FFmpeg
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
ffv1enc.c
Go to the documentation of this file.
1 /*
2  * FFV1 encoder
3  *
4  * Copyright (c) 2003-2013 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * FF Video Codec 1 (a lossless codec) encoder
26  */
27 
28 #include "libavutil/attributes.h"
29 #include "libavutil/avassert.h"
30 #include "libavutil/crc.h"
31 #include "libavutil/mem.h"
32 #include "libavutil/opt.h"
33 #include "libavutil/pixdesc.h"
34 #include "libavutil/qsort.h"
35 
36 #include "avcodec.h"
37 #include "encode.h"
38 #include "codec_internal.h"
39 #include "put_bits.h"
40 #include "put_golomb.h"
41 #include "rangecoder.h"
42 #include "ffv1.h"
43 #include "ffv1enc.h"
44 
45 static const int8_t quant5_10bit[256] = {
46  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
47  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
48  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
49  1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
50  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
51  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
52  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
53  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
54  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
55  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
56  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
57  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
58  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1,
59  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
60  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
61  -1, -1, -1, -1, -1, -1, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,
62 };
63 
64 static const int8_t quant5[256] = {
65  0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
66  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
67  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
68  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
69  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
70  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
71  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
72  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
73  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
74  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
75  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
76  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
77  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
78  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
79  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
80  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1,
81 };
82 
83 static const int8_t quant9_10bit[256] = {
84  0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
85  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
86  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
87  3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
88  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
89  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
90  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
91  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
92  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
93  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
94  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
95  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
96  -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3,
97  -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
98  -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
99  -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -0, -0, -0, -0,
100 };
101 
102 static const int8_t quant11[256] = {
103  0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
104  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
105  4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
106  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
107  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
108  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
109  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
110  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
111  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
112  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
113  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
114  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
115  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
116  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4,
117  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
118  -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -1,
119 };
120 
121 static const uint8_t ver2_state[256] = {
122  0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
123  59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
124  40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
125  53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
126  87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
127  85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
128  105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
129  115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
130  165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
131  147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
132  172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
133  175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
134  197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
135  209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
136  226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
137  241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
138 };
139 
140 static void find_best_state(uint8_t best_state[256][256],
141  const uint8_t one_state[256])
142 {
143  int i, j, k, m;
144  uint32_t l2tab[256];
145 
146  for (i = 1; i < 256; i++)
147  l2tab[i] = -log2(i / 256.0) * ((1U << 31) / 8);
148 
149  for (i = 0; i < 256; i++) {
150  uint64_t best_len[256];
151 
152  for (j = 0; j < 256; j++)
153  best_len[j] = UINT64_MAX;
154 
155  for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
156  uint32_t occ[256] = { 0 };
157  uint64_t len = 0;
158  occ[j] = UINT32_MAX;
159 
160  if (!one_state[j])
161  continue;
162 
163  for (k = 0; k < 256; k++) {
164  uint32_t newocc[256] = { 0 };
165  for (m = 1; m < 256; m++)
166  if (occ[m]) {
167  len += (occ[m]*(( i *(uint64_t)l2tab[ m]
168  + (256-i)*(uint64_t)l2tab[256-m])>>8)) >> 8;
169  }
170  if (len < best_len[k]) {
171  best_len[k] = len;
172  best_state[i][k] = j;
173  }
174  for (m = 1; m < 256; m++)
175  if (occ[m]) {
176  newocc[ one_state[ m]] += occ[m] * (uint64_t) i >> 8;
177  newocc[256 - one_state[256 - m]] += occ[m] * (uint64_t)(256 - i) >> 8;
178  }
179  memcpy(occ, newocc, sizeof(occ));
180  }
181  }
182  }
183 }
184 
186  uint8_t *state, int v,
187  int is_signed,
188  uint64_t rc_stat[256][2],
189  uint64_t rc_stat2[32][2])
190 {
191  int i;
192 
193 #define put_rac(C, S, B) \
194  do { \
195  if (rc_stat) { \
196  rc_stat[*(S)][B]++; \
197  rc_stat2[(S) - state][B]++; \
198  } \
199  put_rac(C, S, B); \
200  } while (0)
201 
202  if (v) {
203  const unsigned a = is_signed ? FFABS(v) : v;
204  const int e = av_log2(a);
205  put_rac(c, state + 0, 0);
206  if (e <= 9) {
207  for (i = 0; i < e; i++)
208  put_rac(c, state + 1 + i, 1); // 1..10
209  put_rac(c, state + 1 + i, 0);
210 
211  for (i = e - 1; i >= 0; i--)
212  put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
213 
214  if (is_signed)
215  put_rac(c, state + 11 + e, v < 0); // 11..21
216  } else {
217  for (i = 0; i < e; i++)
218  put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
219  put_rac(c, state + 1 + 9, 0);
220 
221  for (i = e - 1; i >= 0; i--)
222  put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
223 
224  if (is_signed)
225  put_rac(c, state + 11 + 10, v < 0); // 11..21
226  }
227  } else {
228  put_rac(c, state + 0, 1);
229  }
230 #undef put_rac
231 }
232 
233 static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
234  int v, int is_signed)
235 {
236  put_symbol_inline(c, state, v, is_signed, NULL, NULL);
237 }
238 
239 
240 static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
241  int v, int bits)
242 {
243  int i, k, code;
244  v = fold(v - state->bias, bits);
245 
246  i = state->count;
247  k = 0;
248  while (i < state->error_sum) { // FIXME: optimize
249  k++;
250  i += i;
251  }
252 
253  av_assert2(k <= 16);
254 
255  code = v ^ ((2 * state->drift + state->count) >> 31);
256 
257  ff_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
258  state->bias, state->error_sum, state->drift, state->count, k);
259  set_sr_golomb(pb, code, k, 12, bits);
260 
262 }
263 
264 #define TYPE int16_t
265 #define RENAME(name) name
266 #include "ffv1enc_template.c"
267 #undef TYPE
268 #undef RENAME
269 
270 #define TYPE int32_t
271 #define RENAME(name) name ## 32
272 #include "ffv1enc_template.c"
273 
275  const uint8_t *src, int w, int h,
276  int stride, int plane_index, int remap_index, int pixel_stride, int ac)
277 {
278  int x, y, i, ret;
279  const int pass1 = !!(f->avctx->flags & AV_CODEC_FLAG_PASS1);
280  const int ring_size = f->context_model ? 3 : 2;
281  int16_t *sample[3];
282  sc->run_index = 0;
283 
284  memset(sc->sample_buffer, 0, ring_size * (w + 6) * sizeof(*sc->sample_buffer));
285 
286  for (y = 0; y < h; y++) {
287  for (i = 0; i < ring_size; i++)
288  sample[i] = sc->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
289 
290  sample[0][-1]= sample[1][0 ];
291  sample[1][ w]= sample[1][w-1];
292 
293  if (f->bits_per_raw_sample <= 8) {
294  for (x = 0; x < w; x++)
295  sample[0][x] = src[x * pixel_stride + stride * y];
