Go to the documentation of this file.
38 switch (
sps->bit_depth) {
59 "The following bit-depths are currently specified: 8, 10, 12 bits, "
60 "chroma_format_idc is %d, depth is %d\n",
61 r->sps_chroma_format_idc,
sps->bit_depth);
69 sps->hshift[0] =
sps->vshift[0] = 0;
70 sps->hshift[2] =
sps->hshift[1] =
desc->log2_chroma_w;
71 sps->vshift[2] =
sps->vshift[1] =
desc->log2_chroma_h;
73 sps->pixel_shift =
sps->bit_depth > 8;
82 sps->bit_depth =
r->sps_bitdepth_minus8 + 8;
83 sps->qp_bd_offset = 6 * (
sps->bit_depth - 8);
84 sps->log2_transform_range =
85 r->sps_extended_precision_flag ?
FFMAX(15,
FFMIN(20,
sps->bit_depth + 6)) : 15;
92 const int num_qp_tables =
r->sps_same_qp_table_for_chroma_flag ?
93 1 : (
r->sps_joint_cbcr_enabled_flag ? 3 : 2);
95 for (
int i = 0;
i < num_qp_tables;
i++) {
96 int num_points_in_qp_table;
99 int off =
sps->qp_bd_offset;
101 num_points_in_qp_table =
r->sps_num_points_in_qp_table_minus1[
i] + 1;
103 qp_out[0] = qp_in[0] =
r->sps_qp_table_start_minus26[
i] + 26;
104 for (
int j = 0; j < num_points_in_qp_table; j++ ) {
105 const uint8_t delta_qp_out = (
r->sps_delta_qp_in_val_minus1[
i][j] ^
r->sps_delta_qp_diff_val[
i][j]);
106 delta_qp_in[j] =
r->sps_delta_qp_in_val_minus1[
i][j] + 1;
109 if (qp_in[j] + delta_qp_in[j] > 63 || qp_out[j] + delta_qp_out > 63)
111 qp_in[j+1] = qp_in[j] + delta_qp_in[j];
112 qp_out[j+1] = qp_out[j] + delta_qp_out;
114 sps->chroma_qp_table[
i][qp_in[0] + off] = qp_out[0];
115 for (
int k = qp_in[0] - 1 + off; k >= 0; k--)
116 sps->chroma_qp_table[
i][k] =
av_clip(
sps->chroma_qp_table[
i][k+1]-1, -off, 63);
118 for (
int j = 0; j < num_points_in_qp_table; j++) {
119 int sh = delta_qp_in[j] >> 1;
120 for (
int k = qp_in[j] + 1 + off, m = 1; k <= qp_in[j+1] + off; k++, m++) {
121 sps->chroma_qp_table[
i][k] =
sps->chroma_qp_table[
i][qp_in[j] + off] +
122 ((qp_out[j+1] - qp_out[j]) * m + sh) / delta_qp_in[j];
125 for (
int k = qp_in[num_points_in_qp_table] + 1 + off; k <= 63 + off; k++)
126 sps->chroma_qp_table[
i][k] =
av_clip(
sps->chroma_qp_table[
i][k-1] + 1, -
sps->qp_bd_offset, 63);
128 if (
r->sps_same_qp_table_for_chroma_flag) {
129 memcpy(&
sps->chroma_qp_table[1], &
sps->chroma_qp_table[0],
sizeof(
sps->chroma_qp_table[0]));
130 memcpy(&
sps->chroma_qp_table[2], &
sps->chroma_qp_table[0],
sizeof(
sps->chroma_qp_table[0]));
138 sps->max_pic_order_cnt_lsb = 1 << (
sps->r->sps_log2_max_pic_order_cnt_lsb_minus4 + 4);
145 sps->max_num_merge_cand = 6 -
r->sps_six_minus_max_num_merge_cand;
146 sps->max_num_ibc_merge_cand = 6 -
r->sps_six_minus_max_num_ibc_merge_cand;
148 if (
sps->r->sps_gpm_enabled_flag) {
149 sps->max_num_gpm_merge_cand = 2;
150 if (
sps->max_num_merge_cand >= 3)
151 sps->max_num_gpm_merge_cand =
sps->max_num_merge_cand -
r->sps_max_num_merge_cand_minus_max_num_gpm_cand;
154 sps->log2_parallel_merge_level =
r->sps_log2_parallel_merge_level_minus2 + 2;
161 sps->ctb_log2_size_y =
r->sps_log2_ctu_size_minus5 + 5;
162 sps->ctb_size_y = 1 <<
sps->ctb_log2_size_y;
163 sps->min_cb_log2_size_y =
r->sps_log2_min_luma_coding_block_size_minus2 + 2;
164 sps->min_cb_size_y = 1 <<
sps->min_cb_log2_size_y;
165 sps->max_tb_size_y = 1 << (
r->sps_max_luma_transform_size_64_flag ? 6 : 5);
166 sps->max_ts_size = 1 << (
r->sps_log2_transform_skip_max_size_minus2 + 2);
173 if (
r->sps_ladf_enabled_flag) {
174 sps->num_ladf_intervals =
r->sps_num_ladf_intervals_minus2 + 2;
175 sps->ladf_interval_lower_bound[0] = 0;
176 for (
int i = 0;
i <
sps->num_ladf_intervals - 1;
i++) {
177 sps->ladf_interval_lower_bound[
i + 1] =
178 sps->ladf_interval_lower_bound[
i] +
