Go to the documentation of this file.
33 #define C (M_LN10 * 0.1)
34 #define SOLVE_SIZE (5)
35 #define NB_PROFILE_BANDS (15)
163 #define OFFSET(x) offsetof(AudioFFTDeNoiseContext, x)
164 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
165 #define AFR AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
230 d1 =
a /
s->band_centre[band];
232 d2 =
b /
s->band_centre[band];
234 d3 =
s->band_centre[band] /
c;
237 return -d1 + d2 - d3;
242 for (
int i = 0;
i <
size - 1;
i++) {
243 for (
int j =
i + 1; j <
size; j++) {
247 for (
int k =
i + 1; k <
size; k++) {
256 for (
int i = 0;
i <
size - 1;
i++) {
257 for (
int j =
i + 1; j <
size; j++) {
259 vector[j] -= d * vector[
i];
265 for (
int i =
size - 2;
i >= 0;
i--) {
266 double d = vector[
i];
267 for (
int j =
i + 1; j <
size; j++)
277 double product, sum,
f;
287 s->vector_b[j] = sum;
296 sum += product *
s->vector_b[j];
306 return (
b *
a - 1.0) / (
b +
a - 2.0);
308 return (
b *
a - 2.0 *
a + 1.0) / (
b -
a);
313 double floor,
int len,
double *rnum,
double *rden)
315 double num = 0., den = 0.;
318 for (
int n = 0; n <
len; n++) {
319 const double v = spectral[n];
344 for (
int n = 0; n <
size; n++) {
345 const double p =
S[n] -
mean;
355 double *prior,
double *prior_band_excit,
int track_noise)
359 const double *abs_var = dnch->
abs_var;
361 const double rratio = 1. - ratio;
362 const int *bin2band =
s->bin2band;
369 double *gain = dnch->
gain;
371 for (
int i = 0;
i <
s->bin_count;
i++) {
372 double sqr_new_gain, new_gain,
power, mag, mag_abs_var, new_mag_abs_var;
376 noisy_data[
i] = mag =
hypot(fft_data_flt[
i].re, fft_data_flt[
i].im);
379 noisy_data[
i] = mag =
hypot(fft_data_dbl[
i].re, fft_data_dbl[
i].im);
386 mag_abs_var =
power / abs_var[
i];
387 new_mag_abs_var = ratio * prior[
i] + rratio *
fmax(mag_abs_var - 1.0, 0.0);
388 new_gain = new_mag_abs_var / (1.0 + new_mag_abs_var);
389 sqr_new_gain = new_gain * new_gain;
390 prior[
i] = mag_abs_var * sqr_new_gain;
396 double flatness, num, den;
400 flatness = num / den;
401 if (flatness > 0.8) {
403 const double new_floor =
av_clipd(10.0 * log10(den) - 100.0 +
offset, -90., -20.);
410 for (
int i = 0;
i <
s->number_of_bands;
i++) {
415 for (
int i = 0;
i <
s->bin_count;
i++)
418 for (
int i = 0;
i <
s->number_of_bands;
i++) {
419 band_excit[
i] =
fmax(band_excit[
i],
420 s->band_alpha[
i] * band_excit[
i] +
421 s->band_beta[
i] * prior_band_excit[
i]);
422 prior_band_excit[
i] = band_excit[
i];
425 for (
int j = 0,
i = 0; j <
s->number_of_bands; j++) {
426 for (
int k = 0; k <
s->number_of_bands; k++) {
431 for (
int i = 0;
i <
s->bin_count;
i++)
432 dnch->
amt[
i] = band_amt[bin2band[
i]];
434 for (
int i = 0;
i <
s->bin_count;
i++) {
435 if (dnch->
amt[
i] > abs_var[
i]) {
438 const double limit = sqrt(abs_var[
i] / dnch->
amt[
i]);
446 memcpy(smoothed_gain, gain,
s->bin_count *
sizeof(*smoothed_gain));
447 if (
s->gain_smooth > 0) {
448 const int r =
s->gain_smooth;
450 for (
int i =
r;
i <
s->bin_count -
r;
i++) {
451 const double gc = gain[
i];
452 double num = 0., den = 0.;
454 for (
int j = -
r; j <=
r; j++) {
455 const double g = gain[
i + j];
456 const double d = 1. -
fabs(
g - gc);
462 smoothed_gain[
i] = num / den;
468 for (
int i = 0;
i <
s->bin_count;
i++) {
469 const float new_gain = smoothed_gain[
i];
471 fft_data_flt[
i].