296  if (sc->remap)
297  for (x = 0; x < w; x++)
298  sample[0][x] = sc->fltmap[remap_index][ sample[0][x] ];
299 
300  if((ret = encode_line(f, sc, f->avctx, w, sample, plane_index, 8, ac, pass1)) < 0)
301  return ret;
302  } else {
303  if (f->packed_at_lsb) {
304  for (x = 0; x < w; x++) {
305  sample[0][x] = ((uint16_t*)(src + stride*y))[x * pixel_stride];
306  }
307  } else {
308  for (x = 0; x < w; x++) {
309  sample[0][x] = ((uint16_t*)(src + stride*y))[x * pixel_stride] >> (16 - f->bits_per_raw_sample);
310  }
311  }
312  if (sc->remap)
313  for (x = 0; x < w; x++)
314  sample[0][x] = sc->fltmap[remap_index][ (uint16_t)sample[0][x] ];
315 
316  if((ret = encode_line(f, sc, f->avctx, w, sample, plane_index, f->bits_per_raw_sample, ac, pass1)) < 0)
317  return ret;
318  }
319  }
320  return 0;
321 }
322 
324  const uint8_t *src, int w, int h,
325  int stride, int remap_index, int pixel_stride)
326 {
327  int x, y;
328 
329  memset(sc->fltmap[remap_index], 0, sizeof(sc->fltmap[remap_index]));
330 
331  for (y = 0; y < h; y++) {
332  if (f->bits_per_raw_sample <= 8) {
333  for (x = 0; x < w; x++)
334  sc->fltmap[remap_index][ src[x * pixel_stride + stride * y] ] = 1;
335  } else {
336  if (f->packed_at_lsb) {
337  for (x = 0; x < w; x++)
338  sc->fltmap[remap_index][ ((uint16_t*)(src + stride*y))[x * pixel_stride] ] = 1;
339  } else {
340  for (x = 0; x < w; x++)
341  sc->fltmap[remap_index][ ((uint16_t*)(src + stride*y))[x * pixel_stride] >> (16 - f->bits_per_raw_sample) ] = 1;
342  }
343  }
344  }
345 }
346 
347 static void write_quant_table(RangeCoder *c, int16_t *quant_table)
348 {
349  int last = 0;
350  int i;
351  uint8_t state[CONTEXT_SIZE];
352  memset(state, 128, sizeof(state));
353 
354  for (i = 1; i < MAX_QUANT_TABLE_SIZE/2; i++)
355  if (quant_table[i] != quant_table[i - 1]) {
356  put_symbol(c, state, i - last - 1, 0);
357  last = i;
358  }
359  put_symbol(c, state, i - last - 1, 0);
360 }
361 
364 {
365  int i;
366  for (i = 0; i < 5; i++)
368 }
369 
370 static int contains_non_128(uint8_t (*initial_state)[CONTEXT_SIZE],
371  int nb_contexts)
372 {
373  if (!initial_state)
374  return 0;
375  for (int i = 0; i < nb_contexts; i++)
376  for (int j = 0; j < CONTEXT_SIZE; j++)
377  if (initial_state[i][j] != 128)
378  return 1;
379  return 0;
380 }
381 
383 {
384  uint8_t state[CONTEXT_SIZE];
385  int i, j;
386  RangeCoder *const c = &f->slices[0].c;
387 
388  memset(state, 128, sizeof(state));
389 
390  if (f->version < 2) {
391  put_symbol(c, state, f->version, 0);
392  put_symbol(c, state, f->ac, 0);
393  if (f->ac == AC_RANGE_CUSTOM_TAB) {
394  for (i = 1; i < 256; i++)
395  put_symbol(c, state,
396  f->state_transition[i] - c->one_state[i], 1);
397  }
398  put_symbol(c, state, f->colorspace, 0); //YUV cs type
399  if (f->version > 0)
400  put_symbol(c, state, f->bits_per_raw_sample, 0);
401  put_rac(c, state, f->chroma_planes);
402  put_symbol(c, state, f->chroma_h_shift, 0);
403  put_symbol(c, state, f->chroma_v_shift, 0);
404  put_rac(c, state, f->transparency);
405 
406  write_quant_tables(c, f->quant_tables[f->context_model]);
407  } else if (f->version < 3) {
408  put_symbol(c, state, f->slice_count, 0);
409  for (i = 0; i < f->slice_count; i++) {
410  FFV1SliceContext *fs = &f->slices[i];
411  put_symbol(c, state,
412  (fs->slice_x + 1) * f->num_h_slices / f->width, 0);
413  put_symbol(c, state,
414  (fs->slice_y + 1) * f->num_v_slices / f->height, 0);
415  put_symbol(c, state,
416  (fs->slice_width + 1) * f->num_h_slices / f->width - 1,
417  0);
418  put_symbol(c, state,
419  (fs->slice_height + 1) * f->num_v_slices / f->height - 1,
420  0);
421  for (j = 0; j < f->plane_count; j++) {
422  put_symbol(c, state, fs->plane[j].quant_table_index, 0);
423  av_assert0(fs->plane[j].quant_table_index == f->context_model);
424  }
425  }
426  }
427 }
428 
430 {
431  f->combined_version = f->version << 16;
432  if (f->version > 2) {
433  if (f->version == 3) {
434  f->micro_version = 4;
435  } else if (f->version == 4) {
436  f->micro_version = 7;
437  } else
438  av_assert0(0);
439 
440  f->combined_version += f->micro_version;
441  } else
442  av_assert0(f->micro_version == 0);
443 }
444 
446 {
447  FFV1Context *f = avctx->priv_data;
448 
449  RangeCoder c;
450  uint8_t state[CONTEXT_SIZE];
451  int i, j, k;
452  uint8_t state2[32][CONTEXT_SIZE];
453  unsigned v;
454 
455  memset(state2, 128, sizeof(state2));
456  memset(state, 128, sizeof(state));
457 
458  f->avctx->extradata_size = 10000 + 4 +
459  (11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
460  f->avctx->extradata = av_malloc(f->avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
461  if (!f->avctx->extradata)
462  return AVERROR(ENOMEM);
463  ff_init_range_encoder(&c, f->avctx->extradata, f->avctx->extradata_size);
464  ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
465 
466  put_symbol(&c, state, f->version, 0);
467  if (f->version > 2)
468  put_symbol(&c, state, f->micro_version, 0);
469 
470  put_symbol(&c, state, f->ac, 0);
471  if (f->ac == AC_RANGE_CUSTOM_TAB)
472  for (i = 1; i < 256; i++)
473  put_symbol(&c, state, f->state_transition[i] - c.one_state[i], 1);
474 
475  put_symbol(&c, state, f->colorspace, 0); // YUV cs type
476  put_symbol(&c, state, f->bits_per_raw_sample, 0);
477  put_rac(&c, state, f->chroma_planes);
478  put_symbol(&c, state, f->chroma_h_shift, 0);
479  put_symbol(&c, state, f->chroma_v_shift, 0);
480  put_rac(&c, state, f->transparency);
481  put_symbol(&c, state, f->num_h_slices - 1, 0);
482  put_symbol(&c, state, f->num_v_slices - 1, 0);
483 
484  put_symbol(&c, state, f->quant_table_count, 0);
485  for (i = 0; i < f->quant_table_count; i++)
486  write_quant_tables(&c, f->quant_tables[i]);
487 
488  for (i = 0; i < f->quant_table_count; i++) {
489  if (contains_non_128(f->initial_states[i], f->context_count[i])) {
490  put_rac(&c, state, 1);
491  for (j = 0; j < f->context_count[i]; j++)
492  for (k = 0; k < CONTEXT_SIZE; k++) {
493  int pred = j ? f->initial_states[i][j - 1][k] : 128;
494  put_symbol(&c, state2[k],
495  (int8_t)(f->initial_states[i][j][k] - pred), 1);
496  }
497  } else {
498  put_rac(&c, state, 0);
499  }
500  }
501 
502  if (f->version > 2) {
503  put_symbol(&c, state, f->ec, 0);
504  put_symbol(&c, state, f->intra = (f->avctx->gop_size < 2), 0);
505  }
506 
507  f->avctx->extradata_size = ff_rac_terminate(&c, 0);
508  v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), f->crcref, f->avctx->extradata, f->avctx->extradata_size) ^ (f->crcref ? 0x8CD88196 : 0);
509  AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
510  f->avctx->extradata_size += 4;
511 
512  return 0;
513 }
514 
515 static int sort_stt(FFV1Context *s, uint8_t stt[256])
516 {
517  int i, i2, changed, print = 0;
518 
519  do {
520  changed = 0;
521  for (i = 12; i < 244; i++) {
522  for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
523 
524 #define COST(old, new) \
525  s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
526  s->rc_stat[old][1] * -log2((new) / 256.0)
527 
528 #define COST2(old, new) \
529  COST(old, new) + COST(256 - (old), 256 - (new))
530 
531  double size0 = COST2(i, i) + COST2(i2, i2);
532  double sizeX = COST2(i, i2) + COST2(i2, i);
533  if (size0 - sizeX > size0*(1e-14) && i != 128 && i2 != 128) {
534  int j;
535  FFSWAP(int, stt[i], stt[i2]);
536  FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
537  FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
538  if (i != 256 - i2) {
539  FFSWAP(int, stt[256 - i], stt[256 - i2]);
540  FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
541  FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
542  }
543  for (j = 1; j < 256; j++) {
544  if (stt[j] == i)
545  stt[j] = i2;
546  else if (stt[j] == i2)
547  stt[j] = i;
548  if (i != 256 - i2) {
549  if (stt[256 - j] == 256 - i)
550  stt[256 - j] = 256 - i2;
551  else if (stt[256 - j] == 256 - i2)
552  stt[256 - j] = 256 - i;
553  }
554  }
555  print = changed = 1;
556  }
557  }
558  }
559  } while (changed);
560  return print;
561 }
562 
563 
565 {
566  FFV1Context *s = avctx->priv_data;
567  int plane_count = 1 + 2*s->chroma_planes + s->transparency;
568  int max_h_slices = AV_CEIL_RSHIFT(avctx->width , s->chroma_h_shift);
569  int max_v_slices = AV_CEIL_RSHIFT(avctx->height, s->chroma_v_shift);
570  s->num_v_slices = (avctx->width > 352 || avctx->height > 288 || !avctx->slices) ? 2 : 1;
571  s->num_v_slices = FFMIN(s->num_v_slices, max_v_slices);
572  for (; s->num_v_slices < 32; s->num_v_slices++) {
573  for (s->num_h_slices = s->num_v_slices; s->num_h_slices < 2*s->num_v_slices; s->num_h_slices++) {
574  int maxw = (avctx->width + s->num_h_slices - 1) / s->num_h_slices;
575  int maxh = (avctx->height + s->num_v_slices - 1) / s->num_v_slices;
576  if (s->num_h_slices > max_h_slices || s->num_v_slices > max_v_slices)
577  continue;
578  if (maxw * maxh * (int64_t)(s->bits_per_raw_sample+1) * plane_count > 8<<24)
579  continue;
580  if (s->bits_per_raw_sample == 32)
581  if (maxw * maxh > 65536)
582  continue;
583  if (s->version < 4)
584  if ( ff_need_new_slices(avctx->width , s->num_h_slices, s->chroma_h_shift)
585  ||ff_need_new_slices(avctx->height, s->num_v_slices, s->chroma_v_shift))
586  continue;
587  if (avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= MAX_SLICES || !avctx->slices)
588  return 0;
589  }
590  }
591  av_log(avctx, AV_LOG_ERROR,
592  "Unsupported number %d of slices requested, please specify a "
593  "supported number with -slices (ex:4,6,9,12,16, ...)\n",
594  avctx->slices);
595  return AVERROR(ENOSYS);
596 }
597 
599 {
600  FFV1Context *s = avctx->priv_data;
601  int i, j, k, m, ret;
602 
603  if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) ||
