Go to the documentation of this file.
33 #include "config_components.h"
87 ht[
i].bits, ht[
i].values,
88 ht[
i].class == 1,
s->avctx);
92 if (ht[
i].
class < 2) {
93 memcpy(
s->raw_huffman_lengths[ht[
i].class][ht[
i].index],
95 memcpy(
s->raw_huffman_values[ht[
i].class][ht[
i].index],
96 ht[
i].values, ht[
i].length);
106 if (
len > 14 && buf[12] == 1)
107 s->interlace_polarity = 1;
108 if (
len > 14 && buf[12] == 2)
109 s->interlace_polarity = 0;
120 s->idsp.idct_permutation);
128 if (!
s->picture_ptr) {
132 s->picture_ptr =
s->picture;
142 s->first_picture = 1;
152 if (
s->extern_huff) {
158 "error using external huffman table, switching back to internal\n");
164 s->interlace_polarity = 1;
168 s->interlace_polarity = 1;
175 if (
s->smv_frames_per_jpeg <= 0) {
219 for (
i = 0;
i < 64;
i++) {
221 if (
s->quant_matrixes[
index][
i] == 0) {
223 av_log(
s->avctx, log_level,
"dqt: 0 quant value\n");
231 s->quant_matrixes[
index][8]) >> 1;
234 len -= 1 + 64 * (1+pr);
243 uint8_t bits_table[17];
244 uint8_t val_table[256];
264 for (
i = 1;
i <= 16;
i++) {
269 if (len < n || n > 256)
272 for (
i = 0;
i < n;
i++) {
283 val_table,
class > 0,
s->avctx)) < 0)
289 val_table, 0,
s->avctx)) < 0)
293 for (
i = 0;
i < 16;
i++)
294 s->raw_huffman_lengths[
class][
index][
i] = bits_table[
i + 1];
296 s->raw_huffman_values[
class][
index][
i] = val_table[
i];
309 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
310 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
320 if (
s->avctx->bits_per_raw_sample !=
bits) {
322 s->avctx->bits_per_raw_sample =
bits;
327 if (
bits == 9 && !
s->pegasus_rct)
330 if(
s->lossless &&
s->avctx->lowres){
339 if (
s->interlaced &&
s->width ==
width &&
s->height ==
height + 1)
345 if (
s->buf_size && (
width + 7) / 8 * ((
height + 7) / 8) >
s->buf_size * 4LL)
349 if (nb_components <= 0 ||
352 if (
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
353 if (nb_components !=
s->nb_components) {
355 "nb_components changing in interlaced picture\n");
359 if (
s->ls && !(
bits <= 8 || nb_components == 1)) {
361 "JPEG-LS that is not <= 8 "
362 "bits/component or 16-bit gray");
365 if (
len != 8 + 3 * nb_components) {
366 av_log(
s->avctx,
AV_LOG_ERROR,
"decode_sof0: error, len(%d) mismatch %d components\n",
len, nb_components);
370 s->nb_components = nb_components;
373 for (
i = 0;
i < nb_components;
i++) {
379 if (h_count[
i] >
s->h_max)
380 s->h_max = h_count[
i];
381 if (v_count[
i] >
s->v_max)
382 s->v_max = v_count[
i];
384 if (
s->quant_index[
i] >= 4) {
388 if (!h_count[
i] || !v_count[
i]) {
390 "Invalid sampling factor in component %d %d:%d\n",
391 i, h_count[
i], v_count[
i]);
396 i, h_count[
i], v_count[
i],
397 s->component_id[
i],
s->quant_index[
i]);
399 if ( nb_components == 4
400 &&
s->component_id[0] ==
'C'
401 &&
s->component_id[1] ==
'M'
402 &&
s->component_id[2] ==
'Y'
403 &&
s->component_id[3] ==
'K')
404 s->adobe_transform = 0;
406 if (
s->ls && (
s->h_max > 1 ||
s->v_max > 1)) {
412 if (nb_components == 2) {
426 memcmp(
s->h_count, h_count,
sizeof(h_count)) ||
427 memcmp(
s->v_count, v_count,
sizeof(v_count))) {
433 memcpy(
s->h_count, h_count,
sizeof(h_count));
434 memcpy(
s->v_count, v_count,
sizeof(v_count));
439 if (
s->first_picture &&
440 (
s->multiscope != 2 ||
s->avctx->pkt_timebase.den >= 25 *
s->avctx->pkt_timebase.num) &&
441 s->orig_height != 0 &&
442 s->height < ((
s->orig_height * 3) / 4)) {
444 s->bottom_field =
s->interlace_polarity;
455 (
s->avctx->codec_tag ==
MKTAG(
'A',
'V',
'R',
'n') ||
456 s->avctx->codec_tag ==
MKTAG(
'A',
'V',
'D',
'J')) &&
460 s->first_picture = 0;
466 s->avctx->height =
s->avctx->coded_height /
s->smv_frames_per_jpeg;
467 if (
s->avctx->height <= 0)
470 if (
s->bayer &&
s->progressive) {
475 if (
s->got_picture &&
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
476 if (
s->progressive) {
481 if (
s->v_max == 1 &&
s->h_max == 1 &&
s->lossless==1 && (nb_components==3 || nb_components==4))
483 else if (!
