Go to the documentation of this file.
33 #include "config_components.h"
85 ht[
i].bits, ht[
i].values,
86 ht[
i].class == 1,
s->avctx);
90 if (ht[
i].
class < 2) {
91 memcpy(
s->raw_huffman_lengths[ht[
i].class][ht[
i].index],
93 memcpy(
s->raw_huffman_values[ht[
i].class][ht[
i].index],
94 ht[
i].values, ht[
i].length);
103 if (
len > 12 && buf[12] == 1)
104 s->interlace_polarity = 1;
105 if (
len > 12 && buf[12] == 2)
106 s->interlace_polarity = 0;
117 s->idsp.idct_permutation);
125 if (!
s->picture_ptr) {
129 s->picture_ptr =
s->picture;
137 s->first_picture = 1;
152 "error using external huffman table, switching back to internal\n");
158 s->interlace_polarity = 1;
162 s->interlace_polarity = 1;
169 if (
s->smv_frames_per_jpeg <= 0) {
192 int len = bytestream2_get_be16u(&
s->gB);
211 uint8_t
b = bytestream2_get_byteu(&
s->gB);
217 if (
len < (1 + 64 * (1+pr)))
224 for (
i = 0;
i < 64;
i++) {
225 s->quant_matrixes[
index][
i] = pr ? bytestream2_get_be16u(&
s->gB) : bytestream2_get_byteu(&
s->gB);
226 if (
s->quant_matrixes[
index][
i] == 0) {
228 av_log(
s->avctx, log_level,
"dqt: 0 quant value\n");
236 s->quant_matrixes[
index][8]) >> 1;
239 len -= 1 + 64 * (1+pr);
248 uint8_t bits_table[17];
249 uint8_t val_table[256];
259 uint8_t
b = bytestream2_get_byteu(&
s->gB);
267 for (
i = 1;
i <= 16;
i++) {
268 bits_table[
i] = bytestream2_get_byteu(&
s->gB);
272 if (len < n || n > 256)
275 for (
i = 0;
i < n;
i++) {
276 v = bytestream2_get_byteu(&
s->gB);
286 val_table,
class > 0,
s->avctx)) < 0)
292 val_table, 0,
s->avctx)) < 0)
296 for (
i = 0;
i < 16;
i++)
297 s->raw_huffman_lengths[
class][
index][
i] = bits_table[
i + 1];
299 s->raw_huffman_values[
class][
index][
i] = val_table[
i];
312 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
313 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
320 bits = bytestream2_get_byteu(&
s->gB);
327 if (
s->avctx->bits_per_raw_sample !=
bits) {
329 s->avctx->bits_per_raw_sample =
bits;
334 if (
bits == 9 && !
s->pegasus_rct)
337 if(
s->lossless &&
s->avctx->lowres){
342 height = bytestream2_get_be16u(&
s->gB);
343 width = bytestream2_get_be16u(&
s->gB);
346 if (
s->interlaced &&
s->width ==
width &&
s->height ==
height + 1)
353 if (!
s->progressive && !
s->ls) {
355 if (
s->buf_size && (
width + 7) / 8 * ((
height + 7) / 8) >
s->buf_size * 4LL)
359 nb_components = bytestream2_get_byteu(&
s->gB);
360 if (nb_components <= 0 ||
363 if (
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
364 if (nb_components !=
s->nb_components) {
366 "nb_components changing in interlaced picture\n");
370 if (
s->ls && !(
bits <= 8 || nb_components == 1)) {
372 "JPEG-LS that is not <= 8 "
373 "bits/component or 16-bit gray");
377 if (
len != 3 * nb_components) {
378 av_log(
s->avctx,
AV_LOG_ERROR,
"decode_sof0: error, len(%d) mismatch %d components\n",
len, nb_components);
382 s->nb_components = nb_components;
385 for (
i = 0;
i < nb_components;
i++) {
387 s->component_id[
i] = bytestream2_get_byteu(&
s->gB);
388 uint8_t
b = bytestream2_get_byteu(&
s->gB);
390 v_count[
i] =
b & 0x0F;
392 if (h_count[
i] >
s->h_max)
393 s->h_max = h_count[
i];
394 if (v_count[
i] >
s->v_max)
395 s->v_max = v_count[
i];
396 s->quant_index[
i] = bytestream2_get_byteu(&
s->gB);
397 if (
s->quant_index[
i] >= 4) {
401 if (!h_count[
i] || !v_count[
i]) {
403 "Invalid sampling factor in component %d %d:%d\n",
404 i, h_count[
i], v_count[
i]);
409 i, h_count[
i], v_count[
i],
410 s->component_id[
i],
s->quant_index[
i]);
412 if ( nb_components == 4
413 &&
s->component_id[0] ==
'C'
414 &&
s->component_id[1] ==
'M'
415 &&
s->component_id[2] ==
'Y'
416 &&
s->component_id[3] ==
'K')
417 s->adobe_transform = 0;
419 if (
s->ls && (
s->h_max > 1 ||
s->v_max > 1)) {
425 if (nb_components == 2) {
439 memcmp(
s->h_count, h_count,
sizeof(h_count)) ||
440 memcmp(
s->v_count, v_count,
sizeof(v_count))) {
446 memcpy(
s->h_count, h_count,
sizeof(h_count));
447 memcpy(
s->v_count, v_count,
sizeof(v_count));
452 if (
s->first_picture &&
453 (
s->multiscope != 2 ||
s->avctx->pkt_timebase.den >= 25 *
s->avctx->pkt_timebase.num) &&
454 s->orig_height != 0 &&
455 s->height < ((
s->orig_height * 3) / 4)) {
457 s->bottom_field =
s->interlace_polarity;
468 (
s->avctx->codec_tag ==
MKTAG(
'A',
'V',
'R',
'n') ||
469 s->avctx->codec_tag ==
MKTAG(
'A',
'V',
'D',
'J')) &&
473 s->first_picture = 0;
479 s->avctx->height =
s->avctx->coded_height /
s->smv_frames_per_jpeg;
480 if (
s->avctx->height <= 0)
483 if (
s->bayer &&
s->progressive) {
488 if (
s->got_picture &&
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
489 if (
s->progressive) {
494 if (
s->v_max == 1 &&
s->h_max == 1 &&
s->lossless==1 && (nb_components==3 || nb_components==4))
496 else if (!