r->sps_ladf_delta_threshold_minus1[
i] + 1;
195 if (
r->sps_chroma_format_idc != 0) {
242 if (old_sps->
r == rsps || !memcmp(old_sps->
r, rsps,
sizeof(*old_sps->
r)))
261 pps->chroma_qp_offset[
CB - 1] =
pps->r->pps_cb_qp_offset;
262 pps->chroma_qp_offset[
CR - 1] =
pps->r->pps_cr_qp_offset;
263 pps->chroma_qp_offset[
JCBCR - 1]=
pps->r->pps_joint_cbcr_qp_offset_value;
264 for (
int i = 0;
i < 6;
i++) {
265 pps->chroma_qp_offset_list[
i][
CB - 1] =
pps->r->pps_cb_qp_offset_list[
i];
266 pps->chroma_qp_offset_list[
i][
CR - 1] =
pps->r->pps_cr_qp_offset_list[
i];
267 pps->chroma_qp_offset_list[
i][
JCBCR - 1]=
pps->r->pps_joint_cbcr_qp_offset_list[
i];
275 pps->width =
r->pps_pic_width_in_luma_samples;
276 pps->height =
r->pps_pic_height_in_luma_samples;
280 pps->ctb_count =
pps->ctb_width *
pps->ctb_height;
282 pps->min_cb_width =
pps->width >>
sps->min_cb_log2_size_y;
283 pps->min_cb_height =
pps->height >>
sps->min_cb_log2_size_y;
304 if (!
pps->col_bd || !
pps->row_bd || !
pps->ctb_to_col_bd || !
pps->ctb_to_row_bd)
307 for (
int i = 0, j = 0;
i <
r->num_tile_columns;
i++) {
309 j +=
r->col_width_val[
i];
310 for (
int k =
pps->col_bd[
i]; k < j; k++)
311 pps->ctb_to_col_bd[k] =
pps->col_bd[
i];
313 pps->col_bd[
r->num_tile_columns] =
pps->ctb_to_col_bd[
pps->ctb_width] =
pps->ctb_width;
315 for (
int i = 0, j = 0;
i <
r->num_tile_rows;
i++) {
317 j +=
r->row_height_val[
i];
318 for (
int k =
pps->row_bd[
i]; k < j; k++)
319 pps->ctb_to_row_bd[k] =
pps->row_bd[
i];
321 pps->row_bd[
r->num_tile_rows] =
pps->ctb_to_row_bd[
pps->ctb_height] =
pps->ctb_height;
329 if (
r->pps_tile_idx_delta_present_flag) {
330 tile_idx +=
r->pps_tile_idx_delta_val[
i];
332 tile_idx +=
r->pps_slice_width_in_tiles_minus1[
i] + 1;
333 if (tile_idx %
r->num_tile_columns == 0)
334 tile_idx += (
r->pps_slice_height_in_tiles_minus1[
i]) *
r->num_tile_columns;
341 *tile_x = tile_idx %
pps->r->num_tile_columns;
342 *tile_y = tile_idx /
pps->r->num_tile_columns;
345 static void ctu_xy(
int *rx,
int *ry,
const int tile_x,
const int tile_y,
const VVCPPS *
pps)
347 *rx =
pps->col_bd[tile_x];
348 *ry =
pps->row_bd[tile_y];
353 return pps->ctb_width * ry + rx;
357 const int w,
const int h)
360 for (
int y = 0; y <
h; y++) {
361 for (
int x = 0; x <
w; x++) {
362 pps->ctb_addr_in_slice[*off] =
ctu_rs(rx + x, ry + y,
pps);
371 for (
int j = 0; j <
pps->r->num_tile_rows; j++) {
372 for (
int i = 0;
i <
pps->r->num_tile_columns;
i++) {
374 pps->col_bd[
i],
pps->row_bd[j],
375 pps->r->col_width_val[
i],
pps->r->row_height_val[j]);
380 static void subpic_tiles(
int *tile_x,
int *tile_y,
int *tile_x_end,
int *tile_y_end,
383 const int rx =
sps->r->sps_subpic_ctu_top_left_x[
i];
384 const int ry =
sps->r->sps_subpic_ctu_top_left_y[
i];
386 *tile_x = *tile_y = 0;
388 while (
pps->col_bd[*tile_x] < rx)
391 while (
pps->row_bd[*tile_y] < ry)
394 *tile_x_end = (*tile_x);
395 *tile_y_end = (*tile_y);
397 while (
pps->col_bd[*tile_x_end] < rx +
sps->r->sps_subpic_width_minus1[
i] + 1)
400 while (
pps->row_bd[*tile_y_end] < ry +
sps->r->sps_subpic_height_minus1[
i] + 1)
407 pps->col_bd[tx],
pps->row_bd[ty],
408 pps->r->col_width_val[tx],
sps->r->sps_subpic_height_minus1[
i] + 1);
413 for (
int ty = tile_y; ty < y_end; ty++) {
414 for (
int tx = tile_x; tx < x_end; tx++) {
416 pps->col_bd[tx],
pps->row_bd[ty],
417 pps->r->col_width_val[tx],
pps->r->row_height_val[ty]);
424 int tx, ty, x_end, y_end;
426 pps->slice_start_offset[
i] = *off;
427 pps->num_ctus_in_slice[
i] = 0;
430 if (ty + 1 == y_end &&
sps->r->sps_subpic_height_minus1[
i] + 1 <
pps->r->row_height_val[ty])
438 if (!