s->lossless)
486 pix_fmt_id = ((unsigned)
s->h_count[0] << 28) | (
s->v_count[0] << 24) |
487 (
s->h_count[1] << 20) | (
s->v_count[1] << 16) |
488 (
s->h_count[2] << 12) | (
s->v_count[2] << 8) |
489 (
s->h_count[3] << 4) |
s->v_count[3];
493 if (!(pix_fmt_id & 0xD0D0D0D0))
494 pix_fmt_id -= (pix_fmt_id & 0xF0F0F0F0) >> 1;
495 if (!(pix_fmt_id & 0x0D0D0D0D))
496 pix_fmt_id -= (pix_fmt_id & 0x0F0F0F0F) >> 1;
498 for (
i = 0;
i < 8;
i++) {
499 int j = 6 + (
i&1) - (
i&6);
500 int is = (pix_fmt_id >> (4*
i)) & 0xF;
501 int js = (pix_fmt_id >> (4*j)) & 0xF;
503 if (
is == 1 && js != 2 && (i < 2 || i > 5))
504 js = (pix_fmt_id >> ( 8 + 4*(
i&1))) & 0xF;
505 if (
is == 1 && js != 2 && (i < 2 || i > 5))
506 js = (pix_fmt_id >> (16 + 4*(
i&1))) & 0xF;
508 if (
is == 1 && js == 2) {
509 if (
i & 1)
s->upscale_h[j/2] = 1;
510 else s->upscale_v[j/2] = 1;
515 if (pix_fmt_id != 0x11110000 && pix_fmt_id != 0x11000000)
519 switch (pix_fmt_id) {
529 if (
s->adobe_transform == 0
530 ||
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
544 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
556 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
567 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
569 s->upscale_v[1] =
s->upscale_v[2] = 1;
570 s->upscale_h[1] =
s->upscale_h[2] = 1;
571 }
else if (
s->adobe_transform == 2 &&
s->bits <= 8) {
573 s->upscale_v[1] =
s->upscale_v[2] = 1;
574 s->upscale_h[1] =
s->upscale_h[2] = 1;
593 if (
s->adobe_transform == 0 ||
s->component_id[0] ==
'R' &&
594 s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
620 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
624 s->upscale_v[1] =
s->upscale_v[2] = 1;
626 if (pix_fmt_id == 0x14111100)
627 s->upscale_v[1] =
s->upscale_v[2] = 1;
635 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
639 s->upscale_h[1] =
s->upscale_h[2] = 1;
649 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B')
653 s->upscale_h[0] =
s->upscale_h[2] = 2;
660 s->upscale_h[1] =
s->upscale_h[2] = 2;
677 if (pix_fmt_id == 0x42111100) {
680 s->upscale_h[1] =
s->upscale_h[2] = 1;
681 }
else if (pix_fmt_id == 0x24111100) {
684 s->upscale_v[1] =
s->upscale_v[2] = 1;
685 }
else if (pix_fmt_id == 0x23111100) {
688 s->upscale_v[1] =
s->upscale_v[2] = 2;
700 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
701 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
709 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
710 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
711 if (
s->nb_components == 3) {
713 }
else if (
s->nb_components != 1) {
716 }
else if ((
s->palette_index ||
s->force_pal8) &&
s->bits <= 8)
718 else if (
s->bits <= 8)
730 if (
s->avctx->pix_fmt ==
s->hwaccel_sw_pix_fmt && !size_change) {
731 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
734 #if CONFIG_MJPEG_NVDEC_HWACCEL
737 #if CONFIG_MJPEG_VAAPI_HWACCEL
744 if (
s->hwaccel_pix_fmt < 0)
747 s->hwaccel_sw_pix_fmt =
s->avctx->pix_fmt;
748 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
767 memset(
s->picture_ptr->data[1], 0, 1024);
769 for (
i = 0;
i < 4;
i++)
770 s->linesize[
i] =
s->picture_ptr->linesize[
i] <<
s->interlaced;
772 ff_dlog(
s->avctx,
"%d %d %d %d %d %d\n",
773 s->width,
s->height,
s->linesize[0],
s->linesize[1],
774 s->interlaced,
s->avctx->height);
778 if ((
s->rgb && !
s->lossless && !
s->ls) ||
779 (!
s->rgb &&
s->ls &&
s->nb_components > 1) ||
787 if (
s->progressive) {
788 int bw = (
width +
s->h_max * 8 - 1) / (
s->h_max * 8);
789 int bh = (
height +
s->v_max * 8 - 1) / (
s->v_max * 8);
790 for (
i = 0;
i <
s->nb_components;
i++) {
791 int size = bw * bh *
s->h_count[
i] *
s->v_count[
i];
796 if (!
s->blocks[
i] || !
s->last_nnz[
i])
798 s->block_stride[
i] = bw *
s->h_count[
i];
800 memset(
s->coefs_finished, 0,
sizeof(
s->coefs_finished));
803 if (
s->avctx->hwaccel) {
805 s->hwaccel_picture_private =
807 if (!
s->hwaccel_picture_private)
811 s->raw_image_buffer_size);
823 if (code < 0 || code > 16) {
825 "mjpeg_decode_dc: bad vlc: %d:%d (%p)\n",
826 0, dc_index, &
s->vlcs[0][dc_index]);
838 int dc_index,
int ac_index, uint16_t *quant_matrix)
844 if (
val == 0xfffff) {
848 val =
val * (unsigned)quant_matrix[0] +
s->last_dc[component];
849 s->last_dc[component] =
val;
858 i += ((unsigned)
code) >> 4;
866 int sign = (~cache) >> 31;
876 j =
s->permutated_scantable[
i];
886 int component,
int dc_index,
887 uint16_t *quant_matrix,
int Al)
890 s->bdsp.clear_block(
block);
892 if (
val == 0xfffff) {
896 val = (
val * (quant_matrix[0] << Al)) +
s->last_dc[component];
897 s->last_dc[component] =
val;
904 uint8_t *last_nnz,
int ac_index,
905 uint16_t *quant_matrix,
906 int ss,
int se,
int Al,
int *EOBRUN)
918 for (
i =
ss; ;
i++) {
931 int sign = (~cache) >> 31;
939 j =
s->permutated_scantable[
se];
946 j =
s->permutated_scantable[
i];
976 #define REFINE_BIT(j) { \
977 UPDATE_CACHE(re, &s->gb); \
978 sign = block[j] >> 15; \
979 block[j] += SHOW_UBITS(re, &s->gb, 1) * \
980 ((quant_matrix[i] ^ sign) - sign) << Al; \
981 LAST_SKIP_BITS(re, &s->gb, 1); \
989 av_log(s->avctx, AV_LOG_ERROR, "error count: %d\n", i); \
994 j = s->permutated_scantable[i]; \
997 else if (run-- == 0) \
1004 int ac_index, uint16_t *quant_matrix,
1005 int ss,
int se,
int Al,
int *EOBRUN)
1008 int last =
FFMIN(
se, *last_nnz);
1016 GET_VLC(
code, re, &
s->gb,
s->vlcs[2][ac_index].table, 9, 2);
1024 j =
s->permutated_scantable[
i];
1055 for (;
i <= last;
i++) {
1056 j =
s->permutated_scantable[
i];
1072 if (
s->restart_interval) {
1076 for (
i = 0;
i < nb_components;
i++)
1077 s->last_dc[
i] = (4 <<
s->bits);
1082 if (
s->restart_count == 0) {
1090 for (
i = 0;
i < nb_components;
i++)
1091 s->last_dc[
i] = (4 <<
s->bits);
1107 int left[4], top[4], topleft[4];
1108 const int linesize =
s->linesize[0];
1109 const int mask = ((1 <<
s->bits) - 1) << point_transform;
1110 int resync_mb_y = 0;
1111 int resync_mb_x = 0;
1114 if (!
s->bayer &&
s->nb_components < 3)
1116 if (
s->bayer &&
s->nb_components > 2)
1118 if (
s->nb_components <= 0 ||
s->nb_components > 4)
1120 if (
s->v_max != 1 ||
s->h_max != 1 || !