s->lossless)
499 pix_fmt_id = ((unsigned)
s->h_count[0] << 28) | (
s->v_count[0] << 24) |
500 (
s->h_count[1] << 20) | (
s->v_count[1] << 16) |
501 (
s->h_count[2] << 12) | (
s->v_count[2] << 8) |
502 (
s->h_count[3] << 4) |
s->v_count[3];
506 if (!(pix_fmt_id & 0xD0D0D0D0))
507 pix_fmt_id -= (pix_fmt_id & 0xF0F0F0F0) >> 1;
508 if (!(pix_fmt_id & 0x0D0D0D0D))
509 pix_fmt_id -= (pix_fmt_id & 0x0F0F0F0F) >> 1;
511 for (
i = 0;
i < 8;
i++) {
512 int j = 6 + (
i&1) - (
i&6);
513 int is = (pix_fmt_id >> (4*
i)) & 0xF;
514 int js = (pix_fmt_id >> (4*j)) & 0xF;
516 if (
is == 1 && js != 2 && (i < 2 || i > 5))
517 js = (pix_fmt_id >> ( 8 + 4*(
i&1))) & 0xF;
518 if (
is == 1 && js != 2 && (i < 2 || i > 5))
519 js = (pix_fmt_id >> (16 + 4*(
i&1))) & 0xF;
521 if (
is == 1 && js == 2) {
522 if (
i & 1)
s->upscale_h[j/2] = 1;
523 else s->upscale_v[j/2] = 1;
528 if (pix_fmt_id != 0x11110000 && pix_fmt_id != 0x11000000)
532 switch (pix_fmt_id) {
542 if (
s->adobe_transform == 0
543 ||
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
557 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
569 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
580 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
582 s->upscale_v[1] =
s->upscale_v[2] = 1;
583 s->upscale_h[1] =
s->upscale_h[2] = 1;
584 }
else if (
s->adobe_transform == 2 &&
s->bits <= 8) {
586 s->upscale_v[1] =
s->upscale_v[2] = 1;
587 s->upscale_h[1] =
s->upscale_h[2] = 1;
606 if (
s->adobe_transform == 0 ||
s->component_id[0] ==
'R' &&
607 s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
633 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
637 s->upscale_v[1] =
s->upscale_v[2] = 1;
639 if (pix_fmt_id == 0x14111100)
640 s->upscale_v[1] =
s->upscale_v[2] = 1;
648 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
652 s->upscale_h[1] =
s->upscale_h[2] = 1;
662 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B')
666 s->upscale_h[0] =
s->upscale_h[2] = 2;
673 s->upscale_h[1] =
s->upscale_h[2] = 2;
690 if (pix_fmt_id == 0x42111100) {
693 s->upscale_h[1] =
s->upscale_h[2] = 1;
694 }
else if (pix_fmt_id == 0x24111100) {
697 s->upscale_v[1] =
s->upscale_v[2] = 1;
698 }
else if (pix_fmt_id == 0x23111100) {
701 s->upscale_v[1] =
s->upscale_v[2] = 2;
713 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
714 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
722 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
723 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
724 if (
s->nb_components == 3) {
726 }
else if (
s->nb_components != 1) {
729 }
else if ((
s->palette_index ||
s->force_pal8) &&
s->bits <= 8)
731 else if (
s->bits <= 8)
743 if (
s->avctx->pix_fmt ==
s->hwaccel_sw_pix_fmt && !size_change) {
744 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
747 #if CONFIG_MJPEG_NVDEC_HWACCEL
750 #if CONFIG_MJPEG_VAAPI_HWACCEL
757 if (
s->hwaccel_pix_fmt < 0)
760 s->hwaccel_sw_pix_fmt =
s->avctx->pix_fmt;
761 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
781 memset(
s->picture_ptr->data[1], 0, 1024);
783 for (
i = 0;
i < 4;
i++)
784 s->linesize[
i] =
s->picture_ptr->linesize[
i] <<
s->interlaced;
786 ff_dlog(
s->avctx,
"%d %d %d %d %d %d\n",
787 s->width,
s->height,
s->linesize[0],
s->linesize[1],
788 s->interlaced,
s->avctx->height);
792 if ((
s->rgb && !
s->lossless && !
s->ls) ||
793 (!
s->rgb &&
s->ls &&
s->nb_components > 1) ||
801 if (
s->progressive) {
802 int bw = (
width +
s->h_max * 8 - 1) / (
s->h_max * 8);
803 int bh = (
height +
s->v_max * 8 - 1) / (
s->v_max * 8);
804 for (
i = 0;
i <
s->nb_components;
i++) {
805 int size = bw * bh *
s->h_count[
i] *
s->v_count[
i];
810 if (!
s->blocks[
i] || !
s->last_nnz[
i])
812 s->block_stride[
i] = bw *
s->h_count[
i];
814 memset(
s->coefs_finished, 0,
sizeof(
s->coefs_finished));
817 if (
s->avctx->hwaccel) {
819 s->hwaccel_picture_private =
821 if (!
s->hwaccel_picture_private)
825 s->raw_image_buffer_size);
837 if (code < 0 || code > 16) {
839 "mjpeg_decode_dc: bad vlc: %d\n", dc_index);
849 int dc_index,
int ac_index, uint16_t *quant_matrix)
858 val =
val * (unsigned)quant_matrix[0] +
s->last_dc[component];
859 s->last_dc[component] =
val;
868 i += ((unsigned)
code) >> 4;
876 int sign = (~cache) >> 31;
886 j =
s->permutated_scantable[
i];
896 int component,
int dc_index,
897 uint16_t *quant_matrix,
int Al)
900 s->bdsp.clear_block(
block);
905 val = (
val * (quant_matrix[0] << Al)) +
s->last_dc[component];
906 s->last_dc[component] =
val;
913 uint8_t *last_nnz,
int ac_index,
914 uint16_t *quant_matrix,
915 int ss,
int se,
int Al,
int *EOBRUN)
927 for (
i =
ss; ;
i++) {
938 int sign = (~cache) >> 31;
946 j =
s->permutated_scantable[
se];
953 j =
s->permutated_scantable[
i];
984 #define REFINE_BIT(j) { \
985 UPDATE_CACHE(re, &s->gb); \
986 sign = block[j] >> 15; \
987 block[j] += SHOW_UBITS(re, &s->gb, 1) * \
988 ((quant_matrix[i] ^ sign) - sign) << Al; \
989 LAST_SKIP_BITS(re, &s->gb, 1); \
997 av_log(s->avctx, AV_LOG_ERROR, "error count: %d\n", i); \
1002 j = s->permutated_scantable[i]; \
1005 else if (run-- == 0) \
1012 int ac_index, uint16_t *quant_matrix,
1013 int ss,
int se,
int Al,
int *EOBRUN)
1016 int last =
FFMIN(
se, *last_nnz);
1024 GET_VLC(
code, re, &
s->gb,
s->vlcs[2][ac_index].table, 9, 2);
1031 j =
s->permutated_scantable[
i];
1063 for (;
i <= last;
i++) {
1064 j =
s->permutated_scantable[
i];
1080 if (
s->restart_interval) {
1084 for (
i = 0;
i < nb_components;
i++)
1085 s->last_dc[
i] = (4 <<
s->bits);
1090 if (
s->restart_count == 0) {
1098 for (
i = 0;
i < nb_components;
i++)
1099 s->last_dc[
i] = (4 <<
s->bits);
1115 int left[4], top[4], topleft[4];
1116 const int linesize =
s->linesize[0];
1117 const int mask = ((1 <<
s->bits) - 1) << point_transform;
1118 int resync_mb_y = 0;
1119 int resync_mb_x = 0;
1123 if (!