604  avctx->slices > 1)
605  s->version = FFMAX(s->version, 2);
606 
607  if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) && s->ac == AC_GOLOMB_RICE) {
608  av_log(avctx, AV_LOG_ERROR, "2 Pass mode is not possible with golomb coding\n");
609  return AVERROR(EINVAL);
610  }
611 
612  // Unspecified level & slices, we choose version 1.2+ to ensure multithreaded decodability
613  if (avctx->slices == 0 && avctx->level < 0 && avctx->width * avctx->height > 720*576)
614  s->version = FFMAX(s->version, 2);
615 
616  if (avctx->level <= 0 && s->version == 2) {
617  s->version = 3;
618  }
619  if (avctx->level >= 0 && avctx->level <= 4) {
620  if (avctx->level < s->version) {
621  av_log(avctx, AV_LOG_ERROR, "Version %d needed for requested features but %d requested\n", s->version, avctx->level);
622  return AVERROR(EINVAL);
623  }
624  s->version = avctx->level;
625  }
626 
627  if (s->ec < 0) {
628  if (s->version >= 4) {
629  s->ec = 2;
630  s->crcref = 0x7a8c4079;
631  } else if (s->version >= 3) {
632  s->ec = 1;
633  } else
634  s->ec = 0;
635  }
636 
637  // CRC requires version 3+
638  if (s->ec == 1)
639  s->version = FFMAX(s->version, 3);
640  if (s->ec == 2)
641  s->version = FFMAX(s->version, 4);
642 
643  if ((s->version == 2 || s->version>3) && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
644  av_log(avctx, AV_LOG_ERROR, "Version 2 or 4 needed for requested features but version 2 or 4 is experimental and not enabled\n");
645  return AVERROR_INVALIDDATA;
646  }
647 
648  if (s->ac == AC_RANGE_CUSTOM_TAB) {
649  for (i = 1; i < 256; i++)
650  s->state_transition[i] = ver2_state[i];
651  } else {
652  RangeCoder c;
653  ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
654  for (i = 1; i < 256; i++)
655  s->state_transition[i] = c.one_state[i];
656  }
657 
658  for (i = 0; i < 256; i++) {
659  s->quant_table_count = 2;
660  if ((s->qtable == -1 && s->bits_per_raw_sample <= 8) || s->qtable == 1) {
661  s->quant_tables[0][0][i]= quant11[i];
662  s->quant_tables[0][1][i]= 11*quant11[i];
663  s->quant_tables[0][2][i]= 11*11*quant11[i];
664  s->quant_tables[1][0][i]= quant11[i];
665  s->quant_tables[1][1][i]= 11*quant11[i];
666  s->quant_tables[1][2][i]= 11*11*quant5 [i];
667  s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
668  s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
669  s->context_count[0] = (11 * 11 * 11 + 1) / 2;
670  s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
671  } else {
672  s->quant_tables[0][0][i]= quant9_10bit[i];
673  s->quant_tables[0][1][i]= 9*quant9_10bit[i];
674  s->quant_tables[0][2][i]= 9*9*quant9_10bit[i];
675  s->quant_tables[1][0][i]= quant9_10bit[i];
676  s->quant_tables[1][1][i]= 9*quant9_10bit[i];
677  s->quant_tables[1][2][i]= 9*9*quant5_10bit[i];
678  s->quant_tables[1][3][i]= 5*9*9*quant5_10bit[i];
679  s->quant_tables[1][4][i]= 5*5*9*9*quant5_10bit[i];
680  s->context_count[0] = (9 * 9 * 9 + 1) / 2;
681  s->context_count[1] = (9 * 9 * 5 * 5 * 5 + 1) / 2;
682  }
683  }
684 
686  return ret;
687 
688  if (!s->transparency)
689  s->plane_count = 2;
690  if (!s->chroma_planes && s->version > 3)
691  s->plane_count--;
692 
693  s->picture_number = 0;
694 
695  if (avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
696  for (i = 0; i < s->quant_table_count; i++) {
697  s->rc_stat2[i] = av_mallocz(s->context_count[i] *
698  sizeof(*s->rc_stat2[i]));
699  if (!s->rc_stat2[i])
700  return AVERROR(ENOMEM);
701  }
702  }
703  if (avctx->stats_in) {
704  char *p = avctx->stats_in;
705  uint8_t (*best_state)[256] = av_malloc_array(256, 256);
706  int gob_count = 0;
707  char *next;
708  if (!best_state)
709  return AVERROR(ENOMEM);
710 
711  av_assert0(s->version >= 2);
712 
713  for (;;) {
714  for (j = 0; j < 256; j++)
715  for (i = 0; i < 2; i++) {
716  s->rc_stat[j][i] = strtol(p, &next, 0);
717  if (next == p) {
718  av_log(avctx, AV_LOG_ERROR,
719  "2Pass file invalid at %d %d [%s]\n", j, i, p);
720  av_freep(&best_state);
721  return AVERROR_INVALIDDATA;
722  }
723  p = next;
724  }
725  for (i = 0; i < s->quant_table_count; i++)
726  for (j = 0; j < s->context_count[i]; j++) {
727  for (k = 0; k < 32; k++)
728  for (m = 0; m < 2; m++) {
729  s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
730  if (next == p) {
731  av_log(avctx, AV_LOG_ERROR,
732  "2Pass file invalid at %d %d %d %d [%s]\n",
733  i, j, k, m, p);
734  av_freep(&best_state);
735  return AVERROR_INVALIDDATA;
736  }
737  p = next;
738  }
739  }
740  gob_count = strtol(p, &next, 0);
741  if (next == p || gob_count <= 0) {
742  av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
743  av_freep(&best_state);
744  return AVERROR_INVALIDDATA;
745  }
746  p = next;
747  while (*p == '\n' || *p == ' ')
748  p++;
749  if (p[0] == 0)
750  break;
751  }
752  if (s->ac == AC_RANGE_CUSTOM_TAB)
753  sort_stt(s, s->state_transition);
754 
755  find_best_state(best_state, s->state_transition);
756 
757  for (i = 0; i < s->quant_table_count; i++) {
758  for (k = 0; k < 32; k++) {
759  double a=0, b=0;
760  int jp = 0;
761  for (j = 0; j < s->context_count[i]; j++) {
762  double p = 128;
763  if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1] > 200 && j || a+b > 200) {
764  if (a+b)
765  p = 256.0 * b / (a + b);
766  s->initial_states[i][jp][k] =
767  best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
768  for(jp++; jp<j; jp++)
769  s->initial_states[i][jp][k] = s->initial_states[i][jp-1][k];
770  a=b=0;
771  }
772  a += s->rc_stat2[i][j][k][0];
773  b += s->rc_stat2[i][j][k][1];
774  if (a+b) {
775  p = 256.0 * b / (a + b);
776  }
777  s->initial_states[i][j][k] =
778  best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
779  }
780  }
781  }
782  av_freep(&best_state);
783  }
784 
785  if (s->version <= 1) {
786  /* Disable slices when the version doesn't support them */
787  s->num_h_slices = 1;
788  s->num_v_slices = 1;
789  }
790 
792 
793  return 0;
794 }
795 
797  enum AVPixelFormat pix_fmt)
798 {
799  FFV1Context *s = avctx->priv_data;
801 
802  s->plane_count = 3;
803  switch(pix_fmt) {
804  case AV_PIX_FMT_GRAY9:
805  case AV_PIX_FMT_YUV444P9:
806  case AV_PIX_FMT_YUV422P9:
807  case AV_PIX_FMT_YUV420P9:
811  if (!avctx->bits_per_raw_sample)
812  s->bits_per_raw_sample = 9;
813  case AV_PIX_FMT_GRAY10:
821  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
822  s->bits_per_raw_sample = 10;
823  case AV_PIX_FMT_GRAY12:
830  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
831  s->bits_per_raw_sample = 12;
832  case AV_PIX_FMT_GRAY14:
836  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
837  s->bits_per_raw_sample = 14;
838  s->packed_at_lsb = 1;
839  case AV_PIX_FMT_GRAY16:
846  case AV_PIX_FMT_GRAYF16:
847  case AV_PIX_FMT_YAF16:
848  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
849  s->bits_per_raw_sample = 16;
850  } else if (!s->bits_per_raw_sample) {
851  s->bits_per_raw_sample = avctx->bits_per_raw_sample;
852  }
853  if (s->bits_per_raw_sample <= 8) {
854  av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
855  return AVERROR_INVALIDDATA;
856  }
857  s->version = FFMAX(s->version, 1);
858  case AV_PIX_FMT_GRAY8:
859  case AV_PIX_FMT_YA8:
860  case AV_PIX_FMT_YUV444P:
861  case AV_PIX_FMT_YUV440P:
862  case AV_PIX_FMT_YUV422P:
863  case AV_PIX_FMT_YUV420P:
864  case AV_PIX_FMT_YUV411P:
865  case AV_PIX_FMT_YUV410P:
866  case AV_PIX_FMT_YUVA444P:
867  case AV_PIX_FMT_YUVA422P:
868  case AV_PIX_FMT_YUVA420P:
869  s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
870  s->colorspace = 0;
871  s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
872  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
873  s->bits_per_raw_sample = 8;
874  else if (!s->bits_per_raw_sample)
875  s->bits_per_raw_sample = 8;
876  break;
877  case AV_PIX_FMT_RGB32:
878  s->colorspace = 1;
879  s->transparency = 1;
880  s->chroma_planes = 1;
881  s->bits_per_raw_sample = 8;
882  break;
883  case AV_PIX_FMT_RGBA64:
884  s->colorspace = 1;
885  s->transparency = 1;
886  s->chroma_planes = 1;
887  s->bits_per_raw_sample = 16;
888  s->use32bit = 1;
889  s->version = FFMAX(s->version, 1);
890  break;
891  case AV_PIX_FMT_RGB48:
892  s->colorspace = 1;
893  s->chroma_planes = 1;
894  s->bits_per_raw_sample = 16;
895  s->use32bit = 1;
896  s->version = FFMAX(s->version, 1);
897  break;
898  case AV_PIX_FMT_0RGB32:
899  s->colorspace = 1;
900  s->chroma_planes = 1;
901  s->bits_per_raw_sample = 8;
902  break;
903  case AV_PIX_FMT_GBRP9:
904  if (!avctx->bits_per_raw_sample)
905  s->bits_per_raw_sample = 9;
906  case AV_PIX_FMT_GBRP10:
907  case AV_PIX_FMT_GBRAP10:
908  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
909  s->bits_per_raw_sample = 10;
910  case AV_PIX_FMT_GBRP12:
911  case AV_PIX_FMT_GBRAP12:
912  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
913  s->bits_per_raw_sample = 12;
914  case AV_PIX_FMT_GBRP14:
915  case AV_PIX_FMT_GBRAP14:
916  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
917  s->bits_per_raw_sample = 14;
918  case AV_PIX_FMT_GBRP16:
919  case AV_PIX_FMT_GBRAP16:
920  case AV_PIX_FMT_GBRPF16:
921  case AV_PIX_FMT_GBRAPF16:
922  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
923  s->bits_per_raw_sample = 16;
924  case AV_PIX_FMT_GBRPF32:
925  case AV_PIX_FMT_GBRAPF32:
926  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
927  s->bits_per_raw_sample = 32;
928  else if (!s->bits_per_raw_sample)
929  s->bits_per_raw_sample = avctx->bits_per_raw_sample;
930  s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
931  s->colorspace = 1;
932  s->chroma_planes = 1;
933  if (s->bits_per_raw_sample >= 16) {
934  s->use32bit = 1;
935  }
936  s->version = FFMAX(s->version, 1);
937  break;
938  default:
939  av_log(avctx, AV_LOG_ERROR, "format %s not supported\n",