s->lossless)
1123 if (
s->rct ||
s->pegasus_rct)
1128 s->restart_count =
s->restart_interval;
1130 if (
s->restart_interval == 0)
1131 s->restart_interval = INT_MAX;
1134 width =
s->mb_width / nb_components;
1139 if (!
s->ljpeg_buffer)
1144 for (
i = 0;
i < 4;
i++)
1147 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1148 uint8_t *ptr =
s->picture_ptr->data[0] + (linesize * mb_y);
1150 if (
s->interlaced &&
s->bottom_field)
1151 ptr += linesize >> 1;
1153 for (
i = 0;
i < 4;
i++)
1156 if ((mb_y *
s->width) %
s->restart_interval == 0) {
1157 for (
i = 0;
i < 6;
i++)
1158 vpred[
i] = 1 << (
s->bits-1);
1161 for (mb_x = 0; mb_x <
width; mb_x++) {
1169 if (
s->restart_interval && !
s->restart_count){
1170 s->restart_count =
s->restart_interval;
1174 top[
i] =
left[
i]= topleft[
i]= 1 << (
s->bits - 1);
1176 if (mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || !mb_x)
1177 modified_predictor = 1;
1179 for (
i=0;
i<nb_components;
i++) {
1182 topleft[
i] = top[
i];
1189 if (!
s->bayer || mb_x) {
1199 mask & (
pred + (unsigned)(
dc * (1 << point_transform)));
1202 if (
s->restart_interval && !--
s->restart_count) {
1207 if (
s->rct &&
s->nb_components == 4) {
1208 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1209 ptr[4*mb_x + 2] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1210 ptr[4*mb_x + 1] =
buffer[mb_x][1] + ptr[4*mb_x + 2];
1211 ptr[4*mb_x + 3] =
buffer[mb_x][2] + ptr[4*mb_x + 2];
1212 ptr[4*mb_x + 0] =
buffer[mb_x][3];
1214 }
else if (
s->nb_components == 4) {
1215 for(
i=0;
i<nb_components;
i++) {
1216 int c=
s->comp_index[
i];
1218 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1221 }
else if(
s->bits == 9) {
1224 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1225 ((uint16_t*)ptr)[4*mb_x+
c] =
buffer[mb_x][
i];
1229 }
else if (
s->rct) {
1230 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1231 ptr[3*mb_x + 1] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1232 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1233 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1235 }
else if (
s->pegasus_rct) {
1236 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1238 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1239 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1241 }
else if (
s->bayer) {
1244 if (nb_components == 1) {
1246 for (mb_x = 0; mb_x <
width; mb_x++)
1247 ((uint16_t*)ptr)[mb_x] =
buffer[mb_x][0];
1248 }
else if (nb_components == 2) {
1249 for (mb_x = 0; mb_x <
width; mb_x++) {
1250 ((uint16_t*)ptr)[2*mb_x + 0] =
buffer[mb_x][0];
1251 ((uint16_t*)ptr)[2*mb_x + 1] =
buffer[mb_x][1];
1255 for(
i=0;
i<nb_components;
i++) {
1256 int c=
s->comp_index[
i];
1258 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1261 }
else if(
s->bits == 9) {
1264 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1265 ((uint16_t*)ptr)[3*mb_x+2-
c] =
buffer[mb_x][
i];
1275 int point_transform,
int nb_components)
1277 int i, mb_x, mb_y,
mask;
1278 int bits= (
s->bits+7)&~7;
1279 int resync_mb_y = 0;
1280 int resync_mb_x = 0;
1282 point_transform +=
bits -
s->bits;
1283 mask = ((1 <<
s->bits) - 1) << point_transform;
1285 av_assert0(nb_components>=1 && nb_components<=4);
1287 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1288 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1293 if (
s->restart_interval && !
s->restart_count){
1294 s->restart_count =
s->restart_interval;
1299 if(!mb_x || mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || s->
interlaced){
1300 int toprow = mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x;
1301 int leftcol = !mb_x || mb_y == resync_mb_y && mb_x == resync_mb_x;
1302 for (
i = 0;
i < nb_components;
i++) {
1305 int n,
h, v, x, y,
c, j, linesize;
1306 n =
s->nb_blocks[
i];
1307 c =
s->comp_index[
i];
1312 linesize=
s->linesize[
c];
1314 if(
bits>8) linesize /= 2;
1316 for(j=0; j<n; j++) {
1322 if (
h * mb_x + x >=
s->width
1323 || v * mb_y + y >=
s->height) {
1325 }
else if (
bits<=8) {
1326 ptr =
s->picture_ptr->data[
c] + (linesize * (v * mb_y + y)) + (
h * mb_x + x);
1328 if(x==0 && leftcol){
1334 if(x==0 && leftcol){
1335 pred= ptr[-linesize];
1341 if (
s->interlaced &&
s->bottom_field)
1342 ptr += linesize >> 1;
1344 *ptr=
pred + ((unsigned)
dc << point_transform);
1346 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1348 if(x==0 && leftcol){
1354 if(x==0 && leftcol){
1355 pred= ptr16[-linesize];
1361 if (
s->interlaced &&
s->bottom_field)
1362 ptr16 += linesize >> 1;
1364 *ptr16=
pred + ((unsigned)
dc << point_transform);
1373 for (
i = 0;
i < nb_components;
i++) {
1376 int n,
h, v, x, y,
c, j, linesize,
dc;
1377 n =
s->nb_blocks[
i];
1378 c =
s->comp_index[
i];
1383 linesize =
s->linesize[
c];
1385 if(
bits>8) linesize /= 2;
1387 for (j = 0; j < n; j++) {
1393 if (
h * mb_x + x >=
s->width
1394 || v * mb_y + y >=
s->height) {
1396 }
else if (
bits<=8) {
1397 ptr =
s->picture_ptr->data[
c] +
1398 (linesize * (v * mb_y + y)) +
1403 *ptr =
pred + ((unsigned)
dc << point_transform);
1405 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1409 *ptr16=
pred + ((unsigned)
dc << point_transform);
1419 if (
s->restart_interval && !--
s->restart_count) {
1429 uint8_t *
dst,
const uint8_t *
src,
1430 int linesize,
int lowres)
1433 case 0:
s->hdsp.put_pixels_tab[1][0](
dst,
src, linesize, 8);
1446 int block_x, block_y;
1447 int size = 8 >>
s->avctx->lowres;
1449 for (block_y=0; block_y<
size; block_y++)
1450 for (block_x=0; block_x<
size; block_x++)
1451 *(uint16_t*)(ptr + 2*block_x + block_y*linesize) <<= 16 -
s->bits;
1453 for (block_y=0; block_y<
size; block_y++)
1454 for (block_x=0; block_x<
size; block_x++)
1455 *(ptr + block_x + block_y*linesize) <<= 8 -
s->bits;
1460 int Al,
const uint8_t *mb_bitmask,
1461 int mb_bitmask_size,
1464 int i, mb_x, mb_y, chroma_h_shift, chroma_v_shift, chroma_width, chroma_height;
1469 int bytes_per_pixel = 1 + (
s->bits > 8);
1472 if (mb_bitmask_size != (
s->mb_width *
s->mb_height + 7)>>3) {
1476 init_get_bits(&mb_bitmask_gb, mb_bitmask,
s->mb_width *
s->mb_height);
1479 s->restart_count = 0;
1486 for (
i = 0;
i < nb_components;
i++) {
1487 int c =
s->comp_index[
i];
1488 data[
c] =
s->picture_ptr->data[
c];
1489 reference_data[
c] = reference ? reference->
data[
c] :
NULL;
1490 linesize[
c] =
s->linesize[
c];
1491 s->coefs_finished[
c] |= 1;
1494 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1495 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1498 if (
s->restart_interval && !
