FFmpeg
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
ffv1enc.c
Go to the documentation of this file.
1 /*
2  * FFV1 encoder
3  *
4  * Copyright (c) 2003-2013 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * FF Video Codec 1 (a lossless codec) encoder
26  */
27 
28 #include "libavutil/attributes.h"
29 #include "libavutil/avassert.h"
30 #include "libavutil/crc.h"
31 #include "libavutil/mem.h"
32 #include "libavutil/opt.h"
33 #include "libavutil/pixdesc.h"
34 #include "libavutil/qsort.h"
35 
36 #include "avcodec.h"
37 #include "encode.h"
38 #include "codec_internal.h"
39 #include "put_bits.h"
40 #include "put_golomb.h"
41 #include "rangecoder.h"
42 #include "ffv1.h"
43 #include "ffv1enc.h"
44 
45 static const int8_t quant5_10bit[256] = {
46  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
47  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
48  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
49  1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
50  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
51  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
52  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
53  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
54  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
55  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
56  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
57  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
58  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1,
59  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
60  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
61  -1, -1, -1, -1, -1, -1, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,
62 };
63 
64 static const int8_t quant5[256] = {
65  0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
66  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
67  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
68  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
69  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
70  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
71  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
72  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
73  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
74  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
75  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
76  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
77  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
78  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
79  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
80  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1,
81 };
82 
83 static const int8_t quant9_10bit[256] = {
84  0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
85  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
86  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
87  3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
88  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
89  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
90  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
91  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
92  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
93  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
94  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
95  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
96  -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3,
97  -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
98  -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
99  -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -0, -0, -0, -0,
100 };
101 
102 static const int8_t quant11[256] = {
103  0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
104  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
105  4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
106  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
107  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
108  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
109  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
110  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
111  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
112  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
113  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
114  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
115  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
116  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4,