re *= new_gain;
472 fft_data_flt[
i].
im *= new_gain;
476 for (
int i = 0;
i <
s->bin_count;
i++) {
477 const double new_gain = smoothed_gain[
i];
479 fft_data_dbl[
i].
re *= new_gain;
480 fft_data_dbl[
i].
im *= new_gain;
488 double d = x / 7500.0;
490 return 13.0 * atan(7.6
E-4 * x) + 3.5 * atan(d * d);
496 return lrint(
s->band_centre[0] / 1.5);
498 return s->band_centre[band];
508 i =
lrint(
s->band_centre[band] / 1.224745);
511 return FFMIN(
i,
s->sample_rate / 2);
517 double band_noise, d2, d3, d4, d5;
518 int i = 0, j = 0, k = 0;
522 for (
int m = j; m <
s->bin_count; m++) {
537 dnch->
rel_var[m] =
exp((d5 * d3 + band_noise * d4) *
C);
548 char *custom_noise_str, *p, *
arg, *saveptr =
NULL;
552 if (!
s->band_noise_str)
555 custom_noise_str = p =
av_strdup(
s->band_noise_str);
577 memcpy(dnch->
band_noise, band_noise,
sizeof(band_noise));
585 if (
s->track_residual)
589 if (update_auto_var) {
594 if (
s->track_residual) {
613 for (
int i = 0;
i <
s->bin_count;
i++) {
625 mean += band_noise[
i];
629 band_noise[
i] -=
mean;
636 double wscale, sar, sum, sdiv;
637 int i, j, k, m, n,
ret, tx_type;
646 s->sample_size =
sizeof(
float);
652 s->sample_size =
sizeof(
double);
663 s->channels =
inlink->ch_layout.nb_channels;
664 s->sample_rate =
inlink->sample_rate;
665 s->sample_advance =
s->sample_rate / 80;
666 s->window_length = 3 *
s->sample_advance;
667 s->fft_length2 = 1 << (32 -
ff_clz(
s->window_length));
668 s->fft_length =
s->fft_length2;
669 s->buffer_length =
s->fft_length * 2;
670 s->bin_count =
s->fft_length2 / 2 + 1;
672 s->band_centre[0] = 80;
674 s->band_centre[
i] =
lrint(1.5 *
s->band_centre[
i - 1] + 5.0);
675 if (
s->band_centre[
i] < 1000) {
676 s->band_centre[
i] = 10 * (
s->band_centre[
i] / 10);
677 }
else if (
s->band_centre[
i] < 5000) {
678 s->band_centre[
i] = 50 * ((
s->band_centre[
i] + 20) / 50);
679 }
else if (
s->band_centre[
i] < 15000) {
680 s->band_centre[
i] = 100 * ((
s->band_centre[
i] + 45) / 100);
682 s->band_centre[
i] = 1000 * ((
s->band_centre[
i] + 495) / 1000);
699 s->matrix_b[
i++] = pow(k, j);
704 s->matrix_c[
i++] = pow(j, k);
706 s->window =
av_calloc(
s->window_length,
sizeof(*
s->window));
707 s->bin2band =
av_calloc(
s->bin_count,
sizeof(*
s->bin2band));
708 if (!
s->window || !
s->bin2band)
711 sdiv =
s->band_multiplier;
712 for (
i = 0;
i <
s->bin_count;
i++)
715 s->number_of_bands =
s->bin2band[
s->bin_count - 1] + 1;
717 s->band_alpha =
av_calloc(
s->number_of_bands,
sizeof(*
s->band_alpha));
718 s->band_beta =
av_calloc(
s->number_of_bands,
sizeof(*
s->band_beta));
719 if (!
s->band_alpha || !