sps->r->sps_subpic_info_present_flag) {
441 for (
int i = 0;
i <
pps->r->pps_num_slices_in_pic_minus1 + 1;
i++)
449 int rx, ry, ctu_y_end, tile_x, tile_y;
453 ctu_y_end = ry +
r->row_height_val[tile_y];
454 while (ry < ctu_y_end) {
455 pps->slice_start_offset[
i] = *off;
457 r->col_width_val[tile_x],
r->slice_height_in_ctus[
i]);
458 ry +=
r->slice_height_in_ctus[
i++];
467 int rx, ry, tile_x, tile_y;
470 pps->slice_start_offset[
i] = *off;
471 pps->num_ctus_in_slice[
i] = 0;
472 for (
int ty = tile_y; ty <= tile_y +
r->pps_slice_height_in_tiles_minus1[
i]; ty++) {
473 for (
int tx = tile_x; tx <= tile_x +
r->pps_slice_width_in_tiles_minus1[
i]; tx++) {
474 const int idx = ty *
r->num_tile_columns + tx;
475 if (tile_in_slice[idx])
477 tile_in_slice[idx] =
true;
480 r->col_width_val[tx],
r->row_height_val[ty]);
491 int tile_idx = 0, off = 0;
493 if (
r->pps_single_slice_per_subpic_flag) {
498 for (
int i = 0;
i <
r->pps_num_slices_in_pic_minus1 + 1;
i++) {
499 if (!
r->pps_slice_width_in_tiles_minus1[
i] &&
500 !
r->pps_slice_height_in_tiles_minus1[
i]) {
501 if (tile_in_slice[tile_idx])
503 tile_in_slice[tile_idx] =
true;
513 for (
int i = 0;
i <
r->num_tiles_in_pic;
i++) {
514 if (!tile_in_slice[
i])
526 for (
int tile_y = 0; tile_y <
r->num_tile_rows; tile_y++) {
527 for (
int tile_x = 0; tile_x <
r->num_tile_columns; tile_x++) {
529 pps_add_ctus(
pps, &off, rx, ry,
r->col_width_val[tile_x],
r->row_height_val[tile_y]);
537 if (!
pps->ctb_addr_in_slice)
540 if (
pps->r->pps_rect_slice_flag)
552 if (
r->pps_ref_wraparound_enabled_flag)
553 pps->ref_wraparound_offset = (
pps->width /
sps->min_cb_size_y) -
r->pps_pic_width_minus_wraparound_offset;
566 pps->subpic_x[
i] = 0;
567 pps->subpic_y[
i] = 0;
568 pps->subpic_width[
i] =
pps->width;
569 pps->subpic_height[
i] =
pps->height;
637 if (old_pps && old_pps->
r == rpps)
660 rpps = h266->
pps[
ph->ph_pic_parameter_set_id];
685 #define WEIGHT_TABLE(x) \
686 w->nb_weights[L##x] = r->num_weights_l##x; \
687 for (int i = 0; i < w->nb_weights[L##x]; i++) { \
688 w->weight_flag[L##x][LUMA][i] = r->luma_weight_l##x##_flag[i]; \
689 w->weight_flag[L##x][CHROMA][i] = r->chroma_weight_l##x##_flag[i]; \
690 w->weight[L##x][LUMA][i] = denom[LUMA] + r->delta_luma_weight_l##x[i]; \
691 w->offset[L##x][LUMA][i] = r->luma_offset_l##x[i]; \
692 for (int j = CB; j <= CR; j++) { \
693 w->weight[L##x][j][i] = denom[CHROMA] + r->delta_chroma_weight_l##x[i][j - 1]; \
694 w->offset[L##x][j][i] = 128 + r->delta_chroma_offset_l##x[i][j - 1]; \
695 w->offset[L##x][j][i] -= (128 * w->weight[L##x][j][i]) >> w->log2_denom[CHROMA]; \
696 w->offset[L##x][j][i] = av_clip_intp2(w->offset[L##x][j][i], 7); \
704 w->log2_denom[
LUMA] =
r->luma_log2_weight_denom;
705 w->log2_denom[
CHROMA] =
w->log2_denom[
LUMA] +
r->delta_chroma_log2_weight_denom;
715 const int max_poc_lsb = 1 << (
