] ^ sign) - sign) << Al; \
990 LAST_SKIP_BITS(re, &s->gb, 1); \
998 av_log(s->avctx, AV_LOG_ERROR, "error count: %d\n", i); \
1003 j = s->permutated_scantable[i]; \
1006 else if (run-- == 0) \
1013 int ac_index, uint16_t *quant_matrix,
1014 int ss,
int se,
int Al,
int *EOBRUN)
1017 int last =
FFMIN(
se, *last_nnz);
1025 GET_VLC(
code, re, &
s->gb,
s->vlcs[2][ac_index].table, 9, 2);
1032 j =
s->permutated_scantable[
i];
1064 for (;
i <= last;
i++) {
1065 j =
s->permutated_scantable[
i];
1081 if (
s->restart_interval) {
1085 for (
i = 0;
i < nb_components;
i++)
1086 s->last_dc[
i] = (4 <<
s->bits);
1091 if (
s->restart_count == 0) {
1099 for (
i = 0;
i < nb_components;
i++)
1100 s->last_dc[
i] = (4 <<
s->bits);
1116 int left[4], top[4], topleft[4];
1117 const int linesize =
s->linesize[0];
1118 const int mask = ((1 <<
s->bits) - 1) << point_transform;
1119 int resync_mb_y = 0;
1120 int resync_mb_x = 0;
1124 if (!
s->bayer &&
s->nb_components < 3)
1126 if (
s->bayer &&
s->nb_components > 2)
1128 if (
s->nb_components <= 0 ||
s->nb_components > 4)
1130 if (
s->v_max != 1 ||
s->h_max != 1 || !
s->lossless)
1133 if (
s->rct ||
s->pegasus_rct)
1138 s->restart_count =
s->restart_interval;
1140 if (
s->restart_interval == 0)
1141 s->restart_interval = INT_MAX;
1144 width =
s->mb_width / nb_components;
1149 if (!
s->ljpeg_buffer)
1154 for (
i = 0;
i < 4;
i++)
1157 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1158 uint8_t *ptr =
s->picture_ptr->data[0] + (linesize * mb_y);
1160 if (
s->interlaced &&
s->bottom_field)
1161 ptr += linesize >> 1;
1163 for (
i = 0;
i < 4;
i++)
1166 if ((mb_y *
s->width) %
s->restart_interval == 0) {
1167 for (
i = 0;
i < 6;
i++)
1168 vpred[
i] = 1 << (
s->bits-1);
1171 for (mb_x = 0; mb_x <
width; mb_x++) {
1179 if (
s->restart_interval && !
s->restart_count){
1180 s->restart_count =
s->restart_interval;
1184 top[
i] =
left[
i]= topleft[
i]= 1 << (
s->bits - 1);
1186 if (mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || !mb_x)
1187 modified_predictor = 1;
1189 for (
i=0;
i<nb_components;
i++) {
1192 topleft[
i] = top[
i];
1199 if (!
s->bayer || mb_x) {
1209 mask & (
pred + (unsigned)(
dc * (1 << point_transform)));
1212 if (
s->restart_interval && !--
s->restart_count) {
1217 if (
s->rct &&
s->nb_components == 4) {
1218 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1219 ptr[4*mb_x + 2] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1220 ptr[4*mb_x + 1] =
buffer[mb_x][1] + ptr[4*mb_x + 2];
1221 ptr[4*mb_x + 3] =
buffer[mb_x][2] + ptr[4*mb_x + 2];
1222 ptr[4*mb_x + 0] =
buffer[mb_x][3];
1224 }
else if (
s->nb_components == 4) {
1225 for(
i=0;
i<nb_components;
i++) {
1226 int c=
s->comp_index[
i];
1228 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1231 }
else if(
s->bits == 9) {
1234 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1235 ((uint16_t*)ptr)[4*mb_x+
c] =
buffer[mb_x][
i];
1239 }
else if (
s->rct) {
1240 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1241 ptr[3*mb_x + 1] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1242 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1243 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1245 }
else if (
s->pegasus_rct) {
1246 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1248 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1249 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1251 }
else if (
s->bayer) {
1254 if (nb_components == 1) {
1256 for (mb_x = 0; mb_x <
width; mb_x++)
1257 ((uint16_t*)ptr)[mb_x] =
buffer[mb_x][0];
1258 }
else if (nb_components == 2) {
1259 for (mb_x = 0; mb_x <
width; mb_x++) {
1260 ((uint16_t*)ptr)[2*mb_x + 0] =
buffer[mb_x][0];
1261 ((uint16_t*)ptr)[2*mb_x + 1] =
buffer[mb_x][1];
1265 for(
i=0;
i<nb_components;
i++) {
1266 int c=
s->comp_index[
i];
1268 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1271 }
else if(
s->bits == 9) {
1274 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1275 ((uint16_t*)ptr)[3*mb_x+2-
c] =
buffer[mb_x][
i];
1285 int point_transform,
int nb_components)
1287 int i, mb_x, mb_y,
mask;
1288 int bits= (
s->bits+7)&~7;
1289 int resync_mb_y = 0;
1290 int resync_mb_x = 0;
1293 point_transform +=
bits -
s->bits;
1294 mask = ((1 <<
s->bits) - 1) << point_transform;
1296 av_assert0(nb_components>=1 && nb_components<=4);
1298 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1299 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1304 if (
s->restart_interval && !