941  return AVERROR(ENOSYS);
942  }
943  s->flt = !!(desc->flags & AV_PIX_FMT_FLAG_FLOAT);
944  if (s->flt)
945  s->version = FFMAX(s->version, 4);
946  av_assert0(s->bits_per_raw_sample >= 8);
947 
948  if (s->remap_mode < 0)
949  s->remap_mode = s->flt ? 2 : 0;
950  if (s->remap_mode == 0 && s->bits_per_raw_sample == 32) {
951  av_log(avctx, AV_LOG_ERROR, "32bit requires remap\n");
952  return AVERROR(EINVAL);
953  }
954  if (s->remap_mode == 2 &&
955  !((s->bits_per_raw_sample == 16 || s->bits_per_raw_sample == 32 || s->bits_per_raw_sample == 64) && s->flt)) {
956  av_log(avctx, AV_LOG_ERROR, "remap 2 is for float16/32/64 only\n");
957  return AVERROR(EINVAL);
958  }
959 
960  return av_pix_fmt_get_chroma_sub_sample(pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
961 }
962 
964 {
965  int ret;
966  FFV1Context *s = avctx->priv_data;
967 
968  if ((ret = ff_ffv1_common_init(avctx, s)) < 0)
969  return ret;
970 
971  if (s->ac == 1) // Compatbility with common command line usage
972  s->ac = AC_RANGE_CUSTOM_TAB;
973  else if (s->ac == AC_RANGE_DEFAULT_TAB_FORCE)
974  s->ac = AC_RANGE_DEFAULT_TAB;
975 
977  if (ret < 0)
978  return ret;
979 
980  if (s->bits_per_raw_sample > (s->version > 3 ? 16 : 8) && !s->remap_mode) {
981  if (s->ac == AC_GOLOMB_RICE) {
982  av_log(avctx, AV_LOG_INFO,
983  "high bits_per_raw_sample, forcing range coder\n");
984  s->ac = AC_RANGE_CUSTOM_TAB;
985  }
986  }
987 
988 
989  ret = ff_ffv1_encode_init(avctx);
990  if (ret < 0)
991  return ret;
992 
993  if (s->version > 1) {
994  if ((ret = ff_ffv1_encode_determine_slices(avctx)) < 0)
995  return ret;
996 
997  if ((ret = ff_ffv1_write_extradata(avctx)) < 0)
998  return ret;
999  }
1000 
1001  if ((ret = ff_ffv1_init_slice_contexts(s)) < 0)
1002  return ret;
1003  s->slice_count = s->max_slice_count;
1004 
1005  for (int j = 0; j < s->slice_count; j++) {
1006  for (int i = 0; i < s->plane_count; i++) {
1007  PlaneContext *const p = &s->slices[j].plane[i];
1008 
1009  p->quant_table_index = s->context_model;
1010  p->context_count = s->context_count[p->quant_table_index];
1011  }
1012 
1013  ff_build_rac_states(&s->slices[j].c, 0.05 * (1LL << 32), 256 - 8);
1014 
1015  s->slices[j].remap = s->remap_mode;
1016  }
1017 
1018  if ((ret = ff_ffv1_init_slices_state(s)) < 0)
1019  return ret;
1020 
1021 #define STATS_OUT_SIZE 1024 * 1024 * 6
1022  if (avctx->flags & AV_CODEC_FLAG_PASS1) {
1024  if (!avctx->stats_out)
1025  return AVERROR(ENOMEM);
1026  for (int i = 0; i < s->quant_table_count; i++)
1027  for (int j = 0; j < s->max_slice_count; j++) {
1028  FFV1SliceContext *sc = &s->slices[j];
1029  av_assert0(!sc->rc_stat2[i]);
1030  sc->rc_stat2[i] = av_mallocz(s->context_count[i] *
1031  sizeof(*sc->rc_stat2[i]));
1032  if (!sc->rc_stat2[i])
1033  return AVERROR(ENOMEM);
1034  }
1035  }
1036 
1037  return 0;
1038 }
1039 
1041 {
1042  RangeCoder *c = &sc->c;
1043  uint8_t state[CONTEXT_SIZE];
1044  int j;
1045  memset(state, 128, sizeof(state));
1046 
1047  put_symbol(c, state, sc->sx, 0);
1048  put_symbol(c, state, sc->sy, 0);
1049  put_symbol(c, state, 0, 0);
1050  put_symbol(c, state, 0, 0);
1051  for (j=0; j<f->plane_count; j++) {
1052  put_symbol(c, state, sc->plane[j].quant_table_index, 0);
1053  av_assert0(sc->plane[j].quant_table_index == f->context_model);
1054  }
1055  if (!(f->cur_enc_frame->flags & AV_FRAME_FLAG_INTERLACED))
1056  put_symbol(c, state, 3, 0);
1057  else
1058  put_symbol(c, state, 1 + !(f->cur_enc_frame->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST), 0);
1059  put_symbol(c, state, f->cur_enc_frame->sample_aspect_ratio.num, 0);
1060  put_symbol(c, state, f->cur_enc_frame->sample_aspect_ratio.den, 0);
1061  if (f->version > 3) {
1062  put_rac(c, state, sc->slice_coding_mode == 1);
1063  if (sc->slice_coding_mode == 1)
1065  put_symbol(c, state, sc->slice_coding_mode, 0);
1066  if (sc->slice_coding_mode != 1 && f->colorspace == 1) {
1067  put_symbol(c, state, sc->slice_rct_by_coef, 0);
1068  put_symbol(c, state, sc->slice_rct_ry_coef, 0);
1069  }
1070  put_symbol(c, state, sc->remap, 0);
1071  }
1072 }
1073 
1075  const uint8_t *src[3], const int stride[3], int w, int h)
1076 {
1077 #define NB_Y_COEFF 15
1078  static const int rct_y_coeff[15][2] = {
1079  {0, 0}, // 4G
1080  {1, 1}, // R + 2G + B
1081  {2, 2}, // 2R + 2B
1082  {0, 2}, // 2G + 2B
1083  {2, 0}, // 2R + 2G
1084  {4, 0}, // 4R
1085  {0, 4}, // 4B
1086 
1087  {0, 3}, // 1G + 3B
1088  {3, 0}, // 3R + 1G
1089  {3, 1}, // 3R + B
1090  {1, 3}, // R + 3B
1091  {1, 2}, // R + G + 2B
1092  {2, 1}, // 2R + G + B
1093  {0, 1}, // 3G + B
1094  {1, 0}, // R + 3G
1095  };
1096 
1097  int stat[NB_Y_COEFF] = {0};
1098  int x, y, i, p, best;
1099  int16_t *sample[3];
1100  int lbd = f->bits_per_raw_sample <= 8;
1101  int packed = !src[1];
1102  int transparency = f->transparency;
1103  int packed_size = (3 + transparency)*2;
1104 
1105  for (y = 0; y < h; y++) {
1106  int lastr=0, lastg=0, lastb=0;
1107  for (p = 0; p < 3; p++)
1108  sample[p] = sc->sample_buffer + p*w;
1109 
1110  for (x = 0; x < w; x++) {
1111  int b, g, r;
1112  int ab, ag, ar;
1113  if (lbd) {
1114  unsigned v = *((const uint32_t*)(src[0] + x*4 + stride[0]*y));
1115  b = v & 0xFF;
1116  g = (v >> 8) & 0xFF;
1117  r = (v >> 16) & 0xFF;
1118  } else if (packed) {
1119  const uint16_t *p = ((const uint16_t*)(src[0] + x*packed_size + stride[0]*y));
1120  r = p[0];
1121  g = p[1];
1122  b = p[2];
1123  } else if (f->use32bit || transparency) {
1124  g = *((const uint16_t *)(src[0] + x*2 + stride[0]*y));
1125  b = *((const uint16_t *)(src[1] + x*2 + stride[1]*y));
1126  r = *((const uint16_t *)(src[2] + x*2 + stride[2]*y));
1127  } else {
1128  b = *((const uint16_t*)(src[0] + x*2 + stride[0]*y));
1129  g = *((const uint16_t*)(src[1] + x*2 + stride[1]*y));
1130  r = *((const uint16_t*)(src[2] + x*2 + stride[2]*y));
1131  }
1132 
1133  ar = r - lastr;
1134  ag = g - lastg;
1135  ab = b - lastb;
1136  if (x && y) {
1137  int bg = ag - sample[0][x];
1138  int bb = ab - sample[1][x];
1139  int br = ar - sample[2][x];
1140 
1141  br -= bg;
1142  bb -= bg;
1143 
1144  for (i = 0; i<NB_Y_COEFF; i++) {
1145  stat[i] += FFABS(bg + ((br*rct_y_coeff[i][0] + bb*rct_y_coeff[i][1])>>2));
1146  }
1147 
1148  }
1149  sample[0][x] = ag;
1150  sample[1][x] = ab;
1151  sample[2][x] = ar;
1152 
1153  lastr = r;
1154  lastg = g;
1155  lastb = b;
1156  }
1157  }
1158 
1159  best = 0;
1160  for (i=1; i<NB_Y_COEFF; i++) {
1161  if (stat[i] < stat[best])
1162  best = i;
1163  }
1164 
1165  sc->slice_rct_by_coef = rct_y_coeff[best][1];
1166  sc->slice_rct_ry_coef = rct_y_coeff[best][0];
1167 }
1168 
1170 {
1171  int len = 1 << f->bits_per_raw_sample;
1172  int flip = sc->remap == 2 ? 0x7FFF : 0;
1173 
1174  for (int p= 0; p < 1 + 2*f->chroma_planes + f->transparency; p++) {
1175  int j = 0;
1176  int lu = 0;
1177  uint8_t state[2][32];
1178  int run = 0;
1179 
1180  memset(state, 128, sizeof(state));
1181  put_symbol(&sc->c, state[0], 0, 0);
1182  memset(state, 128, sizeof(state));
1183  for (int i= 0; i<len; i++) {
1184  int ri = i ^ ((i&0x8000) ? 0 : flip);
1185  int u = sc->fltmap[p][ri];
1186  sc->fltmap[p][ri] = j;
1187  j+= u;
1188 
1189  if (lu == u) {
1190  run ++;
1191  } else {
1192  put_symbol_inline(&sc->c, state[lu], run, 0, NULL, NULL);
1193  if (run == 0)
1194  lu = u;
1195  run = 0;
1196  }
1197  }
1198  if (run)
1199  put_symbol(&sc->c, state[lu], run, 0);
1200  }
1201 }
1202 
1204  const uint8_t *src[4],
1205  int w, int h, const int stride[4])
1206 {
1207  int x, y;
1208  int transparency = f->transparency;
1209  int i = 0;
1210 
1211  for (y = 0; y < h; y++) {
1212  for (x = 0; x < w; x++) {
1213  int b, g, r, av_uninit(a);
1214 
1215  g = *((const uint32_t *)(src[0] + x*4 + stride[0]*y));
1216  b = *((const uint32_t *)(src[1] + x*4 + stride[1]*y));
1217  r = *((const uint32_t *)(src[2] + x*4 + stride[2]*y));
1218  if (transparency)
1219  a = *((const uint32_t *)(src[3] + x*4 + stride[3]*y));
1220 
1221  if (sc->remap == 2) {
1222 #define FLIP(f) (((f)&0x80000000) ? (f) : (f)^0x7FFFFFFF);
1223  g = FLIP(g);
1224  b = FLIP(b);
1225  r = FLIP(r);
1226  }
1227  // We cannot build a histogram as we do for 16bit, we need a bit of magic here
1228  // Its possible to reduce the memory needed at the cost of more dereferencing
1229  sc->unit[0][i].val = g;
1230  sc->unit[0][i].ndx = x + y*w;
1231 
1232  sc->unit[1][i].val = b;
1233  sc->unit[1][i].ndx = x + y*w;
1234 
1235  sc->unit[2][i].val = r;
1236  sc->unit[2][i].ndx = x + y*w;
1237 
1238  if (transparency) {
1239  sc->unit[3][i].val = a;
1240  sc->unit[3][i].ndx = x + y*w;
1241  }
1242  i++;
1243  }
1244  }
1245 
1246  //TODO switch to radix sort
1247 #define CMP(A,B) ((A)->val - (int64_t)(B)->val)
1248  AV_QSORT(sc->unit[0], i, struct Unit, CMP);
1249  AV_QSORT(sc->unit[1], i, struct Unit, CMP);
1250  AV_QSORT(sc->unit[2], i, struct Unit, CMP);
1251  if (transparency)
1252  AV_QSORT(sc->unit[3], i, struct Unit, CMP);
1253 }
1254 
1256  int p, int mul_count, int *mul_tab, int update, int final)
1257 {
1258  const int pixel_num = sc->slice_width * sc->slice_height;
1259  uint8_t state[2][3][32];
1260  int mul[4096+1];
1261  RangeCoder rc = sc->c;
1262  int lu = 0;
1263  int run = 0;
1264  int64_t last_val = -1;
1265  int compact_index = -1;
1266  int i = 0;
1267  int current_mul_index = -1;
1268  int run1final = 0;
1269  int64_t run1start_i;
1270  int64_t run1start_last_val;
1271  int run1start_mul_index;
1272 
1273  memcpy(mul, mul_tab, sizeof(*mul_tab)*(mul_count+1));
1274  memset(state, 128, sizeof(state));
1275  put_symbol(&rc, state[0][0], mul_count, 0);
1276  memset(state, 128, sizeof(state));
1277 
1278  for (; i < pixel_num+1; i++) {
1279  int current_mul = current_mul_index < 0 ? 1 : FFABS(mul[current_mul_index]);