117  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
118  -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -1,
119 };
120 
121 static const uint8_t ver2_state[256] = {
122  0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
123  59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
124  40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
125  53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
126  87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
127  85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
128  105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
129  115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
130  165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
131  147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
132  172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
133  175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
134  197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
135  209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
136  226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
137  241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
138 };
139 
140 static void find_best_state(uint8_t best_state[256][256],
141  const uint8_t one_state[256])
142 {
143  int i, j, k, m;
144  uint32_t l2tab[256];
145 
146  for (i = 1; i < 256; i++)
147  l2tab[i] = -log2(i / 256.0) * ((1U << 31) / 8);
148 
149  for (i = 0; i < 256; i++) {
150  uint64_t best_len[256];
151 
152  for (j = 0; j < 256; j++)
153  best_len[j] = UINT64_MAX;
154 
155  for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
156  uint32_t occ[256] = { 0 };
157  uint64_t len = 0;
158  occ[j] = UINT32_MAX;
159 
160  if (!one_state[j])
161  continue;
162 
163  for (k = 0; k < 256; k++) {
164  uint32_t newocc[256] = { 0 };
165  for (m = 1; m < 256; m++)
166  if (occ[m]) {
167  len += (occ[m]*(( i *(uint64_t)l2tab[ m]
168  + (256-i)*(uint64_t)l2tab[256-m])>>8)) >> 8;
169  }
170  if (len < best_len[k]) {
171  best_len[k] = len;
172  best_state[i][k] = j;
173  }
174  for (m = 1; m < 256; m++)
175  if (occ[m]) {
176  newocc[ one_state[ m]] += occ[m] * (uint64_t) i >> 8;
177  newocc[256 - one_state[256 - m]] += occ[m] * (uint64_t)(256 - i) >> 8;
178  }
179  memcpy(occ, newocc, sizeof(occ));
180  }
181  }
182  }
183 }
184 
186  uint8_t *state, int v,
187  int is_signed,
188  uint64_t rc_stat[256][2],
189  uint64_t rc_stat2[32][2])
190 {
191  int i;
192 
193 #define put_rac(C, S, B) \
194  do { \
195  if (rc_stat) { \
196  rc_stat[*(S)][B]++; \
197  rc_stat2[(S) - state][B]++; \
198  } \
199  put_rac(C, S, B); \
200  } while (0)
201 
202  if (v) {
203  const unsigned a = is_signed ? FFABS(v) : v;
204  const int e = av_log2(a);
205  put_rac(c, state + 0, 0);
206  if (e <= 9) {
207  for (i = 0; i < e; i++)
208  put_rac(c, state + 1 + i, 1); // 1..10
209  put_rac(c, state + 1 + i, 0);
210 
211  for (i = e - 1; i >= 0; i--)
212  put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
213 
214  if (is_signed)
215  put_rac(c, state + 11 + e, v < 0); // 11..21
216  } else {
217  for (i = 0; i < e; i++)
218  put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
219  put_rac(c, state + 1 + 9, 0);
220 
221  for (i = e - 1; i >= 0; i--)
222  put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
223 
224  if (is_signed)
225  put_rac(c, state + 11 + 10, v < 0); // 11..21
226  }
227  } else {
228  put_rac(c, state + 0, 1);
229  }
230 #undef put_rac
231 }
232 
233 static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
234  int v, int is_signed)
235 {
236  put_symbol_inline(c, state, v, is_signed, NULL, NULL);
237 }
238 
239 
240 static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
241  int v, int bits)
242 {
243  int i, k, code;
244  v = fold(v - state->bias, bits);
245 
246  i = state->count;
247  k = 0;
248  while (i < state->error_sum) { // FIXME: optimize
249  k++;
250  i += i;
251  }
252 
253  av_assert2(k <= 16);
254 
255  code = v ^ ((2 * state->drift + state->count) >> 31);
256 
257  ff_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
258  state->bias, state->error_sum, state->drift, state->count, k);
259  set_sr_golomb(pb, code, k, 12, bits);
260 
262 }
263 
264 #define TYPE int16_t
265 #define RENAME(name) name
266 #include "ffv1enc_template.c"
267 #undef TYPE
268 #undef RENAME
269 
270 #define TYPE int32_t
271 #define RENAME(name) name ## 32
272 #include "ffv1enc_template.c"
273 
275  const uint8_t *src, int w, int h,
276  int stride, int plane_index, int remap_index, int pixel_stride, int ac)
277 {
278  int x, y, i, ret;
279  const int pass1 = !!(f->avctx->flags & AV_CODEC_FLAG_PASS1);