s->restart_count){
1305 s->restart_count =
s->restart_interval;
1310 if(!mb_x || mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || s->
interlaced){
1311 int toprow = mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x;
1312 int leftcol = !mb_x || mb_y == resync_mb_y && mb_x == resync_mb_x;
1313 for (
i = 0;
i < nb_components;
i++) {
1316 int n,
h, v, x, y,
c, j, linesize;
1317 n =
s->nb_blocks[
i];
1318 c =
s->comp_index[
i];
1323 linesize=
s->linesize[
c];
1325 if(
bits>8) linesize /= 2;
1327 for(j=0; j<n; j++) {
1334 if (
h * mb_x + x >=
s->width
1335 || v * mb_y + y >=
s->height) {
1337 }
else if (
bits<=8) {
1338 ptr =
s->picture_ptr->data[
c] + (linesize * (v * mb_y + y)) + (
h * mb_x + x);
1340 if(x==0 && leftcol){
1346 if(x==0 && leftcol){
1347 pred= ptr[-linesize];
1353 if (
s->interlaced &&
s->bottom_field)
1354 ptr += linesize >> 1;
1356 *ptr=
pred + ((unsigned)
dc << point_transform);
1358 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1360 if(x==0 && leftcol){
1366 if(x==0 && leftcol){
1367 pred= ptr16[-linesize];
1373 if (
s->interlaced &&
s->bottom_field)
1374 ptr16 += linesize >> 1;
1376 *ptr16=
pred + ((unsigned)
dc << point_transform);
1385 for (
i = 0;
i < nb_components;
i++) {
1388 int n,
h, v, x, y,
c, j, linesize,
dc;
1389 n =
s->nb_blocks[
i];
1390 c =
s->comp_index[
i];
1395 linesize =
s->linesize[
c];
1397 if(
bits>8) linesize /= 2;
1399 for (j = 0; j < n; j++) {
1406 if (
h * mb_x + x >=
s->width
1407 || v * mb_y + y >=
s->height) {
1409 }
else if (
bits<=8) {
1410 ptr =
s->picture_ptr->data[
c] +
1411 (linesize * (v * mb_y + y)) +
1416 *ptr =
pred + ((unsigned)
dc << point_transform);
1418 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1422 *ptr16=
pred + ((unsigned)
dc << point_transform);
1432 if (
s->restart_interval && !--
s->restart_count) {
1442 uint8_t *
dst,
const uint8_t *
src,
1443 int linesize,
int lowres)
1446 case 0:
s->copy_block(
dst,
src, linesize, 8);
1459 int block_x, block_y;
1460 int size = 8 >>
s->avctx->lowres;
1462 for (block_y=0; block_y<
size; block_y++)
1463 for (block_x=0; block_x<
size; block_x++)
1464 *(uint16_t*)(ptr + 2*block_x + block_y*linesize) <<= 16 -
s->bits;
1466 for (block_y=0; block_y<
size; block_y++)
1467 for (block_x=0; block_x<
size; block_x++)
1468 *(ptr + block_x + block_y*linesize) <<= 8 -
s->bits;
1473 int Al,
const uint8_t *mb_bitmask,
1474 int mb_bitmask_size,
1477 int i, mb_x, mb_y, chroma_h_shift, chroma_v_shift, chroma_width, chroma_height;
1482 int bytes_per_pixel = 1 + (
s->bits > 8);
1485 if (mb_bitmask_size != (
s->mb_width *
s->mb_height + 7)>>3) {
1489 init_get_bits(&mb_bitmask_gb, mb_bitmask,
s->mb_width *
s->mb_height);
1492 s->restart_count = 0;
1499 for (
i = 0;
i < nb_components;
i++) {
1500 int c =
s->comp_index[
i];
1501 data[
c] =
s->picture_ptr->data[
c];
1502 reference_data[
c] = reference ? reference->
data[
c] :
NULL;
1503 linesize[
c] =
s->linesize[
c];
1504 s->coefs_finished[
c] |= 1;
1507 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1508 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1511 if (
s->restart_interval && !
s->restart_count)
1512 s->restart_count =
s->restart_interval;
1519 for (
i = 0;
i < nb_components;
i++) {
1521 int n,
h, v, x, y,
c, j;
1523 n =
s->nb_blocks[
i];
1524 c =
s->comp_index[
i];
1529 for (j = 0; j < n; j++) {
1530 block_offset = (((linesize[
c] * (v * mb_y + y) * 8) +
1531 (
h * mb_x + x) * 8 * bytes_per_pixel) >>
s->avctx->lowres);
1533 if (
s->interlaced &&
s->bottom_field)
1534 block_offset += linesize[
c] >> 1;
1535 if ( 8*(
h * mb_x + x) < ((
c == 1) || (
c == 2) ? chroma_width :
s->width)
1536 && 8*(v * mb_y + y) < ((
c == 1) || (
c == 2) ? chroma_height :
s->height)) {
1537 ptr =
data[
c] + block_offset;
1540 if (!