s->restart_count)
1499 s->restart_count =
s->restart_interval;
1506 for (
i = 0;
i < nb_components;
i++) {
1508 int n,
h, v, x, y,
c, j;
1510 n =
s->nb_blocks[
i];
1511 c =
s->comp_index[
i];
1516 for (j = 0; j < n; j++) {
1517 block_offset = (((linesize[
c] * (v * mb_y + y) * 8) +
1518 (
h * mb_x + x) * 8 * bytes_per_pixel) >>
s->avctx->lowres);
1520 if (
s->interlaced &&
s->bottom_field)
1521 block_offset += linesize[
c] >> 1;
1522 if ( 8*(
h * mb_x + x) < ((
c == 1) || (
c == 2) ? chroma_width :
s->width)
1523 && 8*(v * mb_y + y) < ((
c == 1) || (
c == 2) ? chroma_height :
s->height)) {
1524 ptr =
data[
c] + block_offset;
1527 if (!
s->progressive) {
1531 linesize[
c],
s->avctx->lowres);
1534 s->bdsp.clear_block(
s->block);
1536 s->dc_index[
i],
s->ac_index[
i],
1537 s->quant_matrixes[
s->quant_sindex[
i]]) < 0) {
1539 "error y=%d x=%d\n", mb_y, mb_x);
1542 if (ptr && linesize[
c]) {
1543 s->idsp.idct_put(ptr, linesize[
c],
s->block);
1549 int block_idx =
s->block_stride[
c] * (v * mb_y + y) +
1551 int16_t *
block =
s->blocks[
c][block_idx];
1554 s->quant_matrixes[
s->quant_sindex[
i]][0] << Al;
1556 s->quant_matrixes[
s->quant_sindex[
i]],
1559 "error y=%d x=%d\n", mb_y, mb_x);
1563 ff_dlog(
s->avctx,
"mb: %d %d processed\n", mb_y, mb_x);
1564 ff_dlog(
s->avctx,
"%d %d %d %d %d %d %d %d \n",
1565 mb_x, mb_y, x, y,
c,
s->bottom_field,
1566 (v * mb_y + y) * 8, (
h * mb_x + x) * 8);
1581 int se,
int Ah,
int Al)
1585 int c =
s->comp_index[0];
1586 uint16_t *quant_matrix =
s->quant_matrixes[
s->quant_sindex[0]];
1589 if (se < ss || se > 63) {
1596 s->coefs_finished[
c] |= (2ULL <<
se) - (1ULL <<
ss);
1598 s->restart_count = 0;
1600 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1601 int block_idx = mb_y *
s->block_stride[
c];
1602 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1603 uint8_t *last_nnz = &
s->last_nnz[
c][block_idx];
1605 av_log(
s->avctx,
AV_LOG_ERROR,
"bitstream truncated in mjpeg_decode_scan_progressive_ac\n");
1608 for (mb_x = 0; mb_x <
s->mb_width; mb_x++,
block++, last_nnz++) {
1610 if (
s->restart_interval && !
s->restart_count)
1611 s->restart_count =
s->restart_interval;
1615 quant_matrix,
ss,
se, Al, &EOBRUN);
1618 quant_matrix,
ss,
se, Al, &EOBRUN);
1624 "error y=%d x=%d\n", mb_y, mb_x);
1639 const int bytes_per_pixel = 1 + (
s->bits > 8);
1640 const int block_size =
s->lossless ? 1 : 8;
1642 for (
c = 0;
c <
s->nb_components;
c++) {
1643 uint8_t *
data =
s->picture_ptr->data[
c];
1644 int linesize =
s->linesize[
c];
1645 int h =
s->h_max /
s->h_count[
c];
1646 int v =
s->v_max /
s->v_count[
c];
1647 int mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1648 int mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1650 if (~
s->coefs_finished[
c])
1653 if (
s->interlaced &&
s->bottom_field)
1654 data += linesize >> 1;
1656 for (mb_y = 0; mb_y < mb_height; mb_y++) {
1657 uint8_t *ptr =
data + (mb_y * linesize * 8 >>
s->avctx->lowres);
1658 int block_idx = mb_y *
s->block_stride[
c];
1659 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1660 for (mb_x = 0; mb_x < mb_width; mb_x++,
block++) {
1661 s->idsp.idct_put(ptr, linesize, *
block);
1664 ptr += bytes_per_pixel*8 >>
s->avctx->lowres;
1671 int mb_bitmask_size,
const AVFrame *reference)
1675 const int block_size =
s->lossless ? 1 : 8;
1676 int ilv, prev_shift;
1678 if (!
s->got_picture) {
1680 "Can not process SOS before SOF, skipping\n");
1685 if (reference->
width !=
s->picture_ptr->width ||
1686 reference->
height !=
s->picture_ptr->height ||
1687 reference->
format !=
s->picture_ptr->format) {
1698 "decode_sos: nb_components (%d)",
1702 if (
len != 6 + 2 * nb_components) {
1706 for (
i = 0;
i < nb_components;
i++) {
1711 if (
id ==
s->component_id[
index])
1713 if (
index ==
s->nb_components) {
1715 "decode_sos: index(%d) out of components\n",
index);
1719 if (
s->avctx->codec_tag ==
MKTAG(
'M',
'T',
'S',
'J')
1720 && nb_components == 3 &&
s->nb_components == 3 &&
i)
1723 s->quant_sindex[
i] =
s->quant_index[
index];
1725 s->h_scount[
i] =
s->h_count[
index];
1726 s->v_scount[
i] =
s->v_count[
index];
1733 if (
s->dc_index[
i] < 0 ||
s->ac_index[
i] < 0 ||
1734 s->dc_index[
i] >= 4 ||
s->ac_index[
i] >= 4)
1736 if (!