1280  int64_t val;
1281  if (i == pixel_num) {
1282  if (last_val == 0xFFFFFFFF) {
1283  break;
1284  } else {
1285  val = last_val + ((1LL<<32) - last_val + current_mul - 1) / current_mul * current_mul;
1286  av_assert2(val >= (1LL<<32));
1287  val += lu * current_mul; //ensure a run1 ends
1288  }
1289  } else
1290  val = sc->unit[p][i].val;
1291 
1292  if (last_val != val) {
1293  int64_t delta = val - last_val;
1294  int64_t step = FFMAX(1, (delta + current_mul/2) / current_mul);
1295  av_assert2(last_val < val);
1296  av_assert2(current_mul > 0);
1297 
1298  delta -= step*current_mul;
1299  av_assert2(delta <= current_mul/2);
1300  av_assert2(delta > -current_mul);
1301 
1302  av_assert2(step > 0);
1303  if (lu) {
1304  if (!run) {
1305  run1start_i = i - 1;
1306  run1start_last_val = last_val;
1307  run1start_mul_index= current_mul_index;
1308  }
1309  if (step == 1) {
1310  if (run1final) {
1311  if (current_mul>1)
1312  put_symbol_inline(&rc, state[lu][1], delta, 1, NULL, NULL);
1313  }
1314  run ++;
1315  av_assert2(last_val + current_mul + delta == val);
1316  } else {
1317  if (run1final) {
1318  if (run == 0)
1319  lu ^= 1;
1320  i--; // we did not encode val so we need to backstep
1321  last_val += current_mul;
1322  } else {
1323  put_symbol_inline(&rc, state[lu][0], run, 0, NULL, NULL);
1324  i = run1start_i;
1325  last_val = run1start_last_val; // we could compute this instead of storing
1326  current_mul_index = run1start_mul_index;
1327  }
1328  run1final ^= 1;
1329 
1330  run = 0;
1331  continue;
1332  }
1333  } else {
1334  av_assert2(run == 0);
1335  av_assert2(run1final == 0);
1336  put_symbol_inline(&rc, state[lu][0], step - 1, 0, NULL, NULL);
1337 
1338  if (current_mul > 1)
1339  put_symbol_inline(&rc, state[lu][1], delta, 1, NULL, NULL);
1340  if (step == 1)
1341  lu ^= 1;
1342 
1343  av_assert2(last_val + step * current_mul + delta == val);
1344  }
1345  last_val = val;
1346  current_mul_index = ((last_val + 1) * mul_count) >> 32;
1347  if (!run || run1final) {
1348  av_assert2(mul[ current_mul_index ]);
1349  if (mul[ current_mul_index ] < 0) {
1350  av_assert2(i < pixel_num);
1351  mul[ current_mul_index ] *= -1;
1352  put_symbol_inline(&rc, state[0][2], mul[ current_mul_index ], 0, NULL, NULL);
1353  }
1354  compact_index ++;
1355  }
1356  }
1357  if (!run || run1final)
1358  if (final && i < pixel_num)
1359  sc->bitmap[p][sc->unit[p][i].ndx] = compact_index;
1360  }
1361 
1362  if (update) {
1363  sc->c = rc;
1364  }
1365  return get_rac_count(&rc);
1366 }
1367 
1369  const uint8_t *src[4])
1370 {
1371  int pixel_num = sc->slice_width * sc->slice_height;
1372  const int max_log2_mul_count = ((int[]){ 1, 1, 1, 9, 9, 10})[f->remap_optimizer];
1373  const int log2_mul_count_step = ((int[]){ 1, 1, 1, 9, 9, 1})[f->remap_optimizer];
1374  const int max_log2_mul = ((int[]){ 1, 8, 8, 9, 22, 22})[f->remap_optimizer];
1375  const int log2_mul_step = ((int[]){ 1, 8, 1, 1, 1, 1})[f->remap_optimizer];
1376  const int bruteforce_count = ((int[]){ 0, 0, 0, 1, 1, 1})[f->remap_optimizer];
1377  const int stair_mode = ((int[]){ 0, 0, 0, 1, 0, 0})[f->remap_optimizer];
1378  const int magic_log2 = ((int[]){ 1, 1, 1, 1, 0, 0})[f->remap_optimizer];
1379 
1380  av_assert0 (pixel_num <= 65536);
1381 
1382  for (int p= 0; p < 1 + 2*f->chroma_planes + f->transparency; p++) {
1383  int best_log2_mul_count = 0;
1384  float score_sum[11] = {0};
1385  int mul_all[11][1025];
1386 
1387  for (int log2_mul_count= 0; log2_mul_count <= max_log2_mul_count; log2_mul_count += log2_mul_count_step) {
1388  float score_tab_all[1025][23] = {0};
1389  int64_t last_val = -1;
1390  int *mul_tab = mul_all[log2_mul_count];
1391  int last_mul_index = -1;
1392  int mul_count = 1 << log2_mul_count;
1393 
1394  score_sum[log2_mul_count] = 2 * log2_mul_count;
1395  if (magic_log2)
1396  score_sum[log2_mul_count] = av_float2int((float)mul_count * mul_count);
1397  for (int i= 0; i<pixel_num; i++) {
1398  int64_t val = sc->unit[p][i].val;
1399  int mul_index = (val + 1LL)*mul_count >> 32;
1400  if (val != last_val) {
1401  float *score_tab = score_tab_all[(last_val + 1LL)*mul_count >> 32];
1402  av_assert2(last_val < val);
1403  for(int si= 0; si <= max_log2_mul; si += log2_mul_step) {
1404  int64_t delta = val - last_val;
1405  int mul;
1406  int64_t cost;
1407 
1408  if (last_val < 0) {
1409  mul = 1;
1410  } else if (stair_mode && mul_count == 512 && si == max_log2_mul ) {
1411  if (mul_index >= 0x378/8 && mul_index <= 23 + 0x378/8) {
1412  mul = (0x800080 >> (mul_index - 0x378/8));
1413  } else
1414  mul = 1;
1415  } else {
1416  mul = (0x10001LL)<<si >> 16;
1417  }
1418 
1419  cost = FFMAX((delta + mul/2) / mul, 1);
1420  float score = 1;
1421  if (mul > 1) {
1422  score *= (fabs(delta - cost*mul)+1);
1423  if (mul_count > 1)
1424  score *= score;
1425  }
1426  score *= cost;
1427  score *= score;
1428  if (mul_index != last_mul_index)
1429  score *= mul;
1430  if (magic_log2) {
1431  score_tab[si] += av_float2int(score);
1432  } else
1433  score_tab[si] += log2f(score);
1434  }
1435  }
1436  last_val = val;
1437  last_mul_index = mul_index;
1438  }
1439  for(int i= 0; i<mul_count; i++) {
1440  int best_index = 0;
1441  float *score_tab = score_tab_all[i];
1442  for(int si= 0; si <= max_log2_mul; si += log2_mul_step) {
1443  if (score_tab[si] < score_tab[ best_index ])
1444  best_index = si;
1445  }
1446  if (stair_mode && mul_count == 512 && best_index == max_log2_mul ) {
1447  if (i >= 0x378/8 && i <= 23 + 0x378/8) {
1448  mul_tab[i] = -(0x800080 >> (i - 0x378/8));
1449  } else
1450  mul_tab[i] = -1;
1451  } else
1452  mul_tab[i] = -((0x10001LL)<<best_index >> 16);
1453  score_sum[log2_mul_count] += score_tab[ best_index ];
1454  }
1455  mul_tab[mul_count] = 1;
1456 
1457  if (bruteforce_count)
1458  score_sum[log2_mul_count] = encode_float32_remap_segment(sc, p, mul_count, mul_all[log2_mul_count], 0, 0);
1459 
1460  if (score_sum[log2_mul_count] < score_sum[best_log2_mul_count])
1461  best_log2_mul_count = log2_mul_count;
1462  }
1463 
1464  encode_float32_remap_segment(sc, p, 1<<best_log2_mul_count, mul_all[best_log2_mul_count], 1, 1);
1465  }
1466 }
1467 
1469  const uint8_t *src[4],
1470  int w, int h, const int stride[4], int ac)
1471 {
1472  int x, y, p, i;
1473  const int ring_size = f->context_model ? 3 : 2;
1474  int32_t *sample[4][3];
1475  const int pass1 = !!(f->avctx->flags & AV_CODEC_FLAG_PASS1);
1476  int bits = 16; //TODO explain this in the specifciation, we have 32bits in but really encode max 16
1477  int offset = 1 << bits;
1478  int transparency = f->transparency;
1479 
1480  sc->run_index = 0;
1481 
1482  memset(RENAME(sc->sample_buffer), 0, ring_size * MAX_PLANES *
1483  (w + 6) * sizeof(*RENAME(sc->sample_buffer)));
1484 
1485  for (y = 0; y < h; y++) {
1486  for (i = 0; i < ring_size; i++)
1487  for (p = 0; p < MAX_PLANES; p++)
1488  sample[p][i]= RENAME(sc->sample_buffer) + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
1489 
1490  for (x = 0; x < w; x++) {
1491  int b, g, r, av_uninit(a);
1492  g = sc->bitmap[0][x + w*y];
1493  b = sc->bitmap[1][x + w*y];
1494  r = sc->bitmap[2][x + w*y];
1495  if (transparency)
1496  a = sc->bitmap[3][x + w*y];
1497 
1498  if (sc->slice_coding_mode != 1) {
1499  b -= g;
1500  r -= g;
1501  g += (b * sc->slice_rct_by_coef + r * sc->slice_rct_ry_coef) >> 2;
1502  b += offset;
1503  r += offset;
1504  }
1505 
1506  sample[0][0][x] = g;
1507  sample[1][0][x] = b;
1508  sample[2][0][x] = r;
1509  sample[3][0][x] = a;
1510  }
1511  for (p = 0; p < 3 + transparency; p++) {
1512  int ret;
1513  sample[p][0][-1] = sample[p][1][0 ];
1514  sample[p][1][ w] = sample[p][1][w-1];
1515  ret = encode_line32(f, sc, f->avctx, w, sample[p], (p + 1) / 2,
1516  bits + (sc->slice_coding_mode != 1), ac, pass1);
1517  if (ret < 0)
1518  return ret;
1519  }
1520  }
1521  return 0;
1522 }
1523 
1524 
1525 static int encode_slice(AVCodecContext *c, void *arg)
1526 {
1527  FFV1SliceContext *sc = arg;
1528  FFV1Context *f = c->priv_data;
1529  int width = sc->slice_width;
1530  int height = sc->slice_height;
1531  int x = sc->slice_x;
1532  int y = sc->slice_y;
1533  const AVFrame *const p = f->cur_enc_frame;
1534  const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step;
1535  int ret;
1536  RangeCoder c_bak = sc->c;
1537  const int chroma_width = AV_CEIL_RSHIFT(width, f->chroma_h_shift);
1538  const int chroma_height = AV_CEIL_RSHIFT(height, f->chroma_v_shift);
1539  const uint8_t *planes[4] = {p->data[0] + ps*x + y*p->linesize[0],
1540  p->data[1] ? p->data[1] + ps*x + y*p->linesize[1] : NULL,
1541  p->data[2] ? p->data[2] + ps*x + y*p->linesize[2] : NULL,
1542  p->data[3] ? p->data[3] + ps*x + y*p->linesize[3] : NULL};
1543  int ac = f->ac;
1544 
1545  sc->slice_coding_mode = 0;
1546  if (f->version > 3 && f->colorspace == 1) {
1548  } else {
1549  sc->slice_rct_by_coef = 1;
1550  sc->slice_rct_ry_coef = 1;
1551  }
1552 
1553 retry:
1554  if (f->key_frame)
1556  if (f->version > 2) {
1557  encode_slice_header(f, sc);
1558  }
1559 
1560  if (sc->remap) {
1561  //Both the 16bit and 32bit remap do exactly the same thing but with 16bits we can
1562  //Implement this using a "histogram" while for 32bit that would be gb sized, thus a more
1563  //complex implementation sorting pairs is used.
1564  if (f->bits_per_raw_sample != 32) {
1565  if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8 && c->pix_fmt != AV_PIX_FMT_YAF16) {
1566  const int cx = x >> f->chroma_h_shift;
1567  const int cy = y >> f->chroma_v_shift;
1568 
1569  //TODO decide on the order for the encoded remaps and loads. with golomb rice it
1570  // easier to have all range coded ones together, otherwise it may be nicer to handle each plane as a whole?