s->progressive) {
1544 linesize[
c],
s->avctx->lowres);
1547 s->bdsp.clear_block(
s->block);
1549 s->dc_index[
i],
s->ac_index[
i],
1550 s->quant_matrixes[
s->quant_sindex[
i]]) < 0) {
1552 "error y=%d x=%d\n", mb_y, mb_x);
1555 if (ptr && linesize[
c]) {
1556 s->idsp.idct_put(ptr, linesize[
c],
s->block);
1562 int block_idx =
s->block_stride[
c] * (v * mb_y + y) +
1564 int16_t *
block =
s->blocks[
c][block_idx];
1567 s->quant_matrixes[
s->quant_sindex[
i]][0] << Al;
1569 s->quant_matrixes[
s->quant_sindex[
i]],
1572 "error y=%d x=%d\n", mb_y, mb_x);
1576 ff_dlog(
s->avctx,
"mb: %d %d processed\n", mb_y, mb_x);
1577 ff_dlog(
s->avctx,
"%d %d %d %d %d %d %d %d \n",
1578 mb_x, mb_y, x, y,
c,
s->bottom_field,
1579 (v * mb_y + y) * 8, (
h * mb_x + x) * 8);
1594 int se,
int Ah,
int Al)
1598 int c =
s->comp_index[0];
1599 uint16_t *quant_matrix =
s->quant_matrixes[
s->quant_sindex[0]];
1602 if (se < ss || se > 63) {
1609 s->coefs_finished[
c] |= (2ULL <<
se) - (1ULL <<
ss);
1611 s->restart_count = 0;
1613 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1614 int block_idx = mb_y *
s->block_stride[
c];
1615 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1616 uint8_t *last_nnz = &
s->last_nnz[
c][block_idx];
1617 for (mb_x = 0; mb_x <
s->mb_width; mb_x++,
block++, last_nnz++) {
1619 if (
s->restart_interval && !
s->restart_count)
1620 s->restart_count =
s->restart_interval;
1624 quant_matrix,
ss,
se, Al, &EOBRUN);
1627 quant_matrix,
ss,
se, Al, &EOBRUN);
1633 "error y=%d x=%d\n", mb_y, mb_x);
1648 const int bytes_per_pixel = 1 + (
s->bits > 8);
1649 const int block_size =
s->lossless ? 1 : 8;
1651 for (
c = 0;
c <
s->nb_components;
c++) {
1652 uint8_t *
data =
s->picture_ptr->data[
c];
1653 int linesize =
s->linesize[
c];
1654 int h =
s->h_max /
s->h_count[
c];
1655 int v =
s->v_max /
s->v_count[
c];
1656 int mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1657 int mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1659 if (~
s->coefs_finished[
c])
1662 if (
s->interlaced &&
s->bottom_field)
1663 data += linesize >> 1;
1665 for (mb_y = 0; mb_y < mb_height; mb_y++) {
1666 uint8_t *ptr =
data + (mb_y * linesize * 8 >>
s->avctx->lowres);
1667 int block_idx = mb_y *
s->block_stride[
c];
1668 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1669 for (mb_x = 0; mb_x < mb_width; mb_x++,
block++) {
1670 s->idsp.idct_put(ptr, linesize, *
block);
1673 ptr += bytes_per_pixel*8 >>
s->avctx->lowres;
1680 int mb_bitmask_size,
const AVFrame *reference)
1684 const int block_size =
s->lossless ? 1 : 8;
1685 int ilv, prev_shift;
1687 if (!
s->got_picture) {
1689 "Can not process SOS before SOF, skipping\n");
1698 nb_components = bytestream2_get_byteu(&
s->gB);
1701 "decode_sos: nb_components (%d)",
1705 if (
len != 4 + 2 * nb_components) {
1709 for (
i = 0;
i < nb_components;
i++) {
1710 id = bytestream2_get_byteu(&
s->gB);
1714 if (
id ==
s->component_id[
index])
1716 if (
index ==
s->nb_components) {
1718 "decode_sos: index(%d) out of components\n",
index);
1722 if (
s->avctx->codec_tag ==
MKTAG(
'M',
'T',
'S',
'J')
1723 && nb_components == 3 &&
s->nb_components == 3 &&
i)
1726 s->quant_sindex[
i] =
s->quant_index[
index];
1728 s->h_scount[
i] =
s->h_count[
index];
1729 s->v_scount[
i] =
s->v_count[
index];
1733 uint8_t
b = bytestream2_get_byteu(&
s->gB);
1734 s->dc_index[
i] =
b >> 4;
1735 s->ac_index[
i] =
b & 0x0F;
1737 if (
s->dc_index[
i] < 0 ||
s->ac_index[
i] < 0 ||
1738 s->dc_index[
i] >= 4 ||
s->ac_index[
i] >= 4)
1740 if (!
s->vlcs[0][
s->dc_index[
i]].table || !(
s->progressive ?
s->vlcs[2][
s->ac_index[0]].table :
s->vlcs[1][
s->ac_index[
i]].table))
1745 ilv = bytestream2_get_byteu(&
s->gB);
1746 if(
s->avctx->codec_tag !=
AV_RL32(
"CJPG")){
1747 uint8_t
b = bytestream2_get_byteu(&
s->gB);
1748 prev_shift =
b >> 4;
1749 point_transform =
b & 0x0F;
1751 prev_shift = point_transform = 0;
1753 if (nb_components > 1) {
1755 s->mb_width = (
s->width +
s->h_max * block_size - 1) / (
s->h_max * block_size);
1756 s->mb_height = (
s->height +
s->v_max * block_size - 1) / (
s->v_max * block_size);
1757 }
else if (!
s->ls) {
1758 h =
s->h_max /
s->h_scount[0];
1759 v =
s->v_max /
s->v_scount[0];
1760 s->mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1761 s->mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1762 s->nb_blocks[0] = 1;
1769 s->lossless ?
"lossless" :
"sequential DCT",
s->rgb ?