s->bayer &&
s->nb_components < 3)
1125 if (
s->bayer &&
s->nb_components > 2)
1127 if (
s->nb_components <= 0 ||
s->nb_components > 4)
1129 if (
s->v_max != 1 ||
s->h_max != 1 || !
s->lossless)
1132 if (
s->rct ||
s->pegasus_rct)
1137 s->restart_count =
s->restart_interval;
1139 if (
s->restart_interval == 0)
1140 s->restart_interval = INT_MAX;
1143 width =
s->mb_width / nb_components;
1148 if (!
s->ljpeg_buffer)
1153 for (
i = 0;
i < 4;
i++)
1156 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1157 uint8_t *ptr =
s->picture_ptr->data[0] + (linesize * mb_y);
1159 if (
s->interlaced &&
s->bottom_field)
1160 ptr += linesize >> 1;
1162 for (
i = 0;
i < 4;
i++)
1165 if ((mb_y *
s->width) %
s->restart_interval == 0) {
1166 for (
i = 0;
i < 6;
i++)
1167 vpred[
i] = 1 << (
s->bits-1);
1170 for (mb_x = 0; mb_x <
width; mb_x++) {
1178 if (
s->restart_interval && !
s->restart_count){
1179 s->restart_count =
s->restart_interval;
1183 top[
i] =
left[
i]= topleft[
i]= 1 << (
s->bits - 1);
1185 if (mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || !mb_x)
1186 modified_predictor = 1;
1188 for (
i=0;
i<nb_components;
i++) {
1191 topleft[
i] = top[
i];
1198 if (!
s->bayer || mb_x) {
1208 mask & (
pred + (unsigned)(
dc * (1 << point_transform)));
1211 if (
s->restart_interval && !--
s->restart_count) {
1216 if (
s->rct &&
s->nb_components == 4) {
1217 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1218 ptr[4*mb_x + 2] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1219 ptr[4*mb_x + 1] =
buffer[mb_x][1] + ptr[4*mb_x + 2];
1220 ptr[4*mb_x + 3] =
buffer[mb_x][2] + ptr[4*mb_x + 2];
1221 ptr[4*mb_x + 0] =
buffer[mb_x][3];
1223 }
else if (
s->nb_components == 4) {
1224 for(
i=0;
i<nb_components;
i++) {
1225 int c=
s->comp_index[
i];
1227 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1230 }
else if(
s->bits == 9) {
1233 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1234 ((uint16_t*)ptr)[4*mb_x+
c] =
buffer[mb_x][
i];
1238 }
else if (
s->rct) {
1239 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1240 ptr[3*mb_x + 1] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1241 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1242 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1244 }
else if (
s->pegasus_rct) {
1245 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1247 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1248 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1250 }
else if (
s->bayer) {
1253 if (nb_components == 1) {
1255 for (mb_x = 0; mb_x <
width; mb_x++)
1256 ((uint16_t*)ptr)[mb_x] =
buffer[mb_x][0];
1257 }
else if (nb_components == 2) {
1258 for (mb_x = 0; mb_x <
width; mb_x++) {
1259 ((uint16_t*)ptr)[2*mb_x + 0] =
buffer[mb_x][0];
1260 ((uint16_t*)ptr)[2*mb_x + 1] =
buffer[mb_x][1];
1264 for(
i=0;
i<nb_components;
i++) {
1265 int c=
s->comp_index[
i];
1267 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1270 }
else if(
s->bits == 9) {
1273 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1274 ((uint16_t*)ptr)[3*mb_x+2-
c] =
buffer[mb_x][
i];
1284 int point_transform,
int nb_components)
1286 int i, mb_x, mb_y,
mask;
1287 int bits= (
s->bits+7)&~7;
1288 int resync_mb_y = 0;
1289 int resync_mb_x = 0;
1292 point_transform +=
bits -
s->bits;
1293 mask = ((1 <<
s->bits) - 1) << point_transform;
1295 av_assert0(nb_components>=1 && nb_components<=4);
1297 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1298 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1303 if (
s->restart_interval && !
s->restart_count){
1304 s->restart_count =
s->restart_interval;
1309 if(!mb_x || mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || s->
interlaced){
1310 int toprow = mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x;
1311 int leftcol = !mb_x || mb_y == resync_mb_y && mb_x == resync_mb_x;
1312 for (
i = 0;
i < nb_components;
i++) {
1315 int n,
h, v, x, y,
c, j, linesize;
1316 n =
s->nb_blocks[
i];
1317 c =
s->comp_index[
i];
1322 linesize=
s->linesize[
c];
1324 if(
bits>8) linesize /= 2;
1326 for(j=0; j<n; j++) {
1333 if (
h * mb_x + x >=
s->width
1334 || v * mb_y + y >=
s->height) {
1336 }
else if (
bits<=8) {
1337 ptr =
s->picture_ptr->data[
c] + (linesize * (v * mb_y + y)) + (
h * mb_x + x);
1339 if(x==0 && leftcol){
1345 if(x==0 && leftcol){
1346 pred= ptr[-linesize];
1352 if (
s->interlaced &&
s->bottom_field)
1353 ptr += linesize >> 1;
1355 *ptr=
pred + ((unsigned)
dc << point_transform);
1357 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1359 if(x==0 && leftcol){
1365 if(x==0 && leftcol){
1366 pred= ptr16[-linesize];
1372 if (
s->interlaced &&
s->bottom_field)
1373 ptr16 += linesize >> 1;
1375 *ptr16=
pred + ((unsigned)
dc << point_transform);
1384 for (
i = 0;
i < nb_components;
i++) {
1387 int n,
h, v, x, y,
c, j, linesize,
dc;
1388 n =
s->nb_blocks[
i];
1389 c =
s->comp_index[
i];
1394 linesize =
s->linesize[
c];
1396 if(
bits>8) linesize /= 2;
1398 for (j = 0; j < n; j++) {
1405 if (
h * mb_x + x >=
s->width
1406 || v * mb_y + y >=
s->height) {
1408 }
else if (
bits<=8) {
1409 ptr =
s->picture_ptr->data[
c] +
1410 (linesize * (v * mb_y + y)) +
1415 *ptr =
pred + ((unsigned)
dc << point_transform);
1417 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1421 *ptr16=
pred + ((unsigned)
dc << point_transform);
1431 if (
s->restart_interval && !--
s->restart_count) {
1441 uint8_t *
dst,
const uint8_t *
src,
1442 int linesize,
int lowres)
1445 case 0:
s->copy_block(
dst,
src, linesize, 8);
1458 int block_x, block_y;
1459 int size = 8 >>
s->avctx->lowres;
1461 for (block_y=0; block_y<
size; block_y++)
1462 for (block_x=0; block_x<
size; block_x++)
1463 *(uint16_t*)(ptr + 2*block_x + block_y*linesize) <<= 16 -
s->bits;
1465 for (block_y=0; block_y<
size; block_y++)
1466 for (block_x=0; block_x<
size; block_x++)
1467 *(ptr + block_x + block_y*linesize) <<= 8 -
s->bits;
1472 int Al,
const uint8_t *mb_bitmask,
1473 int mb_bitmask_size,
1476 int i, mb_x, mb_y, chroma_h_shift, chroma_v_shift, chroma_width, chroma_height;
1481 int bytes_per_pixel = 1 + (
s->bits > 8);
1484 if (mb_bitmask_size != (
s->mb_width *
s->mb_height + 7)>>3) {
1488 init_get_bits(&mb_bitmask_gb, mb_bitmask,
s->mb_width *
s->mb_height);
1491 s->restart_count = 0;
1498 for (
i = 0;
i < nb_components;
i++) {
1499 int c =
s->comp_index[
i];
1500 data[
c] =
s->picture_ptr->data[
c];
1501 reference_data[
c] = reference ? reference->
data[
c] :
NULL;
1502 linesize[
c] =
s->linesize[
c];
1503 s->coefs_finished[
c] |= 1;
1506 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1507 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1510 if (
s->restart_interval && !