1571 
1572  load_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 1);
1573 
1574  if (f->chroma_planes) {
1575  load_plane(f, sc, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1);
1576  load_plane(f, sc, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 2, 1);
1577  }
1578  if (f->transparency)
1579  load_plane(f, sc, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 3, 1);
1580  } else if (c->pix_fmt == AV_PIX_FMT_YA8 || c->pix_fmt == AV_PIX_FMT_YAF16) {
1581  load_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 2);
1582  load_plane(f, sc, p->data[0] + (ps>>1) + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 2);
1583  } else if (f->use32bit) {
1584  load_rgb_frame32(f, sc, planes, width, height, p->linesize);
1585  } else
1586  load_rgb_frame (f, sc, planes, width, height, p->linesize);
1587 
1589  } else {
1592  }
1593  }
1594 
1595  if (ac == AC_GOLOMB_RICE) {
1596  sc->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate(&sc->c, f->version > 2) : 0;
1597  init_put_bits(&sc->pb,
1598  sc->c.bytestream_start + sc->ac_byte_count,
1599  sc->c.bytestream_end - sc->c.bytestream_start - sc->ac_byte_count);
1600  }
1601 
1602  if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8 && c->pix_fmt != AV_PIX_FMT_YAF16) {
1603  const int cx = x >> f->chroma_h_shift;
1604  const int cy = y >> f->chroma_v_shift;
1605 
1606  ret = encode_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 0, 1, ac);
1607 
1608  if (f->chroma_planes) {
1609  ret |= encode_plane(f, sc, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1, 1, ac);
1610  ret |= encode_plane(f, sc, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1, 2, 1, ac);
1611  }
1612  if (f->transparency)
1613  ret |= encode_plane(f, sc, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2, 3, 1, ac);
1614  } else if (c->pix_fmt == AV_PIX_FMT_YA8 || c->pix_fmt == AV_PIX_FMT_YAF16) {
1615  ret = encode_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 0, 2, ac);
1616  ret |= encode_plane(f, sc, p->data[0] + (ps>>1) + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 1, 2, ac);
1617  } else if (f->bits_per_raw_sample == 32) {
1619  } else if (f->use32bit) {
1620  ret = encode_rgb_frame32(f, sc, planes, width, height, p->linesize, ac);
1621  } else {
1622  ret = encode_rgb_frame(f, sc, planes, width, height, p->linesize, ac);
1623  }
1624 
1625  if (ac != AC_GOLOMB_RICE) {
1626  sc->ac_byte_count = ff_rac_terminate(&sc->c, 1);
1627  } else {
1628  flush_put_bits(&sc->pb); // FIXME: nicer padding
1629  sc->ac_byte_count += put_bytes_output(&sc->pb);
1630  }
1631 
1632  if (ret < 0) {
1633  av_assert0(sc->slice_coding_mode == 0);
1634  if (f->version < 4) {
1635  av_log(c, AV_LOG_ERROR, "Buffer too small\n");
1636  return ret;
1637  }
1638  av_log(c, AV_LOG_DEBUG, "Coding slice as PCM\n");
1639  ac = 1;
1640  sc->slice_coding_mode = 1;
1641  sc->c = c_bak;
1642  goto retry;
1643  }
1644 
1645  return 0;
1646 }
1647 
1649 {
1650  FFV1Context *f = avctx->priv_data;
1651 
1652  size_t maxsize = avctx->width*avctx->height * (1 + f->transparency);
1653  if (f->chroma_planes)
1654  maxsize += AV_CEIL_RSHIFT(avctx->width, f->chroma_h_shift) * AV_CEIL_RSHIFT(f->height, f->chroma_v_shift) * 2;
1655  maxsize += f->slice_count * 800; //for slice header
1656  if (f->version > 3) {
1657  maxsize *= f->bits_per_raw_sample + 1;
1658  if (f->remap_mode)
1659  maxsize += f->slice_count * 70000 * (1 + 2*f->chroma_planes + f->transparency);
1660  } else {
1661  maxsize += f->slice_count * 2 * (avctx->width + avctx->height); //for bug with slices that code some pixels more than once
1662  maxsize *= 8*(2*f->bits_per_raw_sample + 5);
1663  }
1664  maxsize >>= 3;
1665  maxsize += FF_INPUT_BUFFER_MIN_SIZE;
1666 
1667  return maxsize;
1668 }
1669 
1671  const AVFrame *pict, int *got_packet)
1672 {
1673  FFV1Context *f = avctx->priv_data;
1674  RangeCoder *const c = &f->slices[0].c;
1675  uint8_t keystate = 128;
1676  uint8_t *buf_p;
1677  int i, ret;
1678  int64_t maxsize;
1679 
1680  if(!pict) {
1681  if (avctx->flags & AV_CODEC_FLAG_PASS1) {
1682  int j, k, m;
1683  char *p = avctx->stats_out;
1684  char *end = p + STATS_OUT_SIZE;
1685 
1686  memset(f->rc_stat, 0, sizeof(f->rc_stat));
1687  for (i = 0; i < f->quant_table_count; i++)
1688  memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
1689 
1690  av_assert0(f->slice_count == f->max_slice_count);
1691  for (j = 0; j < f->slice_count; j++) {
1692  const FFV1SliceContext *sc = &f->slices[j];
1693  for (i = 0; i < 256; i++) {
1694  f->rc_stat[i][0] += sc->rc_stat[i][0];
1695  f->rc_stat[i][1] += sc->rc_stat[i][1];
1696  }
1697  for (i = 0; i < f->quant_table_count; i++) {
1698  for (k = 0; k < f->context_count[i]; k++)
1699  for (m = 0; m < 32; m++) {
1700  f->rc_stat2[i][k][m][0] += sc->rc_stat2[i][k][m][0];
1701  f->rc_stat2[i][k][m][1] += sc->rc_stat2[i][k][m][1];
1702  }
1703  }
1704  }
1705 
1706  for (j = 0; j < 256; j++) {
1707  snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
1708  f->rc_stat[j][0], f->rc_stat[j][1]);
1709  p += strlen(p);
1710  }
1711  snprintf(p, end - p, "\n");
1712 
1713  for (i = 0; i < f->quant_table_count; i++) {
1714  for (j = 0; j < f->context_count[i]; j++)
1715  for (m = 0; m < 32; m++) {
1716  snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
1717  f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
1718  p += strlen(p);
1719  }
1720  }
1721  snprintf(p, end - p, "%d\n", f->gob_count);
1722  }
1723  return 0;
1724  }
1725 
1726  /* Maximum packet size */
1727  maxsize = ff_ffv1_encode_buffer_size(avctx);
1728 
1729  if (maxsize > INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32) {
1730  av_log(avctx, AV_LOG_WARNING, "Cannot allocate worst case packet size, the encoding could fail\n");
1731  maxsize = INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32;
1732  }
1733 
1734  if ((ret = ff_alloc_packet(avctx, pkt, maxsize)) < 0)
1735  return ret;
1736 
1738  ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
1739 
1740  f->cur_enc_frame = pict;
1741 
1742  if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
1743  put_rac(c, &keystate, 1);
1744  f->key_frame = 1;
1745  f->gob_count++;
1746  write_header(f);
1747  } else {
1748  put_rac(c, &keystate, 0);
1749  f->key_frame = 0;
1750  }
1751 
1752  if (f->ac == AC_RANGE_CUSTOM_TAB) {
1753  int i;
1754  for (i = 1; i < 256; i++) {
1755  c->one_state[i] = f->state_transition[i];
1756  c->zero_state[256 - i] = 256 - c->one_state[i];
1757  }
1758  }
1759 
1760  for (i = 0; i < f->slice_count; i++) {
1761  FFV1SliceContext *sc = &f->slices[i];
1762  uint8_t *start = pkt->data + pkt->size * (int64_t)i / f->slice_count;
1763  int len = pkt->size / f->slice_count;
1764  if (i) {
1765  ff_init_range_encoder(&sc->c, start, len);
1766  } else {
1769  sc->c.bytestream_end = sc->c.bytestream_start + len;
1770  }
1771  }
1772  avctx->execute(avctx, encode_slice, f->slices, NULL,
1773  f->slice_count, sizeof(*f->slices));
1774 
1775  buf_p = pkt->data;
1776  for (i = 0; i < f->slice_count; i++) {
1777  FFV1SliceContext *sc = &f->slices[i];
1778  int bytes = sc->ac_byte_count;
1779  if (i > 0 || f->version > 2) {
1780  av_assert0(bytes < pkt->size / f->slice_count);
1781  memmove(buf_p, sc->c.bytestream_start, bytes);
1782  av_assert0(bytes < (1 << 24));
1783  AV_WB24(buf_p + bytes, bytes);
1784  bytes += 3;
1785  }
1786  if (f->ec) {
1787  unsigned v;
1788  buf_p[bytes++] = 0;
1789  v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), f->crcref, buf_p, bytes) ^ (f->crcref ? 0x8CD88196 : 0);
1790  AV_WL32(buf_p + bytes, v);
1791  bytes += 4;
1792  }
1793  buf_p += bytes;
1794  }
1795 
1796  if (avctx->flags & AV_CODEC_FLAG_PASS1)
1797  avctx->stats_out[0] = '\0';
1798 
1799  f->picture_number++;
1800  pkt->size = buf_p - pkt->data;
1801  pkt->flags |= AV_PKT_FLAG_KEY * f->key_frame;
1802  *got_packet = 1;
1803 
1804  return 0;
1805 }
1806 
1808 {
1809  FFV1Context *const s = avctx->priv_data;
1810 
1811  av_freep(&avctx->stats_out);
1812  ff_ffv1_close(s);
1813 
1814  return 0;
1815 }
1816 
1817 #define OFFSET(x) offsetof(FFV1Context, x)
1818 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1819 static const AVOption options[] = {
1820  { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 2, VE },
1821  { "coder", "Coder type", OFFSET(ac), AV_OPT_TYPE_INT,
1822  { .i64 = 0 }, -2, 2, VE, .unit = "coder" },
1823  { "rice", "Golomb rice", 0, AV_OPT_TYPE_CONST,
1824  { .i64 = AC_GOLOMB_RICE }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1825  { "range_def", "Range with default table", 0, AV_OPT_TYPE_CONST,
1826  { .i64 = AC_RANGE_DEFAULT_TAB_FORCE }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1827  { "range_tab", "Range with custom table", 0, AV_OPT_TYPE_CONST,
1828  { .i64 = AC_RANGE_CUSTOM_TAB }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1829  { "ac", "Range with custom table (the ac option exists for compatibility and is deprecated)", 0, AV_OPT_TYPE_CONST,
1830  { .i64 = 1 }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1831  { "context", "Context model", OFFSET(context_model), AV_OPT_TYPE_INT,
1832  { .i64 = 0 }, 0, 1, VE },
1833  { "qtable", "Quantization table", OFFSET(qtable), AV_OPT_TYPE_INT,
1834  { .i64 = -1 }, -1, 2, VE , .unit = "qtable"},
1835  { "default", NULL, 0, AV_OPT_TYPE_CONST,
1836  { .i64 = QTABLE_DEFAULT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1837  { "8bit", NULL, 0, AV_OPT_TYPE_CONST,
1838  { .i64 = QTABLE_8BIT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1839  { "greater8bit", NULL, 0, AV_OPT_TYPE_CONST,
1840  { .i64 = QTABLE_GT8BIT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1841  { "remap_mode", "Remap Mode", OFFSET(remap_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 2, VE, .unit = "remap_mode" },
1842  { "auto", "Automatic", 0, AV_OPT_TYPE_CONST,
1843  { .i64 = -1 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1844  { "off", "Disabled", 0, AV_OPT_TYPE_CONST,
1845  { .i64 = 0 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1846  { "dualrle", "Dual RLE", 0, AV_OPT_TYPE_CONST,
1847  { .i64 = 1 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1848  { "flipdualrle", "Dual RLE", 0, AV_OPT_TYPE_CONST,
1849  { .i64 = 2 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1850  { "remap_optimizer", "Remap Optimizer", OFFSET(remap_optimizer), AV_OPT_TYPE_INT, { .i64 = 3 }, 0, 5, VE, .unit = "remap_optimizer" },
1851 
1852  { NULL }
1853 };
1854 
1855 static const AVClass ffv1_class = {
1856  .class_name = "ffv1 encoder",
1857  .item_name = av_default_item_name,
1858  .option = options,
1859  .version = LIBAVUTIL_VERSION_INT,
1860 };
1861 
1863  .p.name = "ffv1",
1864  CODEC_LONG_NAME("FFmpeg video codec #1"),
1865  .p.type = AVMEDIA_TYPE_VIDEO,
1866  .p.id = AV_CODEC_ID_FFV1,
1867  .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
1870  .priv_data_size = sizeof(FFV1Context),
1873  .close = encode_close,
1874  CODEC_PIXFMTS(
1898  .color_ranges = AVCOL_RANGE_MPEG,
1899  .p.priv_class = &ffv1_class,
1901 };
load_rgb_frame
static void RENAME() load_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4])
Definition: ffv1enc_template.c:130
AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_YUVA422P16
Definition: pixfmt.h:579
set_micro_version
static void set_micro_version(FFV1Context *f)
Definition: ffv1enc.c:429
CODEC_PIXFMTS
#define CODEC_PIXFMTS(...)