"RGB" :
"",
1770 predictor, point_transform, ilv,
s->bits,
s->mjpb_skiptosod,
1771 s->pegasus_rct ?
"PRCT" : (
s->rct ?
"RCT" :
""), nb_components);
1775 if (
s->mjpb_skiptosod)
1783 for (
i = 0;
i < nb_components;
i++)
1784 s->last_dc[
i] = (4 <<
s->bits);
1786 if (
s->avctx->hwaccel) {
1789 s->raw_scan_buffer_size >= bytes_to_start);
1792 s->raw_scan_buffer + bytes_to_start,
1793 s->raw_scan_buffer_size - bytes_to_start);
1797 }
else if (
s->lossless) {
1799 if (CONFIG_JPEGLS_DECODER &&
s->ls) {
1804 point_transform, ilv)) < 0)
1807 if (
s->rgb ||
s->bayer) {
1813 nb_components)) < 0)
1822 point_transform)) < 0)
1826 prev_shift, point_transform,
1827 mb_bitmask, mb_bitmask_size, reference)) < 0)
1832 if (
s->interlaced &&
1841 s->bottom_field ^= 1;
1859 if (bytestream2_get_be16u(&
s->gB) != 4)
1861 s->restart_interval = bytestream2_get_be16u(&
s->gB);
1862 s->restart_count = 0;
1864 s->restart_interval);
1884 id = bytestream2_get_be32u(&
s->gB);
1903 i = bytestream2_get_byteu(&
s->gB);
len--;
1909 int t_w, t_h, v1, v2;
1913 v1 = bytestream2_get_byteu(&
s->gB);
1914 v2 = bytestream2_get_byteu(&
s->gB);
1917 s->avctx->sample_aspect_ratio.num = bytestream2_get_be16u(&
s->gB);
1918 s->avctx->sample_aspect_ratio.den = bytestream2_get_be16u(&
s->gB);
1919 if (
s->avctx->sample_aspect_ratio.num <= 0
1920 ||
s->avctx->sample_aspect_ratio.den <= 0) {
1921 s->avctx->sample_aspect_ratio.num = 0;
1922 s->avctx->sample_aspect_ratio.den = 1;
1927 "mjpeg: JFIF header found (version: %x.%x) SAR=%d/%d\n",
1929 s->avctx->sample_aspect_ratio.num,
1930 s->avctx->sample_aspect_ratio.den);
1934 t_w = bytestream2_get_byteu(&
s->gB);
1935 t_h = bytestream2_get_byteu(&
s->gB);
1938 if (
len -10 - (t_w * t_h * 3) > 0)
1939 len -= t_w * t_h * 3;
1948 && bytestream2_peek_byteu(&
s->gB) ==
'e'
1949 && bytestream2_peek_be32u(&
s->gB) !=
AV_RB32(
"e_CM")) {
1954 s->adobe_transform = bytestream2_get_byteu(&
s->gB);
1956 av_log(
s->avctx,
AV_LOG_INFO,
"mjpeg: Adobe header found, transform=%d\n",
s->adobe_transform);
1963 int pegasus_rct =
s->pegasus_rct;
1966 "Pegasus lossless jpeg header found\n");
1973 switch (
i=bytestream2_get_byteu(&
s->gB)) {
1990 if (
rgb !=
s->rgb || pegasus_rct !=
s->pegasus_rct) {
1996 s->pegasus_rct = pegasus_rct;
2001 s->colr = bytestream2_get_byteu(&
s->gB);
2008 s->xfrm = bytestream2_get_byteu(&
s->gB);
2024 flags = bytestream2_get_byteu(&
s->gB);
2025 layout = bytestream2_get_byteu(&
s->gB);
2026 type = bytestream2_get_byteu(&
s->gB);
2036 }
else if (
type == 1) {
2048 if (!(
flags & 0x04)) {
2075 if ((
s->start_code ==
APP1) && (
len > (0x28 - 8))) {
2076 id = bytestream2_get_be32u(&
s->gB);
2098 unsigned nummarkers;
2100 id = bytestream2_get_be32u(&
s->gB);
2101 id2 = bytestream2_get_be24u(&
s->gB);
2109 seqno = bytestream2_get_byteu(&
s->gB);
2116 nummarkers = bytestream2_get_byteu(&
s->gB);
2118 if (nummarkers == 0) {
2121 }
else if (
s->iccnum != 0 && nummarkers !=
s->iccnum) {
2124 }
else if (seqno > nummarkers) {
2130 if (
s->iccnum == 0) {
2135 s->iccnum = nummarkers;
2138 if (
s->iccentries[seqno - 1].data) {
2143 s->iccentries[seqno - 1].length =
len;
2145 if (!