s->restart_count)
1511 s->restart_count =
s->restart_interval;
1518 for (
i = 0;
i < nb_components;
i++) {
1520 int n,
h, v, x, y,
c, j;
1522 n =
s->nb_blocks[
i];
1523 c =
s->comp_index[
i];
1528 for (j = 0; j < n; j++) {
1529 block_offset = (((linesize[
c] * (v * mb_y + y) * 8) +
1530 (
h * mb_x + x) * 8 * bytes_per_pixel) >>
s->avctx->lowres);
1532 if (
s->interlaced &&
s->bottom_field)
1533 block_offset += linesize[
c] >> 1;
1534 if ( 8*(
h * mb_x + x) < ((
c == 1) || (
c == 2) ? chroma_width :
s->width)
1535 && 8*(v * mb_y + y) < ((
c == 1) || (
c == 2) ? chroma_height :
s->height)) {
1536 ptr =
data[
c] + block_offset;
1539 if (!
s->progressive) {
1543 linesize[
c],
s->avctx->lowres);
1546 s->bdsp.clear_block(
s->block);
1548 s->dc_index[
i],
s->ac_index[
i],
1549 s->quant_matrixes[
s->quant_sindex[
i]]) < 0) {
1551 "error y=%d x=%d\n", mb_y, mb_x);
1554 if (ptr && linesize[
c]) {
1555 s->idsp.idct_put(ptr, linesize[
c],
s->block);
1561 int block_idx =
s->block_stride[
c] * (v * mb_y + y) +
1563 int16_t *
block =
s->blocks[
c][block_idx];
1566 s->quant_matrixes[
s->quant_sindex[
i]][0] << Al;
1568 s->quant_matrixes[
s->quant_sindex[
i]],
1571 "error y=%d x=%d\n", mb_y, mb_x);
1575 ff_dlog(
s->avctx,
"mb: %d %d processed\n", mb_y, mb_x);
1576 ff_dlog(
s->avctx,
"%d %d %d %d %d %d %d %d \n",
1577 mb_x, mb_y, x, y,
c,
s->bottom_field,
1578 (v * mb_y + y) * 8, (
h * mb_x + x) * 8);
1593 int se,
int Ah,
int Al)
1597 int c =
s->comp_index[0];
1598 uint16_t *quant_matrix =
s->quant_matrixes[
s->quant_sindex[0]];
1601 if (se < ss || se > 63) {
1608 s->coefs_finished[
c] |= (2ULL <<
se) - (1ULL <<
ss);
1610 s->restart_count = 0;
1612 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1613 int block_idx = mb_y *
s->block_stride[
c];
1614 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1615 uint8_t *last_nnz = &
s->last_nnz[
c][block_idx];
1616 for (mb_x = 0; mb_x <
s->mb_width; mb_x++,
block++, last_nnz++) {
1618 if (
s->restart_interval && !
s->restart_count)
1619 s->restart_count =
s->restart_interval;
1623 quant_matrix,
ss,
se, Al, &EOBRUN);
1626 quant_matrix,
ss,
se, Al, &EOBRUN);
1632 "error y=%d x=%d\n", mb_y, mb_x);
1647 const int bytes_per_pixel = 1 + (
s->bits > 8);
1648 const int block_size =
s->lossless ? 1 : 8;
1650 for (
c = 0;
c <
s->nb_components;
c++) {
1651 uint8_t *
data =
s->picture_ptr->data[
c];
1652 int linesize =
s->linesize[
c];
1653 int h =
s->h_max /
s->h_count[
c];
1654 int v =
s->v_max /
s->v_count[
c];
1655 int mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1656 int mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1658 if (~
s->coefs_finished[
c])
1661 if (
s->interlaced &&
s->bottom_field)
1662 data += linesize >> 1;
1664 for (mb_y = 0; mb_y < mb_height; mb_y++) {
1665 uint8_t *ptr =
data + (mb_y * linesize * 8 >>
s->avctx->lowres);
1666 int block_idx = mb_y *
s->block_stride[
c];
1667 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1668 for (mb_x = 0; mb_x < mb_width; mb_x++,
block++) {
1669 s->idsp.idct_put(ptr, linesize, *
block);
1672 ptr += bytes_per_pixel*8 >>
s->avctx->lowres;
1679 int mb_bitmask_size,
const AVFrame *reference)
1683 const int block_size =
s->lossless ? 1 : 8;
1684 int ilv, prev_shift;
1686 if (!
s->got_picture) {
1688 "Can not process SOS before SOF, skipping\n");
1697 nb_components = bytestream2_get_byteu(&
s->gB);
1700 "decode_sos: nb_components (%d)",
1704 if (
len != 4 + 2 * nb_components) {
1708 for (
i = 0;
i < nb_components;
i++) {
1709 id = bytestream2_get_byteu(&
s->gB);
1713 if (
id ==
s->component_id[
index])
1715 if (
index ==
s->nb_components) {
1717 "decode_sos: index(%d) out of components\n",
index);
1721 if (
s->avctx->codec_tag ==
MKTAG(
'M',
'T',
'S',
'J')
1722 && nb_components == 3 &&
s->nb_components == 3 &&
i)
1725 s->quant_sindex[
i] =
s->quant_index[
index];
1727 s->h_scount[
i] =
s->h_count[
index];
1728 s->v_scount[
i] =
s->v_count[
index];
1732 uint8_t
b = bytestream2_get_byteu(&
s->gB);
1733 s->dc_index[
i] =
b >> 4;
1734 s->ac_index[
i] =
b & 0x0F;
1736 if (
s->dc_index[
i] < 0 ||
s->ac_index[
i] < 0 ||
1737 s->dc_index[
i] >= 4 ||
s->ac_index[
i] >= 4)
1739 if (!
s->vlcs[0][
s->dc_index[
i]].table || !(
s->progressive ?
s->vlcs[2][
s->ac_index[0]].table :
s->vlcs[1][
s->ac_index[
i]].table))
1744 ilv = bytestream2_get_byteu(&
s->gB);
1745 if(
s->avctx->codec_tag !=
AV_RL32(
"CJPG")){
1746 uint8_t
b = bytestream2_get_byteu(&
s->gB);
1747 prev_shift =
b >> 4;
1748 point_transform =
b & 0x0F;
1750 prev_shift = point_transform = 0;
1752 if (nb_components > 1) {
1754 s->mb_width = (
s->width +
s->h_max * block_size - 1) / (
s->h_max * block_size);
1755 s->mb_height = (
s->height +
s->v_max * block_size - 1) / (
s->v_max * block_size);
1756 }
else if (!
s->ls) {
1757 h =
s->h_max /
s->h_scount[0];
1758 v =
s->v_max /
s->v_scount[0];
1759 s->mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1760 s->mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1761 s->nb_blocks[0] = 1;
1768 s->lossless ?