s->vlcs[0][
s->dc_index[
i]].table || !(
s->progressive ?
s->vlcs[2][
s->ac_index[0]].table :
s->vlcs[1][
s->ac_index[
i]].table))
1742 if(
s->avctx->codec_tag !=
AV_RL32(
"CJPG")){
1746 prev_shift = point_transform = 0;
1748 if (nb_components > 1) {
1750 s->mb_width = (
s->width +
s->h_max * block_size - 1) / (
s->h_max * block_size);
1751 s->mb_height = (
s->height +
s->v_max * block_size - 1) / (
s->v_max * block_size);
1752 }
else if (!
s->ls) {
1753 h =
s->h_max /
s->h_scount[0];
1754 v =
s->v_max /
s->v_scount[0];
1755 s->mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1756 s->mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1757 s->nb_blocks[0] = 1;
1764 s->lossless ?
"lossless" :
"sequential DCT",
s->rgb ?
"RGB" :
"",
1765 predictor, point_transform, ilv,
s->bits,
s->mjpb_skiptosod,
1766 s->pegasus_rct ?
"PRCT" : (
s->rct ?
"RCT" :
""), nb_components);
1770 for (
i =
s->mjpb_skiptosod;
i > 0;
i--)
1774 for (
i = 0;
i < nb_components;
i++)
1775 s->last_dc[
i] = (4 <<
s->bits);
1777 if (
s->avctx->hwaccel) {
1780 s->raw_scan_buffer_size >= bytes_to_start);
1783 s->raw_scan_buffer + bytes_to_start,
1784 s->raw_scan_buffer_size - bytes_to_start);
1788 }
else if (
s->lossless) {
1790 if (CONFIG_JPEGLS_DECODER &&
s->ls) {
1795 point_transform, ilv)) < 0)
1798 if (
s->rgb ||
s->bayer) {
1804 nb_components)) < 0)
1813 point_transform)) < 0)
1817 prev_shift, point_transform,
1818 mb_bitmask, mb_bitmask_size, reference)) < 0)
1823 if (
s->interlaced &&
1832 s->bottom_field ^= 1;
1850 s->restart_count = 0;
1852 s->restart_interval);
1899 int t_w, t_h, v1, v2;
1907 s->avctx->sample_aspect_ratio.num =
get_bits(&
s->gb, 16);
1908 s->avctx->sample_aspect_ratio.den =
get_bits(&
s->gb, 16);
1909 if (
s->avctx->sample_aspect_ratio.num <= 0
1910 ||
s->avctx->sample_aspect_ratio.den <= 0) {
1911 s->avctx->sample_aspect_ratio.num = 0;
1912 s->avctx->sample_aspect_ratio.den = 1;
1917 "mjpeg: JFIF header found (version: %x.%x) SAR=%d/%d\n",
1919 s->avctx->sample_aspect_ratio.num,
1920 s->avctx->sample_aspect_ratio.den);
1928 if (
len -10 - (t_w * t_h * 3) > 0)
1929 len -= t_w * t_h * 3;
1946 av_log(
s->avctx,
AV_LOG_INFO,
"mjpeg: Adobe header found, transform=%d\n",
s->adobe_transform);
1953 int pegasus_rct =
s->pegasus_rct;
1956 "Pegasus lossless jpeg header found\n");
1978 if (
rgb !=
s->rgb || pegasus_rct !=
s->pegasus_rct) {
1984 s->pegasus_rct = pegasus_rct;
2024 }
else if (
type == 1) {
2036 if (!(
flags & 0x04)) {
2067 if ((
s->start_code ==
APP1) && (
len > (0x28 - 8))) {
2090 unsigned nummarkers;
2110 if (nummarkers == 0) {
2113 }
else if (
s->iccnum != 0 && nummarkers !=
s->iccnum) {
2116 }
else if (seqno > nummarkers) {
2122 if (
s->iccnum == 0) {
2127 s->iccnum = nummarkers;
2130 if (
s->iccentries[seqno - 1].data) {
2135 s->iccentries[seqno - 1].length =
len;
2137 if (!
s->iccentries[seqno - 1].data) {
2147 if (
s->iccread >
s->iccnum)
2155 "mjpeg: error, decode_app parser read over the end\n");
2171 for (
i = 0;
i <
len - 2;
i++)
2173 if (
i > 0 && cbuf[
i - 1] ==
'\n')
2182 if (!strncmp(cbuf,
"AVID", 4)) {
2184 }
else if (!strcmp(cbuf,
"CS=ITU601"))
2186 else if ((!strncmp(cbuf,
"Intel(R) JPEG Library, version 1", 32) &&
s->avctx->codec_tag) ||
2187 (!strncmp(cbuf,
"Metasoft MJPEG Codec", 20)))
2189 else if (!strcmp(cbuf,
"MULTISCOPE II")) {
2190 s->avctx->sample_aspect_ratio = (
AVRational) { 1, 2 };
2202 static int find_marker(
const uint8_t **pbuf_ptr,
const uint8_t *buf_end)
2204 const uint8_t *buf_ptr;
2209 buf_ptr = *pbuf_ptr;
2210 while (buf_end - buf_ptr > 1) {
2213 if ((v == 0xff) && (v2 >=
SOF0) && (v2 <=
COM) && buf_ptr < buf_end) {
2222 ff_dlog(
NULL,
"find_marker skipped %d bytes\n", skipped);
2223 *pbuf_ptr = buf_ptr;
2228 const uint8_t **buf_ptr,
const uint8_t *buf_end,
2229 const uint8_t **unescaped_buf_ptr,
2230 int *unescaped_buf_size)
2241 const uint8_t *
src = *buf_ptr;
2242 const uint8_t *ptr =
src;
2243 uint8_t *
dst =
s->buffer;
2245 #define copy_data_segment(skip) do { \
2246 ptrdiff_t length = (ptr - src) - (skip); \
2248 memcpy(dst, src, length); \
2258 while (ptr < buf_end) {
2259 uint8_t x = *(ptr++);
2263 while (ptr < buf_end && x == 0xff) {
2278 if (x < RST0 || x >
RST7) {
2288 #undef copy_data_segment
2290 *unescaped_buf_ptr =
s->buffer;
2291 *unescaped_buf_size =
dst -
s->buffer;
2292 memset(
s->buffer + *unescaped_buf_size, 0,