s->band_beta)
722 for (
int ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
725 switch (
s->noise_type) {
792 for (
int ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
798 p1 = pow(0.1, 2.5 / sdiv);
799 p2 = pow(0.1, 1.0 / sdiv);
801 for (m = 0; m <
s->number_of_bands; m++) {
802 for (n = 0; n <
s->number_of_bands; n++) {
813 for (m = 0; m <
s->number_of_bands; m++) {
815 prior_band_excit[m] = 0.0;
818 for (m = 0; m <
s->bin_count; m++)
822 for (m = 0; m <
s->number_of_bands; m++) {
823 for (n = 0; n <
s->number_of_bands; n++)
829 for (
int i = 0;
i <
s->number_of_bands;
i++) {
830 if (
i <
lrint(12.0 * sdiv)) {
833 dnch->
band_excit[
i] = pow(0.1, 2.5 - 0.2 * (
i / sdiv - 14.0));
838 for (
int i = 0;
i <
s->buffer_length;
i++)
842 for (
int i = 0;
i <
s->number_of_bands;
i++)
843 for (
int k = 0; k <
s->number_of_bands; k++)
848 sar =
s->sample_advance /
s->sample_rate;
849 for (
int i = 0;
i <
s->bin_count;
i++) {
850 if ((
i ==
s->fft_length2) || (
s->bin2band[
i] > j)) {
851 double d6 = (
i - 1) *
s->sample_rate /
s->fft_length;
852 double d7 =
fmin(0.008 + 2.2 / d6, 0.03);
853 s->band_alpha[j] =
exp(-sar / d7);
854 s->band_beta[j] = 1.0 -
s->band_alpha[j];
863 wscale = sqrt(8.0 / (9.0 *
s->fft_length));
865 for (
int i = 0;
i <
s->window_length;
i++) {
866 double d10 = sin(
i *
M_PI /
s->window_length);
872 s->window_weight = 0.5 * sum;
873 s->floor = (1LL << 48) *
exp(-23.025558369790467) *
s->window_weight;
874 s->sample_floor =
s->floor *
exp(4.144600506562284);
876 for (
int ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
890 if (
s->noise_band_edge[j] >
lrint(1.1 *
s->noise_band_edge[j - 1]))
915 double mag2, var = 0.0, avr = 0.0, avi = 0.0;
918 double *fft_in_dbl = dnch->
fft_in;
919 float *fft_in_flt = dnch->
fft_in;
920 int edge, j, k, n, edgemax;
924 for (
int i = 0;
i <
s->window_length;
i++)
925 fft_in_flt[
i] =
s->window[
i] * src_flt[
i] * (1LL << 23);
927 for (
int i =
s->window_length; i < s->fft_length2;
i++)
931 for (
int i = 0;
i <
s->window_length;
i++)
932 fft_in_dbl[
i] =
s->window[
i] * src_dbl[
i] * (1LL << 23);
934 for (
int i =
s->window_length; i < s->fft_length2;
i++)
941 edge =
s->noise_band_edge[0];
946 for (
int i = j;
i <= edgemax;
i++) {
947 if ((
i == j) && (
i < edgemax)) {
956 j =
s->noise_band_edge[k];
967 avr += fft_out_flt[n].
re;
968 avi += fft_out_flt[n].
im;
969 mag2 = fft_out_flt[n].
re * fft_out_flt[n].
re +
970 fft_out_flt[n].
im * fft_out_flt[n].
im;
973 avr += fft_out_dbl[n].
re;
974 avi += fft_out_dbl[n].
im;
975 mag2 = fft_out_dbl[n].
re * fft_out_dbl[n].
re +
976 fft_out_dbl[n].
im * fft_out_dbl[n].
im;
982 mag2 =
fmax(mag2,
s->sample_floor);
996 double *sample_noise)
998 for (
int i = 0;
i <
s->noise_band_count;
i++) {
1009 sample_noise[
i] = sample_noise[
i - 1];
1015 double *sample_noise)
1023 temp[m] = sample_noise[m];
1028 sum +=
s->matrix_b[
i++] *
temp[n];
1029 s->vector_b[m] = sum;
1035 sum +=
s->matrix_c[
i++] *
s->vector_b[n];
1043 new_band_noise[m] =
temp[m];
1044 new_band_noise[m] =
av_clipd(new_band_noise[m], -24.0, 24.0);
1048 memcpy(dnch->
band_noise, new_band_noise,
sizeof(new_band_noise));
1057 const int window_length =
s->window_length;
1058 const double *
window =
s->window;
1060 for (
int ch = start; ch < end; ch++) {
1062 const double *src_dbl = (
const double *)in->
extended_data[ch];
1063 const float *src_flt = (
const float *)in->
extended_data[ch];
1065 double *fft_in_dbl = dnch->
fft_in;
1066 float *fft_in_flt = dnch->
fft_in;
1068 switch (
s->format) {
1070 for (
int m = 0; m < window_length; m++)
1071 fft_in_flt[m] =
window[m] * src_flt[m] * (1LL << 23);
1073 for (
int m = window_length; m <
s->fft_length2; m++)
1074 fft_in_flt[m] = 0.
f;
1077 for (
int m = 0; m < window_length; m++)
1078 fft_in_dbl[m] =
window[m] * src_dbl[m] * (1LL << 23);
1080 for (
int m = window_length; m <
s->fft_length2; m++)
1094 switch (
s->format) {
1096 for (
int m = 0; m < window_length; m++)
1097 dst[m] +=
s->window[m] * fft_in_flt[m] / (1LL << 23);
1100 for (
int m = 0; m < window_length; m++)
1101 dst[m] +=
s->window[m] * fft_in_dbl[m] / (1LL << 23);
1114 const int output_mode =
ctx->is_disabled ?