sps->sps_log2_max_pic_order_cnt_lsb_minus4 + 4);
716 const int prev_poc_lsb = poc_tid0 % max_poc_lsb;
717 const int prev_poc_msb = poc_tid0 - prev_poc_lsb;
718 const int poc_lsb =
ph->ph_pic_order_cnt_lsb;
721 if (
ph->ph_poc_msb_cycle_present_flag) {
722 poc_msb =
ph->ph_poc_msb_cycle_val * max_poc_lsb;
723 }
else if (is_clvss) {
726 if (poc_lsb < prev_poc_lsb && prev_poc_lsb - poc_lsb >= max_poc_lsb / 2)
727 poc_msb = prev_poc_msb + max_poc_lsb;
728 else if (poc_lsb > prev_poc_lsb && poc_lsb - prev_poc_lsb > max_poc_lsb / 2)
729 poc_msb = prev_poc_msb - max_poc_lsb;
731 poc_msb = prev_poc_msb;
734 return poc_msb + poc_lsb;
738 uint16_t *pivot1, uint16_t *pivot2, uint16_t *
scale_coeff,
const int idx,
const int max)
740 const int lut_sample =
752 const int off = 1 << (
shift - 1);
767 memset(cw, 0,
sizeof(cw));
775 input_pivot[
i] =
i * org_cw;
779 inv_scale_coeff[
i] = 0;
782 inv_scale_coeff[
i] = org_cw * (1 << 11) / cw[
i];
789 const int idx_y =
sample / org_cw;
803 while (i <= lmcs->max_bin_idx &&
sample >= lmcs->
pivot[
i + 1])
807 inv_scale_coeff,
i,
max);
820 if (
sps->sps_affine_enabled_flag)
821 return 5 -
sps->sps_five_minus_max_num_subblock_merge_cand;
822 return sps->sps_sbtmvp_enabled_flag &&
ph->ph_temporal_mvp_enabled_flag;
825 static int ph_vb_pos(uint16_t *vbs, uint8_t *num_vbs,
const uint16_t *pos_minus_1,
const uint8_t num_pos, uint16_t
max,
const int ctb_size_y)
828 for (
int i = 0;
i < num_pos;
i++) {
829 if (pos_minus_1[
i] >
max)
832 vbs[
i] = (pos_minus_1[
i] + 1) << 3;
835 if (
i && vbs[
i] < vbs[
i - 1] + ctb_size_y)
843 #define VBF(f) (sps->sps_virtual_boundaries_present_flag ? sps->sps_##f : ph->r->ph_##f)
844 #define VBFS(c, d) VBF(virtual_boundary_pos_##c##_minus1), VBF(num_##d##_virtual_boundaries)
848 const int ctb_size_y = 1 << (
sps->sps_log2_ctu_size_minus5 + 5);
851 if (!
sps->sps_virtual_boundaries_enabled_flag)
858 ret =
ph_vb_pos(
ph->vb_pos_y, &
ph->num_hor_vbs,
VBFS(y, hor),
pps->pps_pic_height_in_luma_samples, ctb_size_y);
872 if (
pps->pps_wp_info_in_ph_flag)
883 const int poc_tid0,
const int is_clvss)
909 rpps = h266->
pps[
ph->ph_pic_parameter_set_id];
920 if (
ph->ph_explicit_scaling_list_enabled_flag)
923 if (
ph->ph_lmcs_enabled_flag) {
938 s->no_output_before_recovery_flag = 1;
940 s->no_output_before_recovery_flag =
s->last_eos;
945 if (
s->no_output_before_recovery_flag) {
947 s->gdr_recovery_point_poc =
ph->poc +
ph->r->ph_recovery_poc_cnt;
997 const uint8_t *
abs,
const uint8_t *sign,
const int size)
1004 const uint8_t *mapped_abs,
const uint8_t *sign)
1007 int c = mapped_abs[
i];
1009 c = (1 - 2 * sign[
i]) * (1 << (
c - 1));
1016 if (!
aps->alf_luma_filter_signal_flag)
1020 const int ref =
aps->alf_luma_coeff_delta_idx[
i];
1021 const uint8_t *
abs =
aps->alf_luma_coeff_abs[
ref];
1022 const uint8_t *sign =
aps->alf_luma_coeff_sign[
ref];
1032 if (!