2296 (buf_end - *buf_ptr) - (
dst -
s->buffer));
2298 const uint8_t *
src = *buf_ptr;
2299 uint8_t *
dst =
s->buffer;
2305 while (
src + t < buf_end) {
2306 uint8_t x =
src[t++];
2308 while ((
src + t < buf_end) && x == 0xff)
2321 uint8_t x =
src[
b++];
2323 if (x == 0xFF &&
b < t) {
2335 *unescaped_buf_ptr =
dst;
2336 *unescaped_buf_size = (bit_count + 7) >> 3;
2337 memset(
s->buffer + *unescaped_buf_size, 0,
2340 *unescaped_buf_ptr = *buf_ptr;
2341 *unescaped_buf_size = buf_end - *buf_ptr;
2351 if (
s->iccentries) {
2352 for (
i = 0;
i <
s->iccnum;
i++)
2362 int *got_frame,
const AVPacket *avpkt,
2363 const uint8_t *buf,
const int buf_size)
2366 const uint8_t *buf_end, *buf_ptr;
2367 const uint8_t *unescaped_buf_ptr;
2369 int unescaped_buf_size;
2377 s->buf_size = buf_size;
2381 s->adobe_transform = -1;
2388 buf_end = buf + buf_size;
2389 while (buf_ptr < buf_end) {
2393 &unescaped_buf_size);
2397 }
else if (unescaped_buf_size > INT_MAX / 8) {
2399 "MJPEG packet 0x%x too big (%d/%d), corrupt data?\n",
2439 if (!CONFIG_JPEGLS_DECODER &&
2460 s->restart_interval = 0;
2461 s->restart_count = 0;
2462 s->raw_image_buffer = buf_ptr;
2463 s->raw_image_buffer_size = buf_end - buf_ptr;
2494 #if FF_API_CODEC_PROPS
2507 #if FF_API_CODEC_PROPS
2519 if (!CONFIG_JPEGLS_DECODER ||
2528 s->progressive &&
s->cur_scan &&
s->got_picture)
2531 if (!
s->got_picture) {
2533 "Found EOI before any SOF, ignoring\n");
2536 if (
s->interlaced) {
2537 s->bottom_field ^= 1;
2539 if (
s->bottom_field == !
s->interlace_polarity)
2566 s->raw_scan_buffer = buf_ptr;
2567 s->raw_scan_buffer_size = buf_end - buf_ptr;
2590 "mjpeg: unsupported coding type (%x)\n",
start_code);
2602 goto the_end_no_picture;
2610 "marker parser used %d bytes (%d bits)\n",
2613 if (
s->got_picture &&
s->cur_scan) {
2648 for (p = 0; p<
s->nb_components; p++) {
2649 uint8_t *
line =
s->picture_ptr->data[p];
2652 if (!
s->upscale_h[p])
2658 if (
s->upscale_v[p] == 1)
2661 for (
int i = 0;
i <
h;
i++) {
2662 if (
s->upscale_h[p] == 1) {
2663 if (is16bit) ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 2];
2671 }
else if (
s->upscale_h[p] == 2) {
2673 ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 3];
2675 ((uint16_t*)
line)[
w - 2] = ((uint16_t*)
line)[
w - 1];
2684 }
else if (
s->upscale_h[p] == 4){
2686 uint16_t *line16 = (uint16_t *)
line;
2687 line16[
w - 1] = line16[(
w - 1) >> 2];
2689 line16[
w - 2] = (line16[(
w - 1) >> 2] * 3 + line16[(
w - 2) >> 2]) >> 2;
2691 line16[
w - 3] = (line16[(
w - 1) >> 2] + line16[(
w - 2) >> 2]) >> 1;
2703 line +=
s->linesize[p];
2728 for (p = 0; p <
s->nb_components; p++) {
2732 if (!
s->upscale_v[p])
2738 dst = &((uint8_t *)
s->picture_ptr->data[p])[(
h - 1) *
s->linesize[p]];
2740 uint8_t *
src1 = &((uint8_t *)
s->picture_ptr->data[p])[
i *
s->upscale_v[p] / (
s->upscale_v[p] + 1) *
s->linesize[p]];
2741 uint8_t *
src2 = &((uint8_t *)
s->picture_ptr->data[p])[(
i + 1) *
s->upscale_v[p] / (
s->upscale_v[p] + 1) *
s->linesize[p]];
2748 dst -=
s->linesize[p];
2752 if (
s->flipped && !
s->rgb) {
2778 int w =
s->picture_ptr->width;
2779 int h =
s->picture_ptr->height;
2781 for (
int i = 0;
i <
h;
i++) {
2786 +
s->picture_ptr->linesize[
index]*
i;
2788 for (j=0; j<
w; j++) {
2790 int r =
dst[0][j] * k;
2791 int g =
dst[1][j] * k;
2792 int b =
dst[2][j] * k;
2793 dst[0][j] =
g*257 >> 16;
2794 dst[1][j] =
b*257 >> 16;
2795 dst[2][j] =
r*257 >> 16;
2797 memset(
dst[3], 255,
w);
2801 int w =
s->picture_ptr->width;
2802 int h =
s->picture_ptr->height;
2804 for (
int i = 0;
i <
h;
i++) {
2809 +
s->picture_ptr->linesize[
index]*
i;
2811 for (j=0; j<
w; j++) {
2813 int r = (255 -
dst[0][j]) * k;
2814 int g = (128 -
dst[1][j]) * k;
2815 int b = (128 -
dst[2][j]) * k;
2816 dst[0][j] =
r*257 >> 16;
2817 dst[1][j] = (
g*257 >> 16) + 128;
2818 dst[2][j] = (
b*257 >> 16) + 128;
2820 memset(
dst[3], 255,
w);
2827 stereo->
type =
s->stereo3d->type;
2828 stereo->
flags =
s->stereo3d->flags;
2833 if (
s->iccnum != 0 &&
s->iccnum ==
s->iccread) {
2839 for (
int i = 0;
i <
s->iccnum;
i++)
2840 total_size +=
s->iccentries[
i].length;
2850 for (
int i = 0;
i <
s->iccnum;
i++) {
2851 memcpy(sd->
data +
offset,
s->iccentries[
i].data,
s->iccentries[
i].length);
2857 if (
s->exif_metadata.entries) {
2875 return buf_ptr - buf;
2893 if (
s->interlaced &&
s->bottom_field == !