s->iccentries[seqno - 1].data) {
2154 if (
s->iccread >
s->iccnum)
2162 "mjpeg: error, decode_app parser read over the end\n");
2183 for (
i = 0;
i <
len;
i++)
2184 cbuf[
i] = bytestream2_get_byteu(&
s->gB);
2185 if (cbuf[
i - 1] ==
'\n')
2194 if (!strncmp(cbuf,
"AVID", 4)) {
2196 }
else if (!strcmp(cbuf,
"CS=ITU601"))
2198 else if ((!strncmp(cbuf,
"Intel(R) JPEG Library, version 1", 32) &&
s->avctx->codec_tag) ||
2199 (!strncmp(cbuf,
"Metasoft MJPEG Codec", 20)))
2201 else if (!strcmp(cbuf,
"MULTISCOPE II")) {
2202 s->avctx->sample_aspect_ratio = (
AVRational) { 1, 2 };
2213 static int find_marker(
const uint8_t **pbuf_ptr,
const uint8_t *buf_end)
2215 const uint8_t *buf_ptr;
2219 buf_ptr = *pbuf_ptr;
2220 while ((buf_ptr = memchr(buf_ptr, 0xff, buf_end - buf_ptr))) {
2222 while (buf_ptr < buf_end) {
2235 ff_dlog(
NULL,
"find_marker skipped %d bytes\n", skipped);
2236 *pbuf_ptr = buf_ptr;
2241 const uint8_t **buf_ptr,
const uint8_t *buf_end,
2242 const uint8_t **unescaped_buf_ptr,
2243 int *unescaped_buf_size)
2254 const uint8_t *
src = *buf_ptr;
2255 const uint8_t *ptr =
src;
2256 uint8_t *
dst =
s->buffer;
2258 #define copy_data_segment(skip) do { \
2259 ptrdiff_t length = (ptr - src) - (skip); \
2261 memcpy(dst, src, length); \
2271 while (ptr < buf_end) {
2272 uint8_t x = *(ptr++);
2276 while (ptr < buf_end && x == 0xff) {
2291 if (x < RST0 || x >
RST7) {
2301 #undef copy_data_segment
2303 *unescaped_buf_ptr =
s->buffer;
2304 *unescaped_buf_size =
dst -
s->buffer;
2305 memset(
s->buffer + *unescaped_buf_size, 0,
2309 (buf_end - *buf_ptr) - (
dst -
s->buffer));
2311 const uint8_t *
src = *buf_ptr;
2312 uint8_t *
dst =
s->buffer;
2318 while (
src + t < buf_end) {
2319 uint8_t x =
src[t++];
2321 while ((
src + t < buf_end) && x == 0xff)
2334 uint8_t x =
src[
b++];
2336 if (x == 0xFF &&
b < t) {
2348 *unescaped_buf_ptr =
dst;
2349 *unescaped_buf_size = (bit_count + 7) >> 3;
2350 memset(
s->buffer + *unescaped_buf_size, 0,
2353 *unescaped_buf_ptr = *buf_ptr;
2354 *unescaped_buf_size = buf_end - *buf_ptr;
2364 if (
s->iccentries) {
2365 for (
i = 0;
i <
s->iccnum;
i++)
2375 int *got_frame,
const AVPacket *avpkt,
2376 const uint8_t *buf,
const int buf_size)
2379 const uint8_t *buf_end, *buf_ptr;
2380 const uint8_t *unescaped_buf_ptr;
2382 int unescaped_buf_size;
2390 s->buf_size = buf_size;
2394 s->adobe_transform = -1;
2401 buf_end = buf + buf_size;
2402 while (buf_ptr < buf_end) {
2406 &unescaped_buf_size);
2410 }
else if (unescaped_buf_size > INT_MAX / 8) {
2412 "MJPEG packet 0x%x too big (%d/%d), corrupt data?\n",
2447 if (!CONFIG_JPEGLS_DECODER &&
2468 s->restart_interval = 0;
2469 s->restart_count = 0;
2470 s->raw_image_buffer = buf_ptr;
2471 s->raw_image_buffer_size = buf_end - buf_ptr;
2502 #if FF_API_CODEC_PROPS
2515 #if FF_API_CODEC_PROPS
2527 if (!CONFIG_JPEGLS_DECODER ||
2536 s->progressive &&
s->cur_scan &&
s->got_picture)
2539 if (!
s->got_picture) {
2541 "Found EOI before any SOF, ignoring\n");
2544 if (
s->interlaced) {
2545 s->bottom_field ^= 1;
2547 if (
s->bottom_field == !
s->interlace_polarity)
2574 s->raw_scan_buffer = buf_ptr;
2575 s->raw_scan_buffer_size = buf_end - buf_ptr;
2598 "mjpeg: unsupported coding type (%x)\n",
start_code);
2610 goto the_end_no_picture;
2618 "marker parser used %d bytes\n",
2621 if (
s->got_picture &&
s->cur_scan) {
2656 for (
p = 0;
p<
s->nb_components;
p++) {
2657 uint8_t *
line =
s->picture_ptr->data[
p];
2660 if (!
s->upscale_h[
p])
2666 if (
s->upscale_v[
p] == 1)
2669 for (
int i = 0;
i <
h;
i++) {
2670 if (
s->upscale_h[
p] == 1) {
2671 if (is16bit) ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 2];
2679 }
else if (
s->upscale_h[
p] == 2) {
2681 ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 3];
2683 ((uint16_t*)
line)[
w - 2] = ((uint16_t*)
line)[
w - 1];
2692 }
else if (
s->upscale_h[
p] == 4){
2694 uint16_t *line16 = (uint16_t *)
line;
2695 line16[
w - 1] = line16[(
w - 1) >> 2];
2697 line16[
w - 2] = (line16[(
w - 1) >> 2] * 3 + line16[(
w - 2) >> 2]) >> 2;
2699 line16[
w - 3] = (line16[(
w - 1) >> 2] + line16[(
w - 2) >> 2]) >> 1;
2736 for (
p = 0;
p <
s->nb_components;
p++) {
2740 if (!