aps->alf_chroma_filter_signal_flag)
1037 const uint8_t *
abs =
aps->alf_chroma_coeff_abs[
i];
1038 const uint8_t *sign =
aps->alf_chroma_coeff_sign[
i];
1049 {
aps->alf_cc_cb_mapped_coeff_abs,
aps->alf_cc_cr_mapped_coeff_abs };
1051 {
aps->alf_cc_cb_coeff_sign,
aps->alf_cc_cr_coeff_sign };
1052 const int signaled[] = {
aps->alf_cc_cb_filter_signal_flag,
aps->alf_cc_cr_filter_signal_flag};
1057 for (
int idx = 0; idx < 2; idx++) {
1058 if (signaled[idx]) {
1106 for (
int id = 0;
id <
SL_MAX_ID;
id++) {
1108 const int log2_size =
av_log2(matrix_size);
1109 const int list_size = matrix_size * matrix_size;
1111 const uint8_t *
pred;
1116 if (!
aps->scaling_list_copy_mode_flag[
id]) {
1122 for (
int i = 0;
i < list_size;
i++) {
1127 next_coef +=
aps->scaling_list_delta_coef[
id][
i];
1135 if (!
aps->scaling_list_copy_mode_flag[
id] && !
aps->scaling_list_pred_mode_flag[
id]) {
1137 }
else if (!
aps->scaling_list_pred_id_delta[
id]) {
1140 const int ref_id =
id -
aps->scaling_list_pred_id_delta[
id];
1151 if (!
aps->scaling_list_copy_mode_flag[
id] && !
aps->scaling_list_pred_mode_flag[
id])
1153 else if (!
aps->scaling_list_pred_id_delta[
id])
1157 for (
int i = 0;
i < list_size;
i++) {
1160 const int off = y * matrix_size + x;
1187 switch (
aps->aps_params_type) {
1215 if (!alf_aps_chroma)
1239 if (
pps->r->pps_rect_slice_flag) {
1240 int pic_level_slice_idx = slice_address;
1242 pic_level_slice_idx +=
pps->r->num_slices_in_subpic[j];
1246 int tile_x = slice_address %
pps->r->num_tile_columns;
1247 int tile_y = slice_address /
pps->r->num_tile_columns;
1248 const int slice_start_ctb =
pps->row_bd[tile_y] *
pps->ctb_width +
pps->col_bd[tile_x] *
pps->r->row_height_val[tile_y];
1254 tile_x = tile_idx %
pps->r->num_tile_columns;
1255 tile_y = tile_idx /
pps->r->num_tile_columns;
1263 const int init_qp =
pps->pps_init_qp_minus26 + 26;
1265 if (!
pps->pps_qp_delta_info_in_ph_flag)
1275 if (!
pps->pps_wp_info_in_ph_flag &&
1276 ((
pps->pps_weighted_pred_flag &&
IS_P(rsh)) ||
1277 (
pps->pps_weighted_bipred_flag &&
IS_B(rsh))))
1285 if (!
r->sh_deblocking_filter_disabled_flag) {
1297 const int min_cb_log2_size_y =
sps->sps_log2_min_luma_coding_block_size_minus2 + 2;
1298 int min_qt_log2_size_y[2];
1301 min_qt_log2_size_y[
LUMA] = (min_cb_log2_size_y +
ph->ph_log2_diff_min_qt_min_cb_intra_slice_luma);
1302 min_qt_log2_size_y[
CHROMA] = (min_cb_log2_size_y +
ph->ph_log2_diff_min_qt_min_cb_intra_slice_chroma);
1304 sh->
max_bt_size[
LUMA] = 1 << (min_qt_log2_size_y[
LUMA] +
ph->ph_log2_diff_max_bt_min_qt_intra_slice_luma);
1307 sh->
max_tt_size[
LUMA] = 1 << (min_qt_log2_size_y[
LUMA] +
ph->ph_log2_diff_max_tt_min_qt_intra_slice_luma);
1317 min_qt_log2_size_y[
i] = (min_cb_log2_size_y +
ph->ph_log2_diff_min_qt_min_cb_inter_slice);
1318 sh->
max_bt_size[
i] = 1 << (min_qt_log2_size_y[
i] +
ph->ph_log2_diff_max_bt_min_qt_inter_slice);
1319 sh->
max_tt_size[
i] = 1 << (min_qt_log2_size_y[
i] +
ph->ph_log2_diff_max_tt_min_qt_inter_slice);
1333 if (
sps->sps_entry_point_offsets_present_flag) {
1339 if (
pps->ctb_to_row_bd[ctb_addr_y] !=
pps->ctb_to_row_bd[pre_ctb_addr_y] ||
1340 pps->ctb_to_col_bd[ctb_addr_x] !=
pps->ctb_to_col_bd[pre_ctb_addr_x] ||
1341 (ctb_addr_y != pre_ctb_addr_y &&
sps->sps_entropy_coding_sync_enabled_flag)) {
1372 if (!fps->
sps || !fps->
pps)
uint16_t sps_subpic_height_minus1[VVC_MAX_SLICES]
uint8_t cu_qp_delta_subdiv
CuQpDeltaSubdiv.
void * content_ref
If content is reference counted, a RefStruct reference backing content.
uint32_t num_ctus_in_curr_slice
NumCtusInCurrSlice.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
uint8_t sps_log2_ctu_size_minus5
int ff_vvc_decode_frame_ps(VVCFrameParamSets *fps, struct VVCContext *s)
uint32_t entry_point_start_ctu[VVC_MAX_ENTRY_POINTS]
entry point start in ctu_addr
const H266RawPPS * r
RefStruct reference.