"lossless" :
"sequential DCT",
s->rgb ?
"RGB" :
"",
1769 predictor, point_transform, ilv,
s->bits,
s->mjpb_skiptosod,
1770 s->pegasus_rct ?
"PRCT" : (
s->rct ?
"RCT" :
""), nb_components);
1774 if (
s->mjpb_skiptosod)
1782 for (
i = 0;
i < nb_components;
i++)
1783 s->last_dc[
i] = (4 <<
s->bits);
1785 if (
s->avctx->hwaccel) {
1788 s->raw_scan_buffer_size >= bytes_to_start);
1791 s->raw_scan_buffer + bytes_to_start,
1792 s->raw_scan_buffer_size - bytes_to_start);
1796 }
else if (
s->lossless) {
1798 if (CONFIG_JPEGLS_DECODER &&
s->ls) {
1803 point_transform, ilv)) < 0)
1806 if (
s->rgb ||
s->bayer) {
1812 nb_components)) < 0)
1821 point_transform)) < 0)
1825 prev_shift, point_transform,
1826 mb_bitmask, mb_bitmask_size, reference)) < 0)
1831 if (
s->interlaced &&
1840 s->bottom_field ^= 1;
1858 if (bytestream2_get_be16u(&
s->gB) != 4)
1860 s->restart_interval = bytestream2_get_be16u(&
s->gB);
1861 s->restart_count = 0;
1863 s->restart_interval);
1883 id = bytestream2_get_be32u(&
s->gB);
1902 i = bytestream2_get_byteu(&
s->gB);
len--;
1908 int t_w, t_h, v1, v2;
1912 v1 = bytestream2_get_byteu(&
s->gB);
1913 v2 = bytestream2_get_byteu(&
s->gB);
1916 s->avctx->sample_aspect_ratio.num = bytestream2_get_be16u(&
s->gB);
1917 s->avctx->sample_aspect_ratio.den = bytestream2_get_be16u(&
s->gB);
1918 if (
s->avctx->sample_aspect_ratio.num <= 0
1919 ||
s->avctx->sample_aspect_ratio.den <= 0) {
1920 s->avctx->sample_aspect_ratio.num = 0;
1921 s->avctx->sample_aspect_ratio.den = 1;
1926 "mjpeg: JFIF header found (version: %x.%x) SAR=%d/%d\n",
1928 s->avctx->sample_aspect_ratio.num,
1929 s->avctx->sample_aspect_ratio.den);
1933 t_w = bytestream2_get_byteu(&
s->gB);
1934 t_h = bytestream2_get_byteu(&
s->gB);
1937 if (
len -10 - (t_w * t_h * 3) > 0)
1938 len -= t_w * t_h * 3;
1947 && bytestream2_peek_byteu(&
s->gB) ==
'e'
1948 && bytestream2_peek_be32u(&
s->gB) !=
AV_RB32(
"e_CM")) {
1953 s->adobe_transform = bytestream2_get_byteu(&
s->gB);
1955 av_log(
s->avctx,
AV_LOG_INFO,
"mjpeg: Adobe header found, transform=%d\n",
s->adobe_transform);
1962 int pegasus_rct =
s->pegasus_rct;
1965 "Pegasus lossless jpeg header found\n");
1972 switch (
i=bytestream2_get_byteu(&
s->gB)) {
1989 if (
rgb !=
s->rgb || pegasus_rct !=
s->pegasus_rct) {
1995 s->pegasus_rct = pegasus_rct;
2000 s->colr = bytestream2_get_byteu(&
s->gB);
2007 s->xfrm = bytestream2_get_byteu(&
s->gB);
2023 flags = bytestream2_get_byteu(&
s->gB);
2024 layout = bytestream2_get_byteu(&
s->gB);
2025 type = bytestream2_get_byteu(&
s->gB);
2035 }
else if (
type == 1) {
2047 if (!(
flags & 0x04)) {
2075 id = bytestream2_get_be32u(&
s->gB);
2097 unsigned nummarkers;
2099 id = bytestream2_get_be32u(&
s->gB);
2100 id2 = bytestream2_get_be24u(&
s->gB);
2108 seqno = bytestream2_get_byteu(&
s->gB);
2115 nummarkers = bytestream2_get_byteu(&
s->gB);
2117 if (nummarkers == 0) {
2120 }
else if (
s->iccnum != 0 && nummarkers !=
s->iccnum) {
2123 }
else if (seqno > nummarkers) {
2129 if (
s->iccnum == 0) {
2134 s->iccnum = nummarkers;
2137 if (
s->iccentries[seqno - 1].data) {
2142 s->iccentries[seqno - 1].length =
len;
2144 if (!