Definition: codec_internal.h:386
AV_PIX_FMT_GBRAP16
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:551
encode_init_internal
static av_cold int encode_init_internal(AVCodecContext *avctx)
Definition: ffv1enc.c:963
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:215
FFV1SliceContext::slice_height
int slice_height
Definition: ffv1.h:78
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:71
ff_ffv1_encode_determine_slices
int ff_ffv1_encode_determine_slices(AVCodecContext *avctx)
Definition: ffv1enc.c:564
encode_line
static av_always_inline int RENAME() encode_line(FFV1Context *f, FFV1SliceContext *sc, void *logctx, int w, TYPE *sample[3], int plane_index, int bits, int ac, int pass1)
Definition: ffv1enc_template.c:26
av_clip
#define av_clip
Definition: common.h:100
update_vlc_state
static void update_vlc_state(VlcState *const state, const int v)
Definition: ffv1.h:219
FF_CODEC_CAP_INIT_CLEANUP
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: codec_internal.h:42
r
const char * r
Definition: vf_curves.c:127
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
AV_PIX_FMT_YA8
@ AV_PIX_FMT_YA8
8 bits gray, 8 bits alpha
Definition: pixfmt.h:140
AV_WL32
#define AV_WL32(p, v)
Definition: intreadwrite.h:422
put_bytes_output
static int put_bytes_output(const PutBitContext *s)
Definition: put_bits.h:89
encode_float32_remap
static void encode_float32_remap(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4])
Definition: ffv1enc.c:1368
u
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:251
log2f
#define log2f(x)
Definition: libm.h:411
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:3341
FFV1SliceContext::plane
PlaneContext * plane
Definition: ffv1.h:90
FF_CODEC_CAP_EOF_FLUSH
#define FF_CODEC_CAP_EOF_FLUSH
The encoder has AV_CODEC_CAP_DELAY set, but does not actually have delay - it only wants to be flushe...
Definition: codec_internal.h:89
int64_t
long long int64_t
Definition: coverity.c:34
put_symbol_inline
static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2])
Definition: ffv1enc.c:185
init_put_bits
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:62
AV_PIX_FMT_FLAG_FLOAT
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
Definition: pixdesc.h:158
AV_PIX_FMT_YUVA422P9
#define AV_PIX_FMT_YUVA422P9
Definition: pixfmt.h:571
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:410
pixdesc.h
step
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
Definition: rate_distortion.txt:58
AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P16
Definition: pixfmt.h:578
w
uint8_t w
Definition: llviddspenc.c:38
AC_RANGE_DEFAULT_TAB_FORCE
#define AC_RANGE_DEFAULT_TAB_FORCE
Definition: ffv1.h:55
AVPacket::data
uint8_t * data
Definition: packet.h:535
AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:573
AVOption
AVOption.
Definition: opt.h:429
encode.h
b
#define b
Definition: input.c:42
MAX_QUANT_TABLE_SIZE
#define MAX_QUANT_TABLE_SIZE
Definition: ffv1.h:48
rangecoder.h
AVComponentDescriptor::step
int step
Number of elements between 2 horizontally consecutive pixels.
Definition: pixdesc.h:40
AV_PIX_FMT_YUV420P10
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:528
ff_ffv1_write_extradata
av_cold int ff_ffv1_write_extradata(AVCodecContext *avctx)
Definition: ffv1enc.c:445
FFCodec
Definition: codec_internal.h:127
FFV1SliceContext::pb
PutBitContext pb
Definition: ffv1.h:91
RangeCoder::bytestream_end
uint8_t * bytestream_end
Definition: rangecoder.h:44
contains_non_128
static int contains_non_128(uint8_t(*initial_state)[CONTEXT_SIZE], int nb_contexts)
Definition: ffv1enc.c:370
AV_PIX_FMT_YUV440P
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:106
FF_COMPLIANCE_EXPERIMENTAL
#define FF_COMPLIANCE_EXPERIMENTAL
Allow nonstandardized experimental things.
Definition: defs.h:62
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
av_float2int
static av_always_inline uint32_t av_float2int(float f)
Reinterpret a float as a 32-bit integer.
Definition: intfloat.h:50
AC_RANGE_CUSTOM_TAB
#define AC_RANGE_CUSTOM_TAB
Definition: ffv1.h:54
AV_PIX_FMT_YUVA422P10
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:574
ring_size
static int ring_size(RingBuffer *ring)
Definition: async.c:105
AV_PKT_FLAG_KEY
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: packet.h:590
FF_INPUT_BUFFER_MIN_SIZE
#define FF_INPUT_BUFFER_MIN_SIZE
Used by some encoders as upper bound for the length of headers.
Definition: encode.h:33
FFV1SliceContext::slice_x
int slice_x
Definition: ffv1.h:79
put_symbol
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed)
Definition: ffv1enc.c:233
ff_ffv1_clear_slice_state
void ff_ffv1_clear_slice_state(const FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1.c:198
AV_PIX_FMT_GRAY9
#define AV_PIX_FMT_GRAY9
Definition: pixfmt.h:507
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:431
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:31
AV_FRAME_FLAG_TOP_FIELD_FIRST
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
Definition: frame.h:638
crc.h
state
static struct @488 state
ff_ffv1_init_slices_state
av_cold int ff_ffv1_init_slices_state(FFV1Context *f)
Definition: ffv1.c:110
AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_YUVA420P9
Definition: pixfmt.h:570
write_quant_tables
static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][MAX_QUANT_TABLE_SIZE])
Definition: ffv1enc.c:362
quant11
static const int8_t quant11[256]
Definition: ffv1enc.c:102
load_plane
static void load_plane(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src, int w, int h, int stride, int remap_index, int pixel_stride)
Definition: ffv1enc.c:323
FFCodec::p
AVCodec p
The public AVCodec.
Definition: codec_internal.h:131
AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:546
ff_init_range_encoder
av_cold void ff_init_range_encoder(RangeCoder *c, uint8_t *buf, int buf_size)
Definition: rangecoder.c:42
AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:544
AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUVA444P16
Definition: pixfmt.h:580
AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:526
encode_slice
static int encode_slice(AVCodecContext *c, void *arg)
Definition: ffv1enc.c:1525
AVCodecContext::flags
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:488
val
static double val(void *priv, double ch)
Definition: aeval.c:77
av_pix_fmt_get_chroma_sub_sample
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:3369
AV_PIX_FMT_GRAYF16
#define AV_PIX_FMT_GRAYF16
Definition: pixfmt.h:564
av_noinline
#define av_noinline
Definition: attributes.h:72
update
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int current_sample, int64_t nb_samples_notify, AVRational time_base)
Definition: af_silencedetect.c:78
NB_Y_COEFF
#define NB_Y_COEFF
MAX_SLICES
#define MAX_SLICES
Definition: d3d12va_hevc.c:33
CONTEXT_SIZE
#define CONTEXT_SIZE
Definition: ffv1.h:45
AV_PIX_FMT_GRAY16
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:511
FF_CODEC_ENCODE_CB
#define FF_CODEC_ENCODE_CB(func)
Definition: codec_internal.h:353
PlaneContext::context_count
int context_count
Definition: ffv1.h:66
AV_PIX_FMT_YUV444P10
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:531
avassert.h
put_golomb.h
exp golomb vlc writing stuff
pkt
AVPacket * pkt
Definition: movenc.c:60
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:209
av_cold
#define av_cold
Definition: attributes.h:90
AV_PIX_FMT_YUV422P16
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:540
FFV1SliceContext::sample_buffer
int16_t * sample_buffer
Definition: ffv1.h:74
AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:548
s
#define s(width, name)
Definition: cbs_vp9.c:198
MAX_PLANES
#define MAX_PLANES
Definition: ffv1.h:44
AVCodecContext::stats_in
char * stats_in
pass2 encoding statistics input buffer Concatenated stuff from stats_out of pass1 should be placed he...
Definition: avcodec.h:1323
AV_PIX_FMT_GBRAP14
#define AV_PIX_FMT_GBRAP14
Definition: pixfmt.h:550
AV_PIX_FMT_GBRAP12
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:549
AV_PIX_FMT_YUVA420P
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:108
AV_PIX_FMT_YUV444P16
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:541
AV_CEIL_RSHIFT
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:60
g
const char * g
Definition: vf_curves.c:128
pix_fmt
static enum AVPixelFormat pix_fmt
Definition: demux_decode.c:41
FLIP
#define FLIP(f)
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
#define AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
This encoder can reorder user opaque values from input AVFrames and return them with corresponding ou...
Definition: codec.h:144
bits
uint8_t bits
Definition: vp3data.h:128
QTABLE_GT8BIT
@ QTABLE_GT8BIT
Definition: ffv1enc.h:31
AC_RANGE_DEFAULT_TAB
#define AC_RANGE_DEFAULT_TAB
Definition: ffv1.h:53
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:40
quant5
static const int8_t quant5[256]
Definition: ffv1enc.c:64
AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUVA444P12
Definition: pixfmt.h:577
AVCodecContext::bits_per_raw_sample
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:1556
AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:525
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:230
AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:539
AV_PIX_FMT_FLAG_ALPHA
#define AV_PIX_FMT_FLAG_ALPHA
The pixel format has an alpha channel.
Definition: pixdesc.h:147
FFV1SliceContext::rc_stat2
uint64_t(*[MAX_QUANT_TABLES] rc_stat2)[32][2]
Definition: ffv1.h:106
encode_float32_remap_segment
static int encode_float32_remap_segment(FFV1SliceContext *sc, int p, int mul_count, int *mul_tab, int update, int final)
Definition: ffv1enc.c:1255
AV_PIX_FMT_GRAY14
#define AV_PIX_FMT_GRAY14
Definition: pixfmt.h:510
fold
static av_always_inline int fold(int diff, int bits)
Definition: ffv1.h:208
ff_ffv1_encode_setup_plane_info
av_cold int ff_ffv1_encode_setup_plane_info(AVCodecContext *avctx, enum AVPixelFormat pix_fmt)
Definition: ffv1enc.c:796
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:73
PutBitContext
Definition: put_bits.h:50
CODEC_LONG_NAME
#define CODEC_LONG_NAME(str)
Definition: codec_internal.h:326
sort_stt
static int sort_stt(FFV1Context *s, uint8_t stt[256])
Definition: ffv1enc.c:515
ver2_state
static const uint8_t ver2_state[256]
Definition: ffv1enc.c:121
arg
const char * arg
Definition: jacosubdec.c:67
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:74
AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GRAY10
Definition: pixfmt.h:508
if
if(ret)
Definition: filter_design.txt:179
encode_frame
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)
Definition: ffv1enc.c:1670
encode_close
static av_cold int encode_close(AVCodecContext *avctx)
Definition: ffv1enc.c:1807
quant_table
static const int16_t quant_table[64]
Definition: intrax8.c:511
AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:547
AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:518
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
FFV1SliceContext::sx
int sx
Definition: ffv1.h:81
ff_need_new_slices
int ff_need_new_slices(int width, int num_h_slices, int chroma_shift)
Definition: ffv1.c:120
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:75
fabs
static __device__ float fabs(float a)
Definition: cuda_runtime.h:182
NULL
#define NULL
Definition: coverity.c:32
AC_GOLOMB_RICE
#define AC_GOLOMB_RICE
Definition: ffv1.h:52
CMP
#define CMP(A, B)
run
uint8_t run
Definition: svq3.c:204
fs
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:200
FFV1SliceContext::Unit::val
uint32_t val
Definition: ffv1.h:115
ff_rac_terminate
int ff_rac_terminate(RangeCoder *c, int version)
Terminates the range coder.
Definition: rangecoder.c:109
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:239
AV_PIX_FMT_YUV440P10
#define AV_PIX_FMT_YUV440P10
Definition: pixfmt.h:530
options
Definition: swscale.c:43
PlaneContext
Definition: ffv1.h:64
AV_PIX_FMT_YUV422P10
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:529
AV_PIX_FMT_GRAY8
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:81
AV_PIX_FMT_GBRP9
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:543
AVCodecContext::level
int level
Encoding level descriptor.
Definition: avcodec.h:1631
AV_PIX_FMT_GBRPF16
#define AV_PIX_FMT_GBRPF16
Definition: pixfmt.h:559
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
VlcState
Definition: ffv1.h:57
VE
#define VE
Definition: ffv1enc.c:1818
ff_dlog
#define ff_dlog(a,...)