#define SL_MAX_MATRIX_SIZE
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
RefStruct is an API for creating reference-counted objects with minimal overhead.
uint8_t cu_chroma_qp_offset_subdiv
CuChromaQpOffsetSubdiv.
static void alf_derive(VVCALF *alf, const H266RawAPS *aps)
#define LMCS_MAX_BIN_SIZE
static av_always_inline int scale_coeff(const TransformBlock *tb, int coeff, const int scale, const int scale_m, const int log2_transform_range)
static int FUNC() ph(CodedBitstreamContext *ctx, RWContext *rw, H266RawPH *current)
uint16_t sps_subpic_ctu_top_left_y[VVC_MAX_SLICES]
static void pps_single_slice_picture(VVCPPS *pps, int *off)
static int aps_decode_scaling(const VVCScalingList **scaling, const H266RawAPS *aps)
uint8_t lmcs_delta_abs_crs
uint8_t sps_ccalf_enabled_flag
@ VVC_MAX_POINTS_IN_QP_TABLE
static void sh_qp_y(VVCSH *sh, const H266RawPPS *pps, const H266RawPictureHeader *ph)
#define AV_PIX_FMT_YUV420P10
const H266RawSliceHeader * r
RefStruct reference.
static int sps_chroma_qp_table(VVCSPS *sps)
static void pps_subpic(VVCPPS *pps, const VVCSPS *sps)
static int decode_ph(VVCFrameParamSets *fps, const H266RawPictureHeader *rph, void *rph_ref, const int poc_tid0, const int is_clvss)
static int pps_add_ctus(VVCPPS *pps, int *off, const int rx, const int ry, const int w, const int h)
uint8_t pps_seq_parameter_set_id
static void bit_depth(AudioStatsContext *s, const uint64_t *const mask, uint8_t *depth)
uint8_t lmcs_delta_max_bin_idx
static const VVCPPS * pps_alloc(const H266RawPPS *rpps, const VVCSPS *sps)
uint8_t num_chroma_filters
Coded bitstream unit structure.
static void sh_inter(VVCSH *sh, const H266RawSPS *sps, const H266RawPPS *pps)
static int decode_pps(VVCParamSets *ps, const H266RawPPS *rpps)
uint16_t chroma_scale_coeff[LMCS_MAX_BIN_SIZE]
H266RawPPS * pps[VVC_MAX_PPS_COUNT]
RefStruct references.
const VVCSPS * sps
RefStruct reference.
#define ALF_NUM_COEFF_CHROMA
static int pps_slice_map(VVCPPS *pps, const VVCSPS *sps)
uint16_t sps_subpic_width_minus1[VVC_MAX_SLICES]
int ff_vvc_decode_sh(VVCSH *sh, const VVCFrameParamSets *fps, const CodedBitstreamUnit *unit)
const VVCPPS * pps_list[VVC_MAX_PPS_COUNT]
RefStruct reference.
static int derive_matrix_size(const int id)
int16_t cc_coeff[2][ALF_NUM_FILTERS_CC][ALF_NUM_COEFF_CC]
const VVCScalingList * sl
RefStruct reference.
const uint8_t ff_vvc_scaling_pred_16[8 *8]
void ff_vvc_frame_ps_free(VVCFrameParamSets *fps)
static void * av_refstruct_allocz(size_t size)
Equivalent to av_refstruct_alloc_ext(size, 0, NULL, NULL)
uint8_t chroma_clip_idx[ALF_NUM_FILTERS_CHROMA][ALF_NUM_COEFF_CHROMA]
#define GDR_SET_RECOVERED(s)
#define AV_PIX_FMT_YUV444P10
static void sps_ladf(VVCSPS *sps)
static void pps_no_rect_slice(VVCPPS *pps)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
uint16_t lmcs_delta_abs_cw[16]
#define FF_ARRAY_ELEMS(a)
uint8_t sps_seq_parameter_set_id
#define AV_CEIL_RSHIFT(a, b)
static int decode_frame_ps(VVCFrameParamSets *fps, const VVCParamSets *ps, const CodedBitstreamH266Context *h266, const int poc_tid0, const int is_clvss)
static void * av_refstruct_alloc_ext(size_t size, unsigned flags, void *opaque, void(*free_cb)(AVRefStructOpaque opaque, void *obj))
A wrapper around av_refstruct_alloc_ext_c() for the common case of a non-const qualified opaque.
static int ph_vb(VVCPH *ph, const H266RawSPS *sps, const H266RawPPS *pps)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
const VVCSPS * sps_list[VVC_MAX_SPS_COUNT]
RefStruct reference.