s->upscale_v[
p])
2746 dst = &((uint8_t *)
s->picture_ptr->data[
p])[(
h - 1) *
s->linesize[
p]];
2748 uint8_t *
src1 = &((uint8_t *)
s->picture_ptr->data[
p])[
i *
s->upscale_v[
p] / (
s->upscale_v[
p] + 1) *
s->linesize[
p]];
2749 uint8_t *
src2 = &((uint8_t *)
s->picture_ptr->data[
p])[(
i + 1) *
s->upscale_v[
p] / (
s->upscale_v[
p] + 1) *
s->linesize[
p]];
2756 dst -=
s->linesize[
p];
2760 if (
s->flipped && !
s->rgb) {
2786 int w =
s->picture_ptr->width;
2787 int h =
s->picture_ptr->height;
2789 for (
int i = 0;
i <
h;
i++) {
2794 +
s->picture_ptr->linesize[
index]*
i;
2796 for (j=0; j<
w; j++) {
2798 int r =
dst[0][j] * k;
2799 int g =
dst[1][j] * k;
2800 int b =
dst[2][j] * k;
2801 dst[0][j] =
g*257 >> 16;
2802 dst[1][j] =
b*257 >> 16;
2803 dst[2][j] =
r*257 >> 16;
2805 memset(
dst[3], 255,
w);
2809 int w =
s->picture_ptr->width;
2810 int h =
s->picture_ptr->height;
2812 for (
int i = 0;
i <
h;
i++) {
2817 +
s->picture_ptr->linesize[
index]*
i;
2819 for (j=0; j<
w; j++) {
2821 int r = (255 -
dst[0][j]) * k;
2822 int g = (128 -
dst[1][j]) * k;
2823 int b = (128 -
dst[2][j]) * k;
2824 dst[0][j] =
r*257 >> 16;
2825 dst[1][j] = (
g*257 >> 16) + 128;
2826 dst[2][j] = (
b*257 >> 16) + 128;
2828 memset(
dst[3], 255,
w);
2835 stereo->
type =
s->stereo3d->type;
2836 stereo->
flags =
s->stereo3d->flags;
2841 if (
s->iccnum != 0 &&
s->iccnum ==
s->iccread) {
2847 for (
int i = 0;
i <
s->iccnum;
i++)
2848 total_size +=
s->iccentries[
i].length;
2858 for (
int i = 0;
i <
s->iccnum;
i++) {
2859 memcpy(sd->
data +
offset,
s->iccentries[
i].data,
s->iccentries[
i].length);
2865 if (
s->exif_metadata.entries) {
2883 return buf_ptr - buf;
2901 if (
s->interlaced &&
s->bottom_field == !
s->interlace_polarity &&
s->got_picture && !avctx->
frame_num) {
2906 s->picture_ptr =
NULL;
2913 s->ljpeg_buffer_size = 0;
2915 for (
i = 0;
i < 3;
i++) {
2916 for (j = 0; j < 4; j++)
2938 s->smv_next_frame = 0;
2942 #if CONFIG_MJPEG_DECODER
2943 #define OFFSET(x) offsetof(MJpegDecodeContext, x)
2944 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2946 {
"extern_huff",
"Use external huffman table.",
2951 static const AVClass mjpegdec_class = {
2970 .p.priv_class = &mjpegdec_class,
2976 #if CONFIG_MJPEG_NVDEC_HWACCEL
2979 #if CONFIG_MJPEG_VAAPI_HWACCEL
2986 #if CONFIG_THP_DECODER
3003 #if CONFIG_SMVJPEG_DECODER
3018 s->smv_frame->pts +=
s->smv_frame->duration;
3019 s->smv_next_frame = (
s->smv_next_frame + 1) %
s->smv_frames_per_jpeg;
3021 if (
s->smv_next_frame == 0)
3032 if (
s->smv_next_frame > 0)
3042 s->smv_frame->pkt_dts =
pkt->
dts;
3051 s->smv_frame->duration /=
s->smv_frames_per_jpeg;
3059 smv_process_frame(avctx,
frame);
3064 .
p.
name =
"smvjpeg",
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
void av_packet_unref(AVPacket *pkt)
Wipe the packet.
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
#define FF_ENABLE_DEPRECATION_WARNINGS
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
int ff_decode_get_packet(AVCodecContext *avctx, AVPacket *pkt)
Called by decoders to get the next packet for decoding.
#define AV_LOG_WARNING
Something somehow does not look correct.
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
AVPixelFormat
Pixel format.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option name
#define AV_EF_EXPLODE
abort decoding on minor error detection
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int decode_slice(AVCodecContext *c, void *arg)
static av_always_inline int bytestream2_get_bytes_left(const GetByteContext *g)
int av_exif_parse_buffer(void *logctx, const uint8_t *buf, size_t size, AVExifMetadata *ifd, enum AVExifHeaderMode header_mode)
Decodes the EXIF data provided in the buffer and writes it into the struct *ifd.
enum AVColorSpace colorspace
YUV colorspace type.
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
static av_always_inline void mjpeg_copy_block(MJpegDecodeContext *s, uint8_t *dst, const uint8_t *src, int linesize, int lowres)
The official guide to swscale for confused that is
static av_always_inline int bytestream2_tell(const GetByteContext *g)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
#define GET_VLC(code, name, gb, table, bits, max_depth)
If the vlc code is invalid and max_depth=1, then no bits will be removed.
static av_always_inline void bytestream2_skipu(GetByteContext *g, unsigned int size)
const FFCodec ff_smvjpeg_decoder
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
#define se(name, range_min, range_max)
static int get_bits_count(const GetBitContext *s)
static void init_idct(AVCodecContext *avctx)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
#define AV_PIX_FMT_YUVA420P16
@ AVCOL_RANGE_JPEG
Full range content.
const FFCodec ff_mjpeg_decoder
enum AVFieldOrder field_order
Field order.
int step
Number of elements between 2 horizontally consecutive pixels.
const uint8_t ff_mjpeg_val_dc[]
#define AV_LOG_VERBOSE
Detailed information.