s->interlace_polarity &&
s->got_picture && !avctx->
frame_num) {
2898 s->picture_ptr =
NULL;
2905 s->ljpeg_buffer_size = 0;
2907 for (
i = 0;
i < 3;
i++) {
2908 for (j = 0; j < 4; j++)
2930 s->smv_next_frame = 0;
2934 #if CONFIG_MJPEG_DECODER
2935 #define OFFSET(x) offsetof(MJpegDecodeContext, x)
2936 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2938 {
"extern_huff",
"Use external huffman table.",
2943 static const AVClass mjpegdec_class = {
2962 .p.priv_class = &mjpegdec_class,
2968 #if CONFIG_MJPEG_NVDEC_HWACCEL
2971 #if CONFIG_MJPEG_VAAPI_HWACCEL
2978 #if CONFIG_THP_DECODER
2995 #if CONFIG_SMVJPEG_DECODER
3010 s->smv_frame->pts +=
s->smv_frame->duration;
3011 s->smv_next_frame = (
s->smv_next_frame + 1) %
s->smv_frames_per_jpeg;
3013 if (
s->smv_next_frame == 0)
3024 if (
s->smv_next_frame > 0)
3034 s->smv_frame->pkt_dts =
pkt->
dts;
3043 s->smv_frame->duration /=
s->smv_frames_per_jpeg;
3051 smv_process_frame(avctx,
frame);
3056 .
p.
name =
"smvjpeg",
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
void av_packet_unref(AVPacket *pkt)
Wipe the packet.
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
#define FF_ENABLE_DEPRECATION_WARNINGS
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
int ff_decode_get_packet(AVCodecContext *avctx, AVPacket *pkt)
Called by decoders to get the next packet for decoding.
#define AV_LOG_WARNING
Something somehow does not look correct.
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
AVPixelFormat
Pixel format.
#define AV_EF_EXPLODE
abort decoding on minor error detection
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static unsigned int show_bits_long(GetBitContext *s, int n)
Show 0-32 bits.
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int decode_slice(AVCodecContext *c, void *arg)
int av_exif_parse_buffer(void *logctx, const uint8_t *buf, size_t size, AVExifMetadata *ifd, enum AVExifHeaderMode header_mode)
Decodes the EXIF data provided in the buffer and writes it into the struct *ifd.
enum AVColorSpace colorspace
YUV colorspace type.
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
static av_always_inline void mjpeg_copy_block(MJpegDecodeContext *s, uint8_t *dst, const uint8_t *src, int linesize, int lowres)
The official guide to swscale for confused that is
static void decode_flush(AVCodecContext *avctx)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
#define GET_VLC(code, name, gb, table, bits, max_depth)
If the vlc code is invalid and max_depth=1, then no bits will be removed.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
const FFCodec ff_smvjpeg_decoder
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
#define se(name, range_min, range_max)
static int get_bits_count(const GetBitContext *s)
static void init_idct(AVCodecContext *avctx)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
#define AV_PIX_FMT_YUVA420P16
@ AVCOL_RANGE_JPEG
Full range content.
const FFCodec ff_mjpeg_decoder
enum AVFieldOrder field_order
Field order.
static int mjpeg_decode_dc(MJpegDecodeContext *s, int dc_index)
int step
Number of elements between 2 horizontally consecutive pixels.
const uint8_t ff_mjpeg_val_dc[]
#define FF_HW_SIMPLE_CALL(avctx, function)
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
#define UPDATE_CACHE(name, gb)
const uint8_t ff_mjpeg_bits_ac_chrominance[]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
#define GET_CACHE(name, gb)
static void skip_bits(GetBitContext *s, int n)
av_cold void ff_permute_scantable(uint8_t dst[64], const uint8_t src[64], const uint8_t permutation[64])
static av_cold void close(AVCodecParserContext *s)
@ AV_STEREO3D_SIDEBYSIDE
Views are next to each other.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
int ff_mjpeg_decode_dht(MJpegDecodeContext *s)
static int ljpeg_decode_yuv_scan(MJpegDecodeContext *s, int predictor, int point_transform, int nb_components)
static void shift_output(MJpegDecodeContext *s, uint8_t *ptr, int linesize)
AVCodec p
The public AVCodec.
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
const struct AVCodec * codec
av_cold int ff_mjpeg_decode_init(AVCodecContext *avctx)
enum AVDiscard skip_frame
Skip decoding for selected frames.
@ AV_STEREO3D_2D
Video is not stereoscopic (and metadata has to be there).
#define AV_PIX_FMT_YUVA444P16
int ff_mjpeg_decode_frame_from_buf(AVCodecContext *avctx, AVFrame *frame, int *got_frame, const AVPacket *avpkt, const uint8_t *buf, const int buf_size)
static int mjpeg_decode_com(MJpegDecodeContext *s)
static int init_default_huffman_tables(MJpegDecodeContext *s)
void av_exif_free(AVExifMetadata *ifd)
Frees all resources associated with the given EXIF metadata struct.
int flags
AV_CODEC_FLAG_*.
static double val(void *priv, double ch)
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_PIX_FMT_GRAY16
#define ss(width, name, subs,...)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
const AVProfile ff_mjpeg_profiles[]
static int aligned(int val)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int decode_dc_progressive(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, uint16_t *quant_matrix, int Al)
#define AV_PIX_FMT_YUV422P16
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
#define FF_CODEC_PROPERTY_LOSSLESS
#define AV_PROFILE_MJPEG_HUFFMAN_BASELINE_DCT
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
static int handle_rstn(MJpegDecodeContext *s, int nb_components)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define CLOSE_READER(name, gb)
#define FF_CODEC_DECODE_CB(func)
@ AV_STEREO3D_LINES
Views are packed per line, as if interlaced.
av_cold void ff_blockdsp_init(BlockDSPContext *c)
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static void parse_avid(MJpegDecodeContext *s, uint8_t *buf, int len)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
int ff_jpegls_decode_picture(MJpegDecodeContext *s, int near, int point_transform, int ilv)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_PIX_FMT_YUV420P16
static void reset_icc_profile(MJpegDecodeContext *s)
av_cold int ff_mjpeg_decode_end(AVCodecContext *avctx)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define CODEC_LONG_NAME(str)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
int flags
Additional information about the frame packing.
@ AVDISCARD_ALL
discard all
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
int ff_decode_exif_attach_ifd(AVCodecContext *avctx, AVFrame *frame, const AVExifMetadata *ifd)
Describe the class of an AVClass context structure.
#define PTRDIFF_SPECIFIER
static void mjpeg_idct_scan_progressive_ac(MJpegDecodeContext *s)
static void copy_block2(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
@ AV_EXIF_TIFF_HEADER
The TIFF header starts with 0x49492a00, or 0x4d4d002a.