s->iccentries[seqno - 1].data) {
2153 if (
s->iccread >
s->iccnum)
2161 "mjpeg: error, decode_app parser read over the end\n");
2182 for (
i = 0;
i <
len;
i++)
2183 cbuf[
i] = bytestream2_get_byteu(&
s->gB);
2184 if (cbuf[
i - 1] ==
'\n')
2193 if (!strncmp(cbuf,
"AVID", 4)) {
2195 }
else if (!strcmp(cbuf,
"CS=ITU601"))
2197 else if ((!strncmp(cbuf,
"Intel(R) JPEG Library, version 1", 32) &&
s->avctx->codec_tag) ||
2198 (!strncmp(cbuf,
"Metasoft MJPEG Codec", 20)))
2200 else if (!strcmp(cbuf,
"MULTISCOPE II")) {
2201 s->avctx->sample_aspect_ratio = (
AVRational) { 1, 2 };
2212 static int find_marker(
const uint8_t **pbuf_ptr,
const uint8_t *buf_end)
2214 const uint8_t *buf_ptr;
2218 buf_ptr = *pbuf_ptr;
2219 while ((buf_ptr = memchr(buf_ptr, 0xff, buf_end - buf_ptr))) {
2221 while (buf_ptr < buf_end) {
2234 ff_dlog(
NULL,
"find_marker skipped %d bytes\n", skipped);
2235 *pbuf_ptr = buf_ptr;
2240 const uint8_t **buf_ptr,
const uint8_t *buf_end,
2241 const uint8_t **unescaped_buf_ptr,
2242 int *unescaped_buf_size)
2253 const uint8_t *
src = *buf_ptr;
2254 const uint8_t *ptr =
src;
2255 uint8_t *
dst =
s->buffer;
2257 #define copy_data_segment(skip) do { \
2258 ptrdiff_t length = (ptr - src) - (skip); \
2260 memcpy(dst, src, length); \
2270 while (ptr < buf_end) {
2271 uint8_t x = *(ptr++);
2275 while (ptr < buf_end && x == 0xff) {
2290 if (x < RST0 || x >
RST7) {
2300 #undef copy_data_segment
2302 *unescaped_buf_ptr =
s->buffer;
2303 *unescaped_buf_size =
dst -
s->buffer;
2304 memset(
s->buffer + *unescaped_buf_size, 0,
2308 (buf_end - *buf_ptr) - (
dst -
s->buffer));
2310 const uint8_t *
src = *buf_ptr;
2311 uint8_t *
dst =
s->buffer;
2317 while (
src + t < buf_end) {
2318 uint8_t x =
src[t++];
2320 while ((
src + t < buf_end) && x == 0xff)
2333 uint8_t x =
src[
b++];
2335 if (x == 0xFF &&
b < t) {
2347 *unescaped_buf_ptr =
dst;
2348 *unescaped_buf_size = (bit_count + 7) >> 3;
2349 memset(
s->buffer + *unescaped_buf_size, 0,
2352 *unescaped_buf_ptr = *buf_ptr;
2353 *unescaped_buf_size = buf_end - *buf_ptr;
2363 if (
s->iccentries) {
2364 for (
i = 0;
i <
s->iccnum;
i++)
2374 int *got_frame,
const AVPacket *avpkt,
2375 const uint8_t *buf,
const int buf_size)
2378 const uint8_t *buf_end, *buf_ptr;
2379 const uint8_t *unescaped_buf_ptr;
2381 int unescaped_buf_size;
2389 s->buf_size = buf_size;
2393 s->adobe_transform = -1;
2400 buf_end = buf + buf_size;
2401 while (buf_ptr < buf_end) {
2405 &unescaped_buf_size);
2409 }
else if (unescaped_buf_size > INT_MAX / 8) {
2411 "MJPEG packet 0x%x too big (%d/%d), corrupt data?\n",
2445 if (!CONFIG_JPEGLS_DECODER &&
2466 s->restart_interval = 0;
2467 s->restart_count = 0;
2468 s->raw_image_buffer = buf_ptr;
2469 s->raw_image_buffer_size = buf_end - buf_ptr;
2500 #if FF_API_CODEC_PROPS
2513 #if FF_API_CODEC_PROPS
2525 if (!CONFIG_JPEGLS_DECODER ||
2534 s->progressive &&
s->cur_scan &&
s->got_picture)
2537 if (!
s->got_picture) {
2539 "Found EOI before any SOF, ignoring\n");
2542 if (
s->interlaced) {
2543 s->bottom_field ^= 1;
2545 if (
s->bottom_field == !
s->interlace_polarity)
2572 s->raw_scan_buffer = buf_ptr;
2573 s->raw_scan_buffer_size = buf_end - buf_ptr;
2596 "mjpeg: unsupported coding type (%x)\n",
start_code);
2608 goto the_end_no_picture;
2616 "marker parser used %d bytes\n",
2619 if (
s->got_picture &&
s->cur_scan) {
2654 for (
p = 0;
p<
s->nb_components;
p++) {
2655 uint8_t *
line =
s->picture_ptr->data[
p];
2658 if (!
s->upscale_h[
p])
2664 if (
s->upscale_v[
p] == 1)
2667 for (
int i = 0;
i <
h;
i++) {
2668 if (
s->upscale_h[
p] == 1) {
2669 if (is16bit) ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 2];
2677 }
else if (
s->upscale_h[
p] == 2) {
2679 ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 3];
2681 ((uint16_t*)
line)[
w - 2] = ((uint16_t*)
line)[
w - 1];
2690 }
else if (
s->upscale_h[
p] == 4){
2692 uint16_t *line16 = (uint16_t *)
line;
2693 line16[
w - 1] = line16[(
w - 1) >> 2];
2695 line16[
w - 2] = (line16[(
w - 1) >> 2] * 3 + line16[(
w - 2) >> 2]) >> 2;
2697 line16[
w - 3] = (line16[(
w - 1) >> 2] + line16[(
w - 2) >> 2]) >> 1;
2734 for (
p = 0;
p <
s->nb_components;
p++) {
2738 if (!
s->upscale_v[
p])
2744 dst = &((uint8_t *)
s->picture_ptr->data[
p])[(
h - 1) *
s->linesize[
p]];
2746 uint8_t *
src1 = &((uint8_t *)
s->picture_ptr->data[
p])[
i *
s->upscale_v[
p] / (
s->upscale_v[
p] + 1) *
s->linesize[
p]];
2747 uint8_t *
src2 = &((uint8_t *)
s->picture_ptr->data[
p])[(
i + 1) *
s->upscale_v[
p] / (
s->upscale_v[
p] + 1) *
s->linesize[
p]];
2754 dst -=
s->linesize[
p];
2758 if (
s->flipped && !
s->rgb) {
2784 int w =
s->picture_ptr->width;
2785 int h =
s->picture_ptr->height;
2787 for (
int i = 0;
i <
h;
i++) {
2792 +
s->picture_ptr->linesize[
index]*
i;
2794 for (j=0; j<
w; j++) {
2796 int r =
dst[0][j] * k;
2797 int g =
dst[1][j] * k;
2798 int b =
dst[2][j] * k;
2799 dst[0][j] =
g*257 >> 16;
2800 dst[1][j] =
b*257 >> 16;
2801 dst[2][j] =
r*257 >> 16;
2803 memset(
dst[3], 255,
w);
2807 int w =
s->picture_ptr->width;
2808 int h =
s->picture_ptr->height;
2810 for (
int i = 0;
i <
h;
i++) {
2815 +
s->picture_ptr->linesize[
index]*
i;
2817 for (j=0; j<
w; j++) {
2819 int r = (255 -
dst[0][j]) * k;
2820 int g = (128 -
dst[1][j]) * k;
2821 int b = (128 -
dst[2][j]) * k;
2822 dst[0][j] =
r*257 >> 16;
2823 dst[1][j] = (
g*257 >> 16) + 128;
2824 dst[2][j] = (
b*257 >> 16) + 128;
2826 memset(
dst[3], 255,
w);
2833 stereo->
type =
s->stereo3d->type;
2834 stereo->
flags =
s->stereo3d->flags;
2839 if (
s->iccnum != 0 &&
s->iccnum ==
s->iccread) {
2845 for (
int i = 0;
i <
s->iccnum;
i++)
2846 total_size +=
s->iccentries[
i].length;
2856 for (
int i = 0;
i <
s->iccnum;
i++) {
2857 memcpy(sd->
data +
offset,
s->iccentries[
i].data,
s->iccentries[
i].length);
2863 if (
s->exif_metadata.entries) {
2881 return buf_ptr - buf;
2899 if (
s->interlaced &&
s->bottom_field == !