280  const int ring_size = f->context_model ? 3 : 2;
281  int16_t *sample[3];
282  sc->run_index = 0;
283 
284  memset(sc->sample_buffer, 0, ring_size * (w + 6) * sizeof(*sc->sample_buffer));
285 
286  for (y = 0; y < h; y++) {
287  for (i = 0; i < ring_size; i++)
288  sample[i] = sc->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
289 
290  sample[0][-1]= sample[1][0 ];
291  sample[1][ w]= sample[1][w-1];
292 
293  if (f->bits_per_raw_sample <= 8) {
294  for (x = 0; x < w; x++)
295  sample[0][x] = src[x * pixel_stride + stride * y];
296  if (sc->remap)
297  for (x = 0; x < w; x++)
298  sample[0][x] = sc->fltmap[remap_index][ sample[0][x] ];
299 
300  if((ret = encode_line(f, sc, f->avctx, w, sample, plane_index, 8, ac, pass1)) < 0)
301  return ret;
302  } else {
303  if (f->packed_at_lsb) {
304  for (x = 0; x < w; x++) {
305  sample[0][x] = ((uint16_t*)(src + stride*y))[x * pixel_stride];
306  }
307  } else {
308  for (x = 0; x < w; x++) {
309  sample[0][x] = ((uint16_t*)(src + stride*y))[x * pixel_stride] >> (16 - f->bits_per_raw_sample);
310  }
311  }
312  if (sc->remap)
313  for (x = 0; x < w; x++)
314  sample[0][x] = sc->fltmap[remap_index][ (uint16_t)sample[0][x] ];
315 
316  if((ret = encode_line(f, sc, f->avctx, w, sample, plane_index, f->bits_per_raw_sample, ac, pass1)) < 0)
317  return ret;
318  }
319  }
320  return 0;
321 }
322 
324  const uint8_t *src, int w, int h,
325  int stride, int remap_index, int pixel_stride)
326 {
327  int x, y;
328 
329  memset(sc->fltmap[remap_index], 0, 65536 * sizeof(*sc->fltmap[remap_index]));
330 
331  for (y = 0; y < h; y++) {
332  if (f->bits_per_raw_sample <= 8) {
333  for (x = 0; x < w; x++)
334  sc->fltmap[remap_index][ src[x * pixel_stride + stride * y] ] = 1;
335  } else {
336  if (f->packed_at_lsb) {
337  for (x = 0; x < w; x++)
338  sc->fltmap[remap_index][ ((uint16_t*)(src + stride*y))[x * pixel_stride] ] = 1;
339  } else {
340  for (x = 0; x < w; x++)
341  sc->fltmap[remap_index][ ((uint16_t*)(src + stride*y))[x * pixel_stride] >> (16 - f->bits_per_raw_sample) ] = 1;
342  }
343  }
344  }
345 }
346 
347 static void write_quant_table(RangeCoder *c, int16_t *quant_table)
348 {
349  int last = 0;
350  int i;
351  uint8_t state[CONTEXT_SIZE];
352  memset(state, 128, sizeof(state));
353 
354  for (i = 1; i < MAX_QUANT_TABLE_SIZE/2; i++)
355  if (quant_table[i] != quant_table[i - 1]) {
356  put_symbol(c, state, i - last - 1, 0);
357  last = i;
358  }
359  put_symbol(c, state, i - last - 1, 0);
360 }
361 
364 {
365  int i;
366  for (i = 0; i < 5; i++)
368 }
369 
370 static int contains_non_128(uint8_t (*initial_state)[CONTEXT_SIZE],
371  int nb_contexts)
372 {
373  if (!initial_state)
374  return 0;
375  for (int i = 0; i < nb_contexts; i++)
376  for (int j = 0; j < CONTEXT_SIZE; j++)
377  if (initial_state[i][j] != 128)
378  return 1;
379  return 0;
380 }
381 
383 {
384  uint8_t state[CONTEXT_SIZE];
385  int i, j;
386  RangeCoder *const c = &f->slices[0].c;
387 
388  memset(state, 128, sizeof(state));
389 
390  if (f->version < 2) {
391  put_symbol(c, state, f->version, 0);
392  put_symbol(c, state, f->ac, 0);
393  if (f->ac == AC_RANGE_CUSTOM_TAB) {
394  for (i = 1; i < 256; i++)
395  put_symbol(c, state,
396  f->state_transition[i] - c->one_state[i], 1);
397  }
398  put_symbol(c, state, f->colorspace, 0); //YUV cs type
399  if (f->version > 0)
400  put_symbol(c, state, f->bits_per_raw_sample, 0);
401  put_rac(c, state, f->chroma_planes);
402  put_symbol(c, state, f->chroma_h_shift, 0);
403  put_symbol(c, state, f->chroma_v_shift, 0);
404  put_rac(c, state, f->transparency);
405 
406  write_quant_tables(c, f->quant_tables[f->context_model]);
407  } else if (f->version < 3) {
408  put_symbol(c, state, f->slice_count, 0);
409  for (i = 0; i < f->slice_count; i++) {
410  FFV1SliceContext *fs = &f->slices[i];
411  put_symbol(c, state,
412  (fs->slice_x + 1) * f->num_h_slices / f->width, 0);
413  put_symbol(c, state,
414  (fs->slice_y + 1) * f->num_v_slices / f->height, 0);
415  put_symbol(c, state,
416  (fs->slice_width + 1) * f->num_h_slices / f->width - 1,
417  0);
418  put_symbol(c, state,
419  (fs->slice_height + 1) * f->num_v_slices / f->height - 1,
420  0);
421  for (j = 0; j < f->plane_count; j++) {
422  put_symbol(c, state, fs->plane[j].quant_table_index, 0);
423  av_assert0(fs->plane[j].quant_table_index == f->context_model);
424  }
425  }
426  }
427 }
428 
430 {
431  f->combined_version = f->version << 16;
432  if (f->version > 2) {
433  if (f->version == 3) {
434  f->micro_version = 4;
435  } else if (f->version == 4) {
436  f->micro_version = 8;