#define AV_PROFILE_MJPEG_HUFFMAN_EXTENDED_SEQUENTIAL_DCT
Rational number (pair of numerator and denominator).
int ff_mjpeg_decode_dqt(MJpegDecodeContext *s)
struct AVCodecInternal * internal
Private context used for internal data.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
const char * av_default_item_name(void *ptr)
Return the context name.
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
@ AV_FRAME_DATA_ICC_PROFILE
The data contains an ICC profile as an opaque octet buffer following the format described by ISO 1507...
#define LAST_SKIP_BITS(name, gb, num)
static int mjpeg_decode_scan(MJpegDecodeContext *s, int nb_components, int Ah, int Al, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
static int decode_block_refinement(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
static int mjpeg_decode_scan_progressive_ac(MJpegDecodeContext *s, int ss, int se, int Ah, int Al)
const uint8_t ff_mjpeg_val_ac_chrominance[]
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
#define copy_data_segment(skip)
int lowres
low resolution decoding, 1-> 1/2 size, 2->1/4 size
const OptionDef options[]
static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int(* init)(AVBSFContext *ctx)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static int ljpeg_decode_rgb_scan(MJpegDecodeContext *s, int nb_components, int predictor, int point_transform)
const uint8_t ff_mjpeg_val_ac_luminance[]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
int ff_jpegls_decode_lse(MJpegDecodeContext *s)
Decode LSE block with initialization parameters.
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
int ff_mjpeg_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static int decode_block_progressive(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
int ff_mjpeg_decode_sos(MJpegDecodeContext *s, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
#define AV_PROFILE_MJPEG_JPEG_LS
const uint8_t ff_mjpeg_bits_ac_luminance[]
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
#define AV_NOPTS_VALUE
Undefined timestamp value.
int ff_frame_new_side_data(const AVCodecContext *avctx, AVFrame *frame, enum AVFrameSideDataType type, size_t size, AVFrameSideData **psd)
Wrapper around av_frame_new_side_data, which rejects side data overridden by the demuxer.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
#define FF_CODEC_CAP_SKIP_FRAME_FILL_PARAM
The decoder extracts and fills its parameters even if the frame is skipped due to the skip_frame sett...
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
#define OPEN_READER(name, gb)
int64_t dts
Decompression timestamp in AVStream->time_base units; the time at which the packet is decompressed.
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static int get_xbits(GetBitContext *s, int n)
Read MPEG-1 dc-style VLC (sign bit + mantissa with no MSB).
#define HWACCEL_NVDEC(codec)
static void predictor(uint8_t *src, ptrdiff_t size)
static int find_marker(const uint8_t **pbuf_ptr, const uint8_t *buf_end)
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
@ AV_PIX_FMT_VAAPI
Hardware acceleration through VA-API, data[3] contains a VASurfaceID.
#define AV_LOG_INFO
Standard information.
const FFCodec ff_thp_decoder
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static void copy_block4(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
static int decode_block(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, int ac_index, uint16_t *quant_matrix)
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
uint8_t * extradata
Out-of-band global headers that may be used by some codecs.
#define AV_PROFILE_MJPEG_HUFFMAN_LOSSLESS
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
@ AV_FIELD_BB
Bottom coded first, bottom displayed first.
@ AV_STEREO3D_TOPBOTTOM
Views are on top of each other.
static int mjpeg_decode_dri(MJpegDecodeContext *s)
AVPacket * in_pkt
This packet is used to hold the packet given to decoders implementing the .decode API; it is unused b...
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
#define FF_DEBUG_STARTCODE
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
void * av_calloc(size_t nmemb, size_t size)
#define FF_CODEC_CAP_ICC_PROFILES
Codec supports embedded ICC profiles (AV_FRAME_DATA_ICC_PROFILE).
const uint8_t ff_zigzag_direct[64]
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
int64_t frame_num
Frame counter, set by libavcodec.
void ff_vlc_free(VLC *vlc)
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
static const float pred[4]
AVStereo3D * av_stereo3d_alloc(void)
Allocate an AVStereo3D structure and set its fields to default values.
#define FFSWAP(type, a, b)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
enum AVStereo3DType type
How views are packed within the video.
static const uint8_t * align_get_bits(GetBitContext *s)
static const char * hwaccel
@ LSE
JPEG-LS extension parameters.
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
int ff_mjpeg_find_marker(MJpegDecodeContext *s, const uint8_t **buf_ptr, const uint8_t *buf_end, const uint8_t **unescaped_buf_ptr, int *unescaped_buf_size)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without and describe what they for example set the foo of the bar offset is the offset of the field in your see the OFFSET() macro
main external API structure.
#define FF_CODEC_RECEIVE_FRAME_CB(func)
#define SHOW_UBITS(name, gb, num)
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
@ AVCHROMA_LOC_CENTER
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
#define FF_HW_CALL(avctx, function,...)
static const FFHWAccel * ffhwaccel(const AVHWAccel *codec)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
const uint8_t ff_mjpeg_bits_dc_chrominance[]
int ff_mjpeg_decode_sof(MJpegDecodeContext *s)
#define FF_DISABLE_DEPRECATION_WARNINGS
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
int coded_width
Bitstream width / height, may be different from width/height e.g.
@ AV_PIX_FMT_GRAY16LE
Y , 16bpp, little-endian.
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static int mjpeg_decode_app(MJpegDecodeContext *s)
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
#define avpriv_request_sample(...)
Structure to hold side data for an AVFrame.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
const FF_VISIBILITY_PUSH_HIDDEN uint8_t ff_mjpeg_bits_dc_luminance[]
int ff_mjpeg_build_vlc(VLC *vlc, const uint8_t *bits_table, const uint8_t *val_table, int is_ac, void *logctx)
This structure stores compressed data.
@ AV_OPT_TYPE_BOOL
Underlying C type is int.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define HWACCEL_VAAPI(codec)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
attribute_deprecated unsigned properties
Properties of the stream that gets decoded.
static const SheerTable rgb[2]
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
Stereo 3D type: this structure describes how two videos are packed within a single video surface,...
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
#define AV_PROFILE_MJPEG_HUFFMAN_PROGRESSIVE_DCT
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_RB24
#define PREDICT(ret, topleft, top, left, predictor)
static int return_frame(AVFilterContext *ctx, int is_second)
#define AV_FRAME_FLAG_LOSSLESS
A decoder can use this flag to mark frames which were originally encoded losslessly.
static void BS_FUNC() skip(BSCTX *bc, unsigned int n)
Skip n bits in the buffer.
#define av_fourcc2str(fourcc)