IN_MODE :
s->output_mode;
1115 const int offset =
s->window_length -
s->sample_advance;
1118 for (
int ch = 0; ch <
s->channels; ch++) {
1119 uint8_t *
src = (uint8_t *)
s->winframe->extended_data[ch];
1121 memmove(
src,
src +
s->sample_advance *
s->sample_size,
1126 (
s->sample_advance - in->
nb_samples) *
s->sample_size);
1129 if (
s->track_noise) {
1130 double average = 0.0,
min = DBL_MAX,
max = -DBL_MAX;
1132 for (
int ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
1140 average /=
inlink->ch_layout.nb_channels;
1142 for (
int ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
1145 switch (
s->noise_floor_link) {
1160 for (
int ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
1166 s->sample_noise = 1;
1167 s->sample_noise_blocks = 0;
1170 if (
s->sample_noise) {
1171 for (
int ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
1176 s->sample_noise_blocks++;
1180 for (
int ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
1184 if (
s->sample_noise_blocks <= 0)
1190 s->sample_noise = 0;
1191 s->sample_noise_blocks = 0;
1210 for (
int ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
1213 const double *orig_dbl = (
const double *)
s->winframe->extended_data[ch];
1214 const float *orig_flt = (
const float *)
s->winframe->extended_data[ch];
1215 double *dst_dbl = (
double *)
out->extended_data[ch];
1216 float *dst_flt = (
float *)
out->extended_data[ch];
1218 switch (output_mode) {
1220 switch (
s->format) {
1222 for (
int m = 0; m <
out->nb_samples; m++)
1223 dst_flt[m] = orig_flt[m];
1226 for (
int m = 0; m <
out->nb_samples; m++)
1227 dst_dbl[m] = orig_dbl[m];
1232 switch (
s->format) {
1234 for (
int m = 0; m <
out->nb_samples; m++)
1235 dst_flt[m] =
src[m];
1238 for (
int m = 0; m <
out->nb_samples; m++)
1239 dst_dbl[m] =
src[m];
1244 switch (
s->format) {
1246 for (
int m = 0; m <
out->nb_samples; m++)
1247 dst_flt[m] = orig_flt[m] -
src[m];
1250 for (
int m = 0; m <
out->nb_samples; m++)
1251 dst_dbl[m] = orig_dbl[m] -
src[m];
1262 memmove(
src,
src +
s->sample_advance, (
s->window_length -
s->sample_advance) *
sizeof(*
src));
1263 memset(
src + (
s->window_length -
s->sample_advance), 0,
s->sample_advance *
sizeof(*
src));
1309 for (
int ch = 0; ch <
s->channels; ch++) {
1335 char *res,
int res_len,
int flags)
1344 if (!strcmp(cmd,
"sample_noise") || !strcmp(cmd,
"sn"))
1347 for (
int ch = 0; ch <
s->channels; ch++) {
1371 .p.priv_class = &afftdn_class,
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
@ AV_SAMPLE_FMT_FLTP
float, planar
double noise_band_auto_var[NB_PROFILE_BANDS]
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static int activate(AVFilterContext *ctx)
static const AVFilterPad inputs[]
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static void solve(double *matrix, double *vector, int size)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define FILTER_INPUTS(array)
This structure describes decoded (raw) audio or video data.
static void process_frame(AVFilterContext *ctx, AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, double *prior, double *prior_band_excit, int track_noise)
static void sample_noise_block(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, AVFrame *in, int ch)
const char * name
Filter name.
int nb_channels
Number of channels in this layout.
A link between two filters.
double vector_b[SOLVE_SIZE]
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags)
Initialize a transform context with the given configuration (i)MDCTs with an odd length are currently...