#define FF_HW_SIMPLE_CALL(avctx, function)
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
#define UPDATE_CACHE(name, gb)
const uint8_t ff_mjpeg_bits_ac_chrominance[]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
#define GET_CACHE(name, gb)
static void skip_bits(GetBitContext *s, int n)
av_cold void ff_permute_scantable(uint8_t dst[64], const uint8_t src[64], const uint8_t permutation[64])
static av_cold void close(AVCodecParserContext *s)
@ AV_STEREO3D_SIDEBYSIDE
Views are next to each other.
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
int ff_mjpeg_decode_dht(MJpegDecodeContext *s)
static int ljpeg_decode_yuv_scan(MJpegDecodeContext *s, int predictor, int point_transform, int nb_components)
static void shift_output(MJpegDecodeContext *s, uint8_t *ptr, int linesize)
AVCodec p
The public AVCodec.
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
const struct AVCodec * codec
av_cold int ff_mjpeg_decode_init(AVCodecContext *avctx)
enum AVDiscard skip_frame
Skip decoding for selected frames.
@ AV_STEREO3D_2D
Video is not stereoscopic (and metadata has to be there).
#define AV_PIX_FMT_YUVA444P16
int ff_mjpeg_decode_frame_from_buf(AVCodecContext *avctx, AVFrame *frame, int *got_frame, const AVPacket *avpkt, const uint8_t *buf, const int buf_size)
static int mjpeg_decode_com(MJpegDecodeContext *s)
static int init_default_huffman_tables(MJpegDecodeContext *s)
void av_exif_free(AVExifMetadata *ifd)
Frees all resources associated with the given EXIF metadata struct.
static double val(void *priv, double ch)
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_PIX_FMT_GRAY16
#define ss(width, name, subs,...)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
const AVProfile ff_mjpeg_profiles[]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int decode_dc_progressive(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, uint16_t *quant_matrix, int Al)
#define AV_PIX_FMT_YUV422P16
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
#define FF_CODEC_PROPERTY_LOSSLESS
#define AV_PROFILE_MJPEG_HUFFMAN_BASELINE_DCT
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
static int handle_rstn(MJpegDecodeContext *s, int nb_components)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define CLOSE_READER(name, gb)
#define FF_CODEC_DECODE_CB(func)
@ AV_STEREO3D_LINES
Views are packed per line, as if interlaced.
av_cold void ff_blockdsp_init(BlockDSPContext *c)
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static void parse_avid(MJpegDecodeContext *s, uint8_t *buf, int len)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
int ff_jpegls_decode_picture(MJpegDecodeContext *s, int near, int point_transform, int ilv)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_PIX_FMT_YUV420P16
static void reset_icc_profile(MJpegDecodeContext *s)
av_cold int ff_mjpeg_decode_end(AVCodecContext *avctx)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define CODEC_LONG_NAME(str)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
int flags
Additional information about the frame packing.
static int mjpeg_parse_len(MJpegDecodeContext *s, int *plen, const char *name)
@ AVDISCARD_ALL
discard all
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
int ff_decode_exif_attach_ifd(AVCodecContext *avctx, AVFrame *frame, const AVExifMetadata *ifd)
Describe the class of an AVClass context structure.
static void mjpeg_idct_scan_progressive_ac(MJpegDecodeContext *s)
static void copy_block2(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
@ AV_EXIF_TIFF_HEADER
The TIFF header starts with 0x49492a00, or 0x4d4d002a.
#define AV_PROFILE_MJPEG_HUFFMAN_EXTENDED_SEQUENTIAL_DCT
Rational number (pair of numerator and denominator).
int ff_mjpeg_decode_dqt(MJpegDecodeContext *s)
struct AVCodecInternal * internal
Private context used for internal data.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static int mjpeg_decode_dc(MJpegDecodeContext *s, int dc_index, int *val)
const char * av_default_item_name(void *ptr)
Return the context name.
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
@ AV_FRAME_DATA_ICC_PROFILE
The data contains an ICC profile as an opaque octet buffer following the format described by ISO 1507...
#define LAST_SKIP_BITS(name, gb, num)
static int mjpeg_decode_scan(MJpegDecodeContext *s, int nb_components, int Ah, int Al, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
static int decode_block_refinement(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
static int mjpeg_decode_scan_progressive_ac(MJpegDecodeContext *s, int ss, int se, int Ah, int Al)
const uint8_t ff_mjpeg_val_ac_chrominance[]
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
#define copy_data_segment(skip)
int lowres
low resolution decoding, 1-> 1/2 size, 2->1/4 size
const OptionDef options[]
static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int(* init)(AVBSFContext *ctx)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static int ljpeg_decode_rgb_scan(MJpegDecodeContext *s, int nb_components, int predictor, int point_transform)
const uint8_t ff_mjpeg_val_ac_luminance[]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
int ff_jpegls_decode_lse(MJpegDecodeContext *s)
Decode LSE block with initialization parameters.