#define AV_PIX_FMT_GRAY10
static void pred_weight_table(PredWeightTable *w, const H266RawPredWeightTable *r)
static int FUNC() aps(CodedBitstreamContext *ctx, RWContext *rw, H266RawAPS *current, int prefix)
static void pps_free(AVRefStructOpaque opaque, void *obj)
static void alf_coeff_cc(int16_t *coeff, const uint8_t *mapped_abs, const uint8_t *sign)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static av_always_inline uint16_t lmcs_derive_lut_sample(uint16_t sample, uint16_t *pivot1, uint16_t *pivot2, uint16_t *scale_coeff, const int idx, const int max)
uint8_t pps_pic_parameter_set_id
const VVCALF * alf_list[VVC_MAX_ALF_COUNT]
RefStruct reference.
uint8_t lmcs_delta_sign_cw_flag[16]
static int ph_max_num_subblock_merge_cand(const H266RawSPS *sps, const H266RawPictureHeader *ph)
static int is_luma_list(const int id)
static void sh_partition_constraints(VVCSH *sh, const H266RawSPS *sps, const H266RawPictureHeader *ph)
uint8_t max_tt_size[2]
MaxTtSizeY, MaxTtSizeC.
const VVCScalingList * scaling_list[VVC_MAX_SL_COUNT]
RefStruct reference.
#define AV_PIX_FMT_YUV422P10
static int ph_vb_pos(uint16_t *vbs, uint8_t *num_vbs, const uint16_t *pos_minus_1, const uint8_t num_pos, uint16_t max, const int ctb_size_y)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
const int ff_vvc_scaling_list0[8 *8]
static void alf_free(AVRefStructOpaque unused, void *obj)
static void decode_recovery_poc(VVCContext *s, const VVCPH *ph)
const H266RawPictureHeader * r
static void sps_partition_constraints(VVCSPS *sps)
const uint8_t ff_vvc_diag_scan_y[5][5][16 *16]
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int decode_sps(VVCParamSets *ps, const H266RawSPS *rsps, void *log_ctx, int is_clvss)
int16_t luma_coeff[ALF_NUM_FILTERS_LUMA][ALF_NUM_COEFF_LUMA]
static void pps_ref_wraparound_offset(VVCPPS *pps, const VVCSPS *sps)
const VVCPPS * pps
RefStruct reference.
uint8_t max_mtt_depth[2]
MaxMttDepthY, MaxMttDepthC.
uint16_t sps_subpic_ctu_top_left_x[VVC_MAX_SLICES]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static int shift(int a, int b)
H266RawPictureHeader * ph
static void subpic_tiles(int *tile_x, int *tile_y, int *tile_x_end, int *tile_y_end, const VVCSPS *sps, const VVCPPS *pps, const int i)
#define AV_PIX_FMT_YUV422P12
static int aps_decode_alf(const VVCALF **alf, const H266RawAPS *aps)
#define AV_PIX_FMT_YUV444P12
static int ctu_rs(const int rx, const int ry, const VVCPPS *pps)
static int sh_derive(VVCSH *sh, const VVCFrameParamSets *fps)
static void pps_subpic_one_or_more_tiles_slice(VVCPPS *pps, const int tile_x, const int tile_y, const int x_end, const int y_end, const int i, int *off)
static int next_tile_idx(int tile_idx, const int i, const H266RawPPS *r)
static void alf_coeff(int16_t *coeff, const uint8_t *abs, const uint8_t *sign, const int size)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
const uint32_t * ctb_addr_in_curr_slice
CtbAddrInCurrSlice.
uint8_t scaling_matrix_dc_rec[SL_MAX_ID - SL_START_16x16]
ScalingMatrixDcRec[refId − 14].
void av_refstruct_unref(void *objp)
Decrement the reference count of the underlying object and automatically free the object if there are...
uint16_t pivot[LMCS_MAX_BIN_SIZE+1]
static int lmcs_derive_lut(VVCLMCS *lmcs, const H266RawAPS *rlmcs, const H266RawSPS *sps)
static void pps_chroma_qp_offset(VVCPPS *pps)
static int pps_derive(VVCPPS *pps, const VVCSPS *sps)
#define i(width, name, range_min, range_max)
static int sps_bit_depth(VVCSPS *sps, void *log_ctx)
const uint8_t ff_vvc_diag_scan_x[5][5][16 *16]
static int sh_alf_aps(const VVCSH *sh, const VVCFrameParamSets *fps)
static void scaling_derive(VVCScalingList *sl, const H266RawAPS *aps)
H266RawSPS * sps[VVC_MAX_SPS_COUNT]
RefStruct references.
void * rref
RefStruct reference, backing ph above.