s->interlace_polarity &&
s->got_picture && !avctx->
frame_num) {
2904 s->picture_ptr =
NULL;
2911 s->ljpeg_buffer_size = 0;
2913 for (
i = 0;
i < 3;
i++) {
2914 for (j = 0; j < 4; j++)
2936 s->smv_next_frame = 0;
2940 #if CONFIG_MJPEG_DECODER
2941 #define OFFSET(x) offsetof(MJpegDecodeContext, x)
2942 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2944 {
"extern_huff",
"Use external huffman table.",
2949 static const AVClass mjpegdec_class = {
2968 .p.priv_class = &mjpegdec_class,
2974 #if CONFIG_MJPEG_NVDEC_HWACCEL
2977 #if CONFIG_MJPEG_VAAPI_HWACCEL
2984 #if CONFIG_THP_DECODER
3001 #if CONFIG_SMVJPEG_DECODER
3016 s->smv_frame->pts +=
s->smv_frame->duration;
3017 s->smv_next_frame = (
s->smv_next_frame + 1) %
s->smv_frames_per_jpeg;
3019 if (
s->smv_next_frame == 0)
3030 if (
s->smv_next_frame > 0)
3040 s->smv_frame->pkt_dts =
pkt->
dts;
3049 s->smv_frame->duration /=
s->smv_frames_per_jpeg;
3057 smv_process_frame(avctx,
frame);
3062 .
p.
name =
"smvjpeg",
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
void av_packet_unref(AVPacket *pkt)
Wipe the packet.
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
#define FF_ENABLE_DEPRECATION_WARNINGS
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
int ff_decode_get_packet(AVCodecContext *avctx, AVPacket *pkt)
Called by decoders to get the next packet for decoding.
#define AV_LOG_WARNING
Something somehow does not look correct.
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
AVPixelFormat
Pixel format.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option name
#define AV_EF_EXPLODE
abort decoding on minor error detection
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int decode_slice(AVCodecContext *c, void *arg)
static av_always_inline int bytestream2_get_bytes_left(const GetByteContext *g)
int av_exif_parse_buffer(void *logctx, const uint8_t *buf, size_t size, AVExifMetadata *ifd, enum AVExifHeaderMode header_mode)
Decodes the EXIF data provided in the buffer and writes it into the struct *ifd.
enum AVColorSpace colorspace
YUV colorspace type.
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
static av_always_inline void mjpeg_copy_block(MJpegDecodeContext *s, uint8_t *dst, const uint8_t *src, int linesize, int lowres)
The official guide to swscale for confused that is
static av_always_inline int bytestream2_tell(const GetByteContext *g)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
#define GET_VLC(code, name, gb, table, bits, max_depth)
If the vlc code is invalid and max_depth=1, then no bits will be removed.
static av_always_inline void bytestream2_skipu(GetByteContext *g, unsigned int size)
const FFCodec ff_smvjpeg_decoder
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
#define se(name, range_min, range_max)
static int get_bits_count(const GetBitContext *s)
static void init_idct(AVCodecContext *avctx)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
#define AV_PIX_FMT_YUVA420P16
@ AVCOL_RANGE_JPEG
Full range content.
const FFCodec ff_mjpeg_decoder
enum AVFieldOrder field_order
Field order.
int step
Number of elements between 2 horizontally consecutive pixels.
const uint8_t ff_mjpeg_val_dc[]
#define AV_LOG_VERBOSE
Detailed information.
#define FF_HW_SIMPLE_CALL(avctx, function)
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
#define UPDATE_CACHE(name, gb)
const uint8_t ff_mjpeg_bits_ac_chrominance[]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
#define GET_CACHE(name, gb)
static void skip_bits(GetBitContext *s, int n)
av_cold void ff_permute_scantable(uint8_t dst[64], const uint8_t src[64], const uint8_t permutation[64])
static av_cold void close(AVCodecParserContext *s)
@ AV_STEREO3D_SIDEBYSIDE
Views are next to each other.
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
int ff_mjpeg_decode_dht(MJpegDecodeContext *s)
static int ljpeg_decode_yuv_scan(MJpegDecodeContext *s, int predictor, int point_transform, int nb_components)
static void shift_output(MJpegDecodeContext *s, uint8_t *ptr, int linesize)
AVCodec p
The public AVCodec.
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
const struct AVCodec * codec
av_cold int ff_mjpeg_decode_init(AVCodecContext *avctx)
enum AVDiscard skip_frame
Skip decoding for selected frames.
@ AV_STEREO3D_2D
Video is not stereoscopic (and metadata has to be there).
#define AV_PIX_FMT_YUVA444P16
int ff_mjpeg_decode_frame_from_buf(AVCodecContext *avctx, AVFrame *frame, int *got_frame, const AVPacket *avpkt, const uint8_t *buf, const int buf_size)
static int mjpeg_decode_com(MJpegDecodeContext *s)
static int init_default_huffman_tables(MJpegDecodeContext *s)
void av_exif_free(AVExifMetadata *ifd)
Frees all resources associated with the given EXIF metadata struct.
static double val(void *priv, double ch)
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_PIX_FMT_GRAY16
#define ss(width, name, subs,...)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
const AVProfile ff_mjpeg_profiles[]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int decode_dc_progressive(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, uint16_t *quant_matrix, int Al)
#define AV_PIX_FMT_YUV422P16
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
#define FF_CODEC_PROPERTY_LOSSLESS
#define AV_PROFILE_MJPEG_HUFFMAN_BASELINE_DCT
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
static int handle_rstn(MJpegDecodeContext *s, int nb_components)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define CLOSE_READER(name, gb)
#define FF_CODEC_DECODE_CB(func)
@ AV_STEREO3D_LINES
Views are packed per line, as if interlaced.
av_cold void ff_blockdsp_init(BlockDSPContext *c)
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static void parse_avid(MJpegDecodeContext *s, uint8_t *buf, int len)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
int ff_jpegls_decode_picture(MJpegDecodeContext *s, int near, int point_transform, int ilv)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_PIX_FMT_YUV420P16
static void reset_icc_profile(MJpegDecodeContext *s)
av_cold int ff_mjpeg_decode_end(AVCodecContext *avctx)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define CODEC_LONG_NAME(str)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
int flags
Additional information about the frame packing.
static int mjpeg_parse_len(MJpegDecodeContext *s, int *plen, const char *name)
@ AVDISCARD_ALL
discard all
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
int ff_decode_exif_attach_ifd(AVCodecContext *avctx, AVFrame *frame, const AVExifMetadata *ifd)
Describe the class of an AVClass context structure.
static void mjpeg_idct_scan_progressive_ac(MJpegDecodeContext *s)
static void copy_block2(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
@ AV_EXIF_TIFF_HEADER
The TIFF header starts with 0x49492a00, or 0x4d4d002a.