Link properties exposed to filter code, but not external callers.
double noise_band_norm[NB_PROFILE_BANDS]
static void factor(double *array, int size)
double noise_band_avr[NB_PROFILE_BANDS]
static int config_input(AVFilterLink *inlink)
static SDL_Window * window
static void set_noise_profile(AVFilterContext *ctx, DeNoiseChannel *dnch, double *sample_noise)
size_t complex_sample_size
static double freq2bark(double x)
static int noise(AVBSFContext *ctx, AVPacket *pkt)
double band_noise[NB_PROFILE_BANDS]
AVChannelLayout ch_layout
Channel layout of the audio data.
A filter pad used for either input or output.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FILTER_SAMPLEFMTS(...)
void(* av_tx_fn)(AVTXContext *s, void *out, void *in, ptrdiff_t stride)
Function pointer to a function to perform the transform.
double last_noise_reduction
static const AVOption afftdn_options[]
double matrix_a[SOLVE_SIZE *SOLVE_SIZE]
static __device__ float floor(float a)
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok().
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int av_sscanf(const char *string, const char *format,...)
double noise_band_sample[NB_PROFILE_BANDS]
#define FILTER_OUTPUTS(array)
static int get_band_edge(AudioFFTDeNoiseContext *s, int band)
Describe the class of an AVClass context structure.
static __device__ float fabs(float a)
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
double matrix_b[SOLVE_SIZE *NB_PROFILE_BANDS]
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
const AVFilterPad ff_audio_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_AUDIO.
static void set_band_parameters(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static FilterLink * ff_filter_link(AVFilterLink *link)
static void init_sample_noise(DeNoiseChannel *dnch)
double last_residual_floor
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
static int output_frame(AVFilterLink *inlink, AVFrame *in)
double fmin(double, double)
static av_const double hypot(double x, double y)
double matrix_c[SOLVE_SIZE *NB_PROFILE_BANDS]
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
static void finish_sample_noise(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, double *sample_noise)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
FF_FILTER_FORWARD_WANTED(outlink, inlink)
static double limit_gain(double a, double b)
av_cold void av_tx_uninit(AVTXContext **ctx)
Frees a context and sets *ctx to NULL, does nothing when *ctx == NULL.
#define AV_LOG_INFO
Standard information.
static av_cold void uninit(AVFilterContext *ctx)
@ AV_OPT_TYPE_FLOAT
Underlying C type is float.
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
int nb_samples
number of audio samples (per channel) described by this frame
#define i(width, name, range_min, range_max)
double noise_band_avi[NB_PROFILE_BANDS]
uint8_t ** extended_data
pointers to the data planes/channels.
double * prior_band_excit
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
const char * name
Pad name.
int ff_inlink_queued_samples(AVFilterLink *link)
void * av_calloc(size_t nmemb, size_t size)
const FFFilter ff_af_afftdn
static double limit(double x)
static int array[MAX_W *MAX_W]
static double get_band_noise(AudioFFTDeNoiseContext *s, int band, double a, double b, double c)
@ AV_TX_FLOAT_RDFT
Real to complex and complex to real DFTs.
double fmax(double, double)
static float power(float r, float g, float b, float max)
static void set_parameters(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, int update_var, int update_auto_var)
static double process_get_band_noise(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, int band)
int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
static void spectral_flatness(AudioFFTDeNoiseContext *s, const double *const spectral, double floor, int len, double *rnum, double *rden)
@ AV_OPT_TYPE_INT
Underlying C type is int.
@ AV_SAMPLE_FMT_DBLP
double, planar
static float mean(const float *input, int size)
double noise_band_var[NB_PROFILE_BANDS]
int band_centre[NB_PROFILE_BANDS]
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
char * av_strdup(const char *s)
Duplicate a string.
AVFILTER_DEFINE_CLASS(afftdn)
AVFilter p
The public AVFilter.
AVChannelLayout ch_layout
channel layout of current buffer (see libavutil/channel_layout.h)
static void scale(int *out, const int *in, const int w, const int h, const int shift)
FF_FILTER_FORWARD_STATUS(inlink, outlink)
@ AV_OPT_TYPE_BOOL
Underlying C type is int.
static double floor_offset(const double *S, int size, double mean)
int noise_band_edge[NB_PROFILE_BANDS+2]
static void reduce_mean(double *band_noise)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
@ AV_OPT_TYPE_STRING
Underlying C type is a uint8_t* that is either NULL or points to a C string allocated with the av_mal...
static int get_band_centre(AudioFFTDeNoiseContext *s, int band)
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
static void read_custom_noise(AVFilterContext *ctx, int ch)
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.