Definition: tableprint_vlc.h:28
FFV1SliceContext::slice_width
int slice_width
Definition: ffv1.h:77
options
static const AVOption options[]
Definition: ffv1enc.c:1819
AVCodecContext::stats_out
char * stats_out
pass1 encoding statistics output buffer
Definition: avcodec.h:1315
AV_CODEC_ID_FFV1
@ AV_CODEC_ID_FFV1
Definition: codec_id.h:85
qsort.h
f
f
Definition: af_crystalizer.c:122
init
int(* init)(AVBSFContext *ctx)
Definition: dts2pts.c:368
AV_CODEC_CAP_DR1
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
choose_rct_params
static void choose_rct_params(const FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[3], const int stride[3], int w, int h)
Definition: ffv1enc.c:1074
flip
static void flip(AVCodecContext *avctx, AVFrame *frame)
Definition: rawdec.c:131
AVPacket::size
int size
Definition: packet.h:536
AVCodecContext::gop_size
int gop_size
the number of pictures in a group of pictures, or 0 for intra_only
Definition: avcodec.h:1008
height
#define height
Definition: dsp.h:85
codec_internal.h
QTABLE_8BIT
@ QTABLE_8BIT
Definition: ffv1enc.h:30
quant9_10bit
static const int8_t quant9_10bit[256]
Definition: ffv1enc.c:83
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:424
print
static void print(AVTreeNode *t, int depth)
Definition: tree.c:45
AV_PIX_FMT_GBRPF32
#define AV_PIX_FMT_GBRPF32
Definition: pixfmt.h:561
AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:533
sample
#define sample
Definition: flacdsp_template.c:44
AV_PIX_FMT_RGB48
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:514
size
int size
Definition: twinvq_data.h:10344
ff_build_rac_states
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
Definition: rangecoder.c:68
planes
static const struct @489 planes[]
STATS_OUT_SIZE
#define STATS_OUT_SIZE
AV_PIX_FMT_YUV444P12
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:535
AV_WB24
#define AV_WB24(p, d)
Definition: intreadwrite.h:446
encode_plane
static int encode_plane(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src, int w, int h, int stride, int plane_index, int remap_index, int pixel_stride, int ac)
Definition: ffv1enc.c:274
RangeCoder::bytestream
uint8_t * bytestream
Definition: rangecoder.h:43
AV_CODEC_FLAG_PASS2
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
Definition: avcodec.h:294
AV_PIX_FMT_RGB32
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:500
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
AV_PIX_FMT_YUVA444P
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:174
FFV1SliceContext::slice_rct_by_coef
int slice_rct_by_coef
Definition: ffv1.h:85
av_crc_get_table
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:374
AV_CODEC_CAP_SLICE_THREADS
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:99
AV_PIX_FMT_YUVA444P10
#define AV_PIX_FMT_YUVA444P10
Definition: pixfmt.h:575
offset
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Definition: writing_filters.txt:86
find_best_state
static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256])
Definition: ffv1enc.c:140
attributes.h
FFV1SliceContext::rc_stat
uint64_t rc_stat[256][2]
Definition: ffv1.h:105
AVPacket::flags
int flags
A combination of AV_PKT_FLAG values.
Definition: packet.h:541
PlaneContext::quant_table_index
int quant_table_index
Definition: ffv1.h:65
AV_LOG_INFO
#define AV_LOG_INFO
Standard information.
Definition: log.h:220
FFV1SliceContext::c
RangeCoder c
Definition: ffv1.h:92
put_vlc_symbol
static void put_vlc_symbol(PutBitContext *pb, VlcState *const state, int v, int bits)
Definition: ffv1enc.c:240
FFV1SliceContext::unit
struct FFV1SliceContext::Unit unit[4][65536]
av_assert2
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:67
ffv1_class
static const AVClass ffv1_class
Definition: ffv1enc.c:1855
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
code
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
Definition: filter_design.txt:178
AV_QSORT
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
round
static av_always_inline av_const double round(double x)
Definition: libm.h:446
FFV1SliceContext::slice_rct_ry_coef
int slice_rct_ry_coef
Definition: ffv1.h:86
av_flatten
#define av_flatten
Definition: attributes.h:96
AV_PIX_FMT_GBRP12
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:545
av_malloc_array
#define av_malloc_array(a, b)
Definition: tableprint_vlc.h:32
encode_rgb_frame
static int RENAME() encode_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4], int ac)
Definition: ffv1enc_template.c:164
delta
float delta
Definition: vorbis_enc_data.h:430
av_always_inline
#define av_always_inline
Definition: attributes.h:49
ff_ffv1_common_init
av_cold int ff_ffv1_common_init(AVCodecContext *avctx, FFV1Context *s)
Definition: ffv1.c:36
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
ffv1.h
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:256
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:179
FFV1SliceContext
Definition: ffv1.h:73
len
int len
Definition: vorbis_enc_data.h:426
AV_CRC_32_IEEE
@ AV_CRC_32_IEEE
Definition: crc.h:52
AVCodecContext::height
int height
Definition: avcodec.h:595
AVCodecContext::pix_fmt
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:634
write_quant_table
static void write_quant_table(RangeCoder *c, int16_t *quant_table)
Definition: ffv1enc.c:347
AV_FRAME_FLAG_INTERLACED
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
Definition: frame.h:633
AVCOL_RANGE_MPEG
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
Definition: pixfmt.h:733
AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:527
load_rgb_float32_frame
static void load_rgb_float32_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4])
Definition: ffv1enc.c:1203
MAX_CONTEXT_INPUTS
#define MAX_CONTEXT_INPUTS
Definition: ffv1.h:50
log2
#define log2(x)
Definition: libm.h:406
avcodec.h
stride
#define stride
Definition: h264pred_template.c:536
AV_PIX_FMT_YAF16
#define AV_PIX_FMT_YAF16
Definition: pixfmt.h:567
av_uninit
#define av_uninit(x)
Definition: attributes.h:154
ret
ret
Definition: filter_design.txt:187
pred
static const float pred[4]
Definition: siprdata.h:259
FFSWAP
#define FFSWAP(type, a, b)
Definition: macros.h:52
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:80
ff_ffv1_encode_buffer_size
size_t ff_ffv1_encode_buffer_size(AVCodecContext *avctx)
Definition: ffv1enc.c:1648
AV_PIX_FMT_0RGB32
#define AV_PIX_FMT_0RGB32
Definition: pixfmt.h:504
quant5_10bit
static const int8_t quant5_10bit[256]
Definition: ffv1enc.c:45
FFV1SliceContext::slice_y
int slice_y
Definition: ffv1.h:80
AVCodecContext::strict_std_compliance
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:1360
AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUVA444P9
Definition: pixfmt.h:572
set_sr_golomb
static void set_sr_golomb(PutBitContext *pb, int i, int k, int limit, int esc_len)
write signed golomb rice code (ffv1).
Definition: put_golomb.h:143
ff_ffv1_close
av_cold void ff_ffv1_close(FFV1Context *s)
Definition: ffv1.c:227
AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:532
AV_INPUT_BUFFER_PADDING_SIZE
#define AV_INPUT_BUFFER_PADDING_SIZE
Definition: defs.h:40
put_rac
#define put_rac(C, S, B)
U
#define U(x)
Definition: vpx_arith.h:37
AV_PIX_FMT_YUV422P14
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:537
ff_ffv1_allocate_initial_states
int ff_ffv1_allocate_initial_states(FFV1Context *f)
Definition: ffv1.c:183
AVCodecContext
main external API structure.
Definition: avcodec.h:431
RangeCoder::bytestream_start
uint8_t * bytestream_start
Definition: rangecoder.h:42
AVCodecContext::execute
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:1594
av_crc
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:392
AV_PIX_FMT_YUVA422P12
#define AV_PIX_FMT_YUVA422P12
Definition: pixfmt.h:576
OFFSET
#define OFFSET(x)
Definition: ffv1enc.c:1817
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Underlying C type is int.
Definition: opt.h:259
AV_PIX_FMT_GBRAPF32
#define AV_PIX_FMT_GBRAPF32
Definition: pixfmt.h:562
QTABLE_DEFAULT
@ QTABLE_DEFAULT
Definition: ffv1enc.h:29
FFV1SliceContext::remap
int remap
Definition: ffv1.h:87
AV_PIX_FMT_GBRAPF16
#define AV_PIX_FMT_GBRAPF16
Definition: pixfmt.h:560
FFV1SliceContext::fltmap
uint16_t fltmap[4][65536]
Definition: ffv1.h:111
AVPixFmtDescriptor::comp
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:105
get_rac_count
static int get_rac_count(RangeCoder *c)
Definition: rangecoder.h:79
AV_CODEC_CAP_DELAY
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: codec.h:76
FFV1SliceContext::sy
int sy
Definition: ffv1.h:81
ffv1enc.h
COST2
#define COST2(old, new)
av_clip_uint8
#define av_clip_uint8
Definition: common.h:106
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:78
ffv1enc_template.c
desc
const char * desc
Definition: libsvtav1.c:79
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:77
mem.h
FFV1SliceContext::bitmap
uint16_t bitmap[4][65536]
Definition: ffv1.h:110
flush_put_bits
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:143
ff_ffv1_encode_init
av_cold int ff_ffv1_encode_init(AVCodecContext *avctx)
Definition: ffv1enc.c:598
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
FFV1Context
Definition: ffv1.h:120
AVCodecContext::slices
int slices
Number of slices.
Definition: avcodec.h:1024
AVPacket
This structure stores compressed data.
Definition: packet.h:512
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:458
FFV1SliceContext::run_index
int run_index
Definition: ffv1.h:83
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
FFV1SliceContext::Unit::ndx
uint16_t ndx
Definition: ffv1.h:116
AV_PIX_FMT_YUV411P
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:80
AVCodecContext::width
int width
picture width / height.
Definition: avcodec.h:595
ff_ffv1_init_slice_contexts
av_cold int ff_ffv1_init_slice_contexts(FFV1Context *f)
Definition: ffv1.c:140
encode_histogram_remap
static void encode_histogram_remap(FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1enc.c:1169
int32_t
int32_t
Definition: audioconvert.c:56
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
Definition: frame.h:455
AV_PIX_FMT_YUV410P
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:79
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:61
AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV440P12
Definition: pixfmt.h:534
h
h
Definition: vp9dsp_template.c:2070
RangeCoder
Definition: mss3.c:63
AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:538
ff_ffv1_encoder
const FFCodec ff_ffv1_encoder
Definition: ffv1enc.c:1862
width
#define width
Definition: dsp.h:85
write_header
static void write_header(FFV1Context *f)
Definition: ffv1enc.c:382
RENAME
#define RENAME(name)
Definition: ffv1enc.c:271
AV_PIX_FMT_GRAY12
#define AV_PIX_FMT_GRAY12
Definition: pixfmt.h:509
FFV1SliceContext::ac_byte_count
int ac_byte_count
number of bytes used for AC coding
Definition: ffv1.h:94
put_bits.h
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
Definition: opt.h:299
snprintf
#define snprintf
Definition: snprintf.h:34
av_log2
int av_log2(unsigned v)
Definition: intmath.c:26
FFV1SliceContext::slice_coding_mode
int slice_coding_mode
Definition: ffv1.h:84
ff_alloc_packet
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
Definition: encode.c:62
src
#define src
Definition: vp8dsp.c:248
encode_float32_rgb_frame
static int encode_float32_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4], int ac)
Definition: ffv1enc.c:1468
AV_PIX_FMT_YUVA422P
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:173
AV_PIX_FMT_YUV420P14
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:536
av_get_pix_fmt_name
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:3261
AV_CODEC_FLAG_PASS1
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:290
encode_slice_header
static void encode_slice_header(FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1enc.c:1040