int ff_vvc_decode_aps(VVCParamSets *ps, const CodedBitstreamUnit *unit)
static void pps_subpic_less_than_one_tile_slice(VVCPPS *pps, const VVCSPS *sps, const int i, const int tx, const int ty, int *off)
union VVCLMCS::@292 fwd_lut
uint16_t u16[LMCS_MAX_LUT_SIZE]
for high bit-depth
static int ph_compute_poc(const H266RawPictureHeader *ph, const H266RawSPS *sps, const int poc_tid0, const int is_clvss)
static int pps_rect_slice(VVCPPS *pps, const VVCSPS *sps)
void * av_calloc(size_t nmemb, size_t size)
#define GDR_IS_RECOVERED(s)
uint8_t lmcs_delta_sign_crs_flag
static void decode_recovery_flag(VVCContext *s)
static void pps_width_height(VVCPPS *pps, const VVCSPS *sps)
void ff_vvc_ps_uninit(VVCParamSets *ps)
static const float pred[4]
#define ALF_NUM_COEFF_LUMA
static int pps_one_tile_slices(VVCPPS *pps, const int tile_idx, int i, int *off)
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
#define AV_PIX_FMT_YUV420P12
void av_refstruct_replace(void *dstp, const void *src)
Ensure *dstp refers to the same object as src.
const VVCALF * alf_list[VVC_MAX_ALF_COUNT]
RefStruct reference.
union VVCLMCS::@292 inv_lut
int8_t slice_qp_y
SliceQpY.
uint16_t sps_num_subpics_minus1
static void ctu_xy(int *rx, int *ry, const int tile_x, const int tile_y, const VVCPPS *pps)
static int ref[MAX_W *MAX_W]
static int FUNC() scaling_list(CodedBitstreamContext *ctx, RWContext *rw, H264RawScalingList *current, int size_of_scaling_list)
static void alf_luma(VVCALF *alf, const H266RawAPS *aps)
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
uint8_t u8[LMCS_MAX_LUT_SIZE]
static int ph_derive(VVCPH *ph, const H266RawSPS *sps, const H266RawPPS *pps, const int poc_tid0, const int is_clvss)
static void alf_cc(VVCALF *alf, const H266RawAPS *aps)
static int pps_bd(VVCPPS *pps)
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
uint8_t luma_clip_idx[ALF_NUM_FILTERS_LUMA][ALF_NUM_COEFF_LUMA]
static int pps_multi_tiles_slice(VVCPPS *pps, const int tile_idx, const int i, int *off, bool *tile_in_slice)
static const VVCSPS * sps_alloc(const H266RawSPS *rsps, void *log_ctx)
static void tile_xy(int *tile_x, int *tile_y, const int tile_idx, const VVCPPS *pps)
uint8_t max_bt_size[2]
MaxBtSizeY, MaxBtSizeC.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
unsigned int sps_id
seq_parameter_set_id
static void sps_poc(VVCSPS *sps)
const H266RawSPS * r
RefStruct reference.
uint8_t num_cc_filters[2]
alf_cc_cb_filters_signalled_minus1 + 1, alf_cc_cr_filters_signalled_minus1 + 1
static void sh_slice_address(VVCSH *sh, const H266RawSPS *sps, const VVCPPS *pps)
static void sps_free(AVRefStructOpaque opaque, void *obj)
static void pps_single_slice_per_subpic(VVCPPS *pps, const VVCSPS *sps, int *off)
void * ph_ref
RefStruct reference backing ph above.
#define ALF_NUM_FILTERS_LUMA
static const double coeff[2][5]
uint8_t min_qt_size[2]
MinQtSizeY, MinQtSizeC.
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void sps_inter(VVCSPS *sps)
static void sh_deblock_offsets(VVCSH *sh)
#define AV_PIX_FMT_GRAY12
#define LMCS_MAX_BIT_DEPTH
static void alf_chroma(VVCALF *alf, const H266RawAPS *aps)
static void sh_entry_points(VVCSH *sh, const H266RawSPS *sps, const VVCPPS *pps)
static void pps_subpic_slice(VVCPPS *pps, const VVCSPS *sps, const int i, int *off)
static int decode_ps(VVCParamSets *ps, const CodedBitstreamH266Context *h266, void *log_ctx, int is_clvss)
int16_t chroma_coeff[ALF_NUM_FILTERS_CHROMA][ALF_NUM_COEFF_CHROMA]
uint8_t sps_subpic_treated_as_pic_flag[VVC_MAX_SLICES]
static int sps_derive(VVCSPS *sps, void *log_ctx)
static int sps_map_pixel_format(VVCSPS *sps, void *log_ctx)
const H266RawAPS * lmcs_list[VVC_MAX_LMCS_COUNT]
RefStruct reference.
const uint8_t ff_vvc_scaling_pred_8[8 *8]
#define MIN_TU_LOG2
MinTbLog2SizeY.
uint8_t scaling_matrix_rec[SL_MAX_ID][SL_MAX_MATRIX_SIZE *SL_MAX_MATRIX_SIZE]
ScalingMatrixRec.