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
int ff_mjpeg_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static int decode_block_progressive(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
int ff_mjpeg_decode_sos(MJpegDecodeContext *s, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
#define AV_PROFILE_MJPEG_JPEG_LS
const uint8_t ff_mjpeg_bits_ac_luminance[]
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
#define AV_NOPTS_VALUE
Undefined timestamp value.
int ff_frame_new_side_data(const AVCodecContext *avctx, AVFrame *frame, enum AVFrameSideDataType type, size_t size, AVFrameSideData **psd)
Wrapper around av_frame_new_side_data, which rejects side data overridden by the demuxer.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
#define FF_CODEC_CAP_SKIP_FRAME_FILL_PARAM
The decoder extracts and fills its parameters even if the frame is skipped due to the skip_frame sett...
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
#define OPEN_READER(name, gb)
int64_t dts
Decompression timestamp in AVStream->time_base units; the time at which the packet is decompressed.
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static int get_xbits(GetBitContext *s, int n)
Read MPEG-1 dc-style VLC (sign bit + mantissa with no MSB).
#define HWACCEL_NVDEC(codec)
static void predictor(uint8_t *src, ptrdiff_t size)
static int find_marker(const uint8_t **pbuf_ptr, const uint8_t *buf_end)
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
@ AV_PIX_FMT_VAAPI
Hardware acceleration through VA-API, data[3] contains a VASurfaceID.
#define AV_LOG_INFO
Standard information.
const FFCodec ff_thp_decoder
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static void copy_block4(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
static int decode_block(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, int ac_index, uint16_t *quant_matrix)
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
uint8_t * extradata
Out-of-band global headers that may be used by some codecs.
#define AV_PROFILE_MJPEG_HUFFMAN_LOSSLESS
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
@ AV_FIELD_BB
Bottom coded first, bottom displayed first.
@ AV_STEREO3D_TOPBOTTOM
Views are on top of each other.
static int mjpeg_decode_dri(MJpegDecodeContext *s)
AVPacket * in_pkt
This packet is used to hold the packet given to decoders implementing the .decode API; it is unused b...
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
static av_cold void decode_flush(AVCodecContext *avctx)
#define FF_DEBUG_STARTCODE
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
const char * name
Name of the codec implementation.
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
void * av_calloc(size_t nmemb, size_t size)
#define FF_CODEC_CAP_ICC_PROFILES
Codec supports embedded ICC profiles (AV_FRAME_DATA_ICC_PROFILE).
const uint8_t ff_zigzag_direct[64]
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
int64_t frame_num
Frame counter, set by libavcodec.
void ff_vlc_free(VLC *vlc)
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
static const float pred[4]
AVStereo3D * av_stereo3d_alloc(void)
Allocate an AVStereo3D structure and set its fields to default values.
#define FFSWAP(type, a, b)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
void * av_malloc(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
enum AVStereo3DType type
How views are packed within the video.
static const uint8_t * align_get_bits(GetBitContext *s)
static const char * hwaccel
@ LSE
JPEG-LS extension parameters.
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
int ff_mjpeg_find_marker(MJpegDecodeContext *s, const uint8_t **buf_ptr, const uint8_t *buf_end, const uint8_t **unescaped_buf_ptr, int *unescaped_buf_size)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without and describe what they for example set the foo of the bar offset is the offset of the field in your see the OFFSET() macro
main external API structure.
#define FF_CODEC_RECEIVE_FRAME_CB(func)
#define SHOW_UBITS(name, gb, num)
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
@ AVCHROMA_LOC_CENTER
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
#define FF_HW_CALL(avctx, function,...)
static const FFHWAccel * ffhwaccel(const AVHWAccel *codec)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
IDirect3DDxgiInterfaceAccess _COM_Outptr_ void ** p
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
const uint8_t ff_mjpeg_bits_dc_chrominance[]
int ff_mjpeg_decode_sof(MJpegDecodeContext *s)
#define FF_DISABLE_DEPRECATION_WARNINGS
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
int coded_width
Bitstream width / height, may be different from width/height e.g.
@ AV_PIX_FMT_GRAY16LE
Y , 16bpp, little-endian.
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static av_always_inline unsigned int bytestream2_get_bufferu(GetByteContext *g, uint8_t *dst, unsigned int size)
static int mjpeg_decode_app(MJpegDecodeContext *s)
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
#define avpriv_request_sample(...)
Structure to hold side data for an AVFrame.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
const FF_VISIBILITY_PUSH_HIDDEN uint8_t ff_mjpeg_bits_dc_luminance[]
int ff_mjpeg_build_vlc(VLC *vlc, const uint8_t *bits_table, const uint8_t *val_table, int is_ac, void *logctx)
This structure stores compressed data.
@ AV_OPT_TYPE_BOOL
Underlying C type is int.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define HWACCEL_VAAPI(codec)
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
attribute_deprecated unsigned properties
Properties of the stream that gets decoded.
static const SheerTable rgb[2]
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
Stereo 3D type: this structure describes how two videos are packed within a single video surface,...
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
#define AV_PROFILE_MJPEG_HUFFMAN_PROGRESSIVE_DCT
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_RB24
#define PREDICT(ret, topleft, top, left, predictor)
static int return_frame(AVFilterContext *ctx, int is_second)
#define AV_FRAME_FLAG_LOSSLESS
A decoder can use this flag to mark frames which were originally encoded losslessly.
static void BS_FUNC() skip(BSCTX *bc, unsigned int n)
Skip n bits in the buffer.
#define av_fourcc2str(fourcc)