#define AV_PROFILE_MJPEG_HUFFMAN_EXTENDED_SEQUENTIAL_DCT
Rational number (pair of numerator and denominator).
int ff_mjpeg_decode_dqt(MJpegDecodeContext *s)
struct AVCodecInternal * internal
Private context used for internal data.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static int mjpeg_decode_dc(MJpegDecodeContext *s, int dc_index, int *val)
const char * av_default_item_name(void *ptr)
Return the context name.
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
@ AV_FRAME_DATA_ICC_PROFILE
The data contains an ICC profile as an opaque octet buffer following the format described by ISO 1507...
#define LAST_SKIP_BITS(name, gb, num)
static int mjpeg_decode_scan(MJpegDecodeContext *s, int nb_components, int Ah, int Al, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
static int decode_block_refinement(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
static int mjpeg_decode_scan_progressive_ac(MJpegDecodeContext *s, int ss, int se, int Ah, int Al)
const uint8_t ff_mjpeg_val_ac_chrominance[]
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int mjpeg_decode_app(MJpegDecodeContext *s, int start_code)
#define copy_data_segment(skip)
int lowres
low resolution decoding, 1-> 1/2 size, 2->1/4 size
const OptionDef options[]
static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int(* init)(AVBSFContext *ctx)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static int ljpeg_decode_rgb_scan(MJpegDecodeContext *s, int nb_components, int predictor, int point_transform)
const uint8_t ff_mjpeg_val_ac_luminance[]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
int ff_jpegls_decode_lse(MJpegDecodeContext *s)
Decode LSE block with initialization parameters.
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
int ff_mjpeg_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static int decode_block_progressive(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
int ff_mjpeg_decode_sos(MJpegDecodeContext *s, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
#define AV_PROFILE_MJPEG_JPEG_LS
const uint8_t ff_mjpeg_bits_ac_luminance[]
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
#define AV_NOPTS_VALUE
Undefined timestamp value.
int ff_frame_new_side_data(const AVCodecContext *avctx, AVFrame *frame, enum AVFrameSideDataType type, size_t size, AVFrameSideData **psd)
Wrapper around av_frame_new_side_data, which rejects side data overridden by the demuxer.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
#define FF_CODEC_CAP_SKIP_FRAME_FILL_PARAM
The decoder extracts and fills its parameters even if the frame is skipped due to the skip_frame sett...
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
#define OPEN_READER(name, gb)
int64_t dts
Decompression timestamp in AVStream->time_base units; the time at which the packet is decompressed.
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static int get_xbits(GetBitContext *s, int n)
Read MPEG-1 dc-style VLC (sign bit + mantissa with no MSB).
#define HWACCEL_NVDEC(codec)
static void predictor(uint8_t *src, ptrdiff_t size)
static int find_marker(const uint8_t **pbuf_ptr, const uint8_t *buf_end)
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
@ AV_PIX_FMT_VAAPI
Hardware acceleration through VA-API, data[3] contains a VASurfaceID.
#define AV_LOG_INFO
Standard information.
const FFCodec ff_thp_decoder
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static void copy_block4(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
static int decode_block(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, int ac_index, uint16_t *quant_matrix)
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
uint8_t * extradata
Out-of-band global headers that may be used by some codecs.
#define AV_PROFILE_MJPEG_HUFFMAN_LOSSLESS
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
@ AV_FIELD_BB
Bottom coded first, bottom displayed first.
@ AV_STEREO3D_TOPBOTTOM
Views are on top of each other.
static int mjpeg_decode_dri(MJpegDecodeContext *s)
AVPacket * in_pkt
This packet is used to hold the packet given to decoders implementing the .decode API; it is unused b...
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
static av_cold void decode_flush(AVCodecContext *avctx)
#define FF_DEBUG_STARTCODE
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
const char * name
Name of the codec implementation.
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
void * av_calloc(size_t nmemb, size_t size)
#define FF_CODEC_CAP_ICC_PROFILES
Codec supports embedded ICC profiles (AV_FRAME_DATA_ICC_PROFILE).
const uint8_t ff_zigzag_direct[64]
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
int64_t frame_num
Frame counter, set by libavcodec.
void ff_vlc_free(VLC *vlc)
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
static const float pred[4]
AVStereo3D * av_stereo3d_alloc(void)
Allocate an AVStereo3D structure and set its fields to default values.
#define FFSWAP(type, a, b)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
void * av_malloc(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
enum AVStereo3DType type
How views are packed within the video.
static const uint8_t * align_get_bits(GetBitContext *s)
static const char * hwaccel
@ LSE
JPEG-LS extension parameters.
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
int ff_mjpeg_find_marker(MJpegDecodeContext *s, const uint8_t **buf_ptr, const uint8_t *buf_end, const uint8_t **unescaped_buf_ptr, int *unescaped_buf_size)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without and describe what they for example set the foo of the bar offset is the offset of the field in your see the OFFSET() macro
main external API structure.
#define FF_CODEC_RECEIVE_FRAME_CB(func)
#define SHOW_UBITS(name, gb, num)
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
@ AVCHROMA_LOC_CENTER
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
#define FF_HW_CALL(avctx, function,...)
static const FFHWAccel * ffhwaccel(const AVHWAccel *codec)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
IDirect3DDxgiInterfaceAccess _COM_Outptr_ void ** p
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
const uint8_t ff_mjpeg_bits_dc_chrominance[]
int ff_mjpeg_decode_sof(MJpegDecodeContext *s)
#define FF_DISABLE_DEPRECATION_WARNINGS
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
int coded_width
Bitstream width / height, may be different from width/height e.g.
@ AV_PIX_FMT_GRAY16LE
Y , 16bpp, little-endian.
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static av_always_inline unsigned int bytestream2_get_bufferu(GetByteContext *g, uint8_t *dst, unsigned int size)
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
#define avpriv_request_sample(...)
Structure to hold side data for an AVFrame.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
const FF_VISIBILITY_PUSH_HIDDEN uint8_t ff_mjpeg_bits_dc_luminance[]
int ff_mjpeg_build_vlc(VLC *vlc, const uint8_t *bits_table, const uint8_t *val_table, int is_ac, void *logctx)
This structure stores compressed data.
@ AV_OPT_TYPE_BOOL
Underlying C type is int.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define HWACCEL_VAAPI(codec)
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
attribute_deprecated unsigned properties
Properties of the stream that gets decoded.
static const SheerTable rgb[2]
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
Stereo 3D type: this structure describes how two videos are packed within a single video surface,...
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
#define AV_PROFILE_MJPEG_HUFFMAN_PROGRESSIVE_DCT
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_RB24
#define PREDICT(ret, topleft, top, left, predictor)
static int return_frame(AVFilterContext *ctx, int is_second)
#define AV_FRAME_FLAG_LOSSLESS
A decoder can use this flag to mark frames which were originally encoded losslessly.
static void BS_FUNC() skip(BSCTX *bc, unsigned int n)
Skip n bits in the buffer.
#define av_fourcc2str(fourcc)