437  } else
438  av_assert0(0);
439 
440  f->combined_version += f->micro_version;
441  } else
442  av_assert0(f->micro_version == 0);
443 }
444 
446 {
447  FFV1Context *f = avctx->priv_data;
448 
449  RangeCoder c;
450  uint8_t state[CONTEXT_SIZE];
451  int i, j, k;
452  uint8_t state2[32][CONTEXT_SIZE];
453  unsigned v;
454 
455  memset(state2, 128, sizeof(state2));
456  memset(state, 128, sizeof(state));
457 
458  f->avctx->extradata_size = 10000 + 4 +
459  (11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
460  f->avctx->extradata = av_malloc(f->avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
461  if (!f->avctx->extradata)
462  return AVERROR(ENOMEM);
463  ff_init_range_encoder(&c, f->avctx->extradata, f->avctx->extradata_size);
464  ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
465 
466  put_symbol(&c, state, f->version, 0);
467  if (f->version > 2)
468  put_symbol(&c, state, f->micro_version, 0);
469 
470  put_symbol(&c, state, f->ac, 0);
471  if (f->ac == AC_RANGE_CUSTOM_TAB)
472  for (i = 1; i < 256; i++)
473  put_symbol(&c, state, f->state_transition[i] - c.one_state[i], 1);
474 
475  put_symbol(&c, state, f->colorspace, 0); // YUV cs type
476  put_symbol(&c, state, f->bits_per_raw_sample, 0);
477  put_rac(&c, state, f->chroma_planes);
478  put_symbol(&c, state, f->chroma_h_shift, 0);
479  put_symbol(&c, state, f->chroma_v_shift, 0);
480  put_rac(&c, state, f->transparency);
481  put_symbol(&c, state, f->num_h_slices - 1, 0);
482  put_symbol(&c, state, f->num_v_slices - 1, 0);
483 
484  put_symbol(&c, state, f->quant_table_count, 0);
485  for (i = 0; i < f->quant_table_count; i++)
486  write_quant_tables(&c, f->quant_tables[i]);
487 
488  for (i = 0; i < f->quant_table_count; i++) {
489  if (contains_non_128(f->initial_states[i], f->context_count[i])) {
490  put_rac(&c, state, 1);
491  for (j = 0; j < f->context_count[i]; j++)
492  for (k = 0; k < CONTEXT_SIZE; k++) {
493  int pred = j ? f->initial_states[i][j - 1][k] : 128;
494  put_symbol(&c, state2[k],
495  (int8_t)(f->initial_states[i][j][k] - pred), 1);
496  }
497  } else {
498  put_rac(&c, state, 0);
499  }
500  }
501 
502  if (f->version > 2) {
503  put_symbol(&c, state, f->ec, 0);
504  put_symbol(&c, state, f->intra = (f->avctx->gop_size < 2), 0);
505  }
506 
507  f->avctx->extradata_size = ff_rac_terminate(&c, 0);
508  v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), f->crcref, f->avctx->extradata, f->avctx->extradata_size) ^ (f->crcref ? 0x8CD88196 : 0);
509  AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
510  f->avctx->extradata_size += 4;
511 
512  return 0;
513 }
514 
515 static int sort_stt(FFV1Context *s, uint8_t stt[256])
516 {
517  int i, i2, changed, print = 0;
518 
519  do {
520  changed = 0;
521  for (i = 12; i < 244; i++) {
522  for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
523 
524 #define COST(old, new) \
525  s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
526  s->rc_stat[old][1] * -log2((new) / 256.0)
527 
528 #define COST2(old, new) \
529  COST(old, new) + COST(256 - (old), 256 - (new))
530 
531  double size0 = COST2(i, i) + COST2(i2, i2);
532  double sizeX = COST2(i, i2) + COST2(i2, i);
533  if (size0 - sizeX > size0*(1e-14) && i != 128 && i2 != 128) {
534  int j;
535  FFSWAP(int, stt[i], stt[i2]);
536  FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
537  FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
538  if (i != 256 - i2) {
539  FFSWAP(int, stt[256 - i], stt[256 - i2]);
540  FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
541  FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
542  }
543  for (j = 1; j < 256; j++) {
544  if (stt[j] == i)
545  stt[j] = i2;
546  else if (stt[j] == i2)
547  stt[j] = i;
548  if (i != 256 - i2) {
549  if (stt[256 - j] == 256 - i)
550  stt[256 - j] = 256 - i2;
551  else if (stt[256 - j] == 256 - i2)
552  stt[256 - j] = 256 - i;
553  }
554  }
555  print = changed = 1;
556  }
557  }
558  }
559  } while (changed);
560  return print;
561 }
562 
563 
565 {
566  FFV1Context *s = avctx->priv_data;
567  int plane_count = 1 + 2*s->chroma_planes + s->transparency;
568  int max_h_slices = AV_CEIL_RSHIFT(avctx->width , s->chroma_h_shift);
569  int max_v_slices = AV_CEIL_RSHIFT(avctx->height, s->chroma_v_shift);
570  s->num_v_slices = (avctx->width > 352 || avctx->height > 288 || !avctx->slices) ? 2 : 1;
571  s->num_v_slices = FFMIN(s->num_v_slices, max_v_slices);
572  for (; s->num_v_slices <= 32; s->num_v_slices++) {
573  for (s->num_h_slices = s->num_v_slices; s->num_h_slices <= 2*s->num_v_slices; s->num_h_slices++) {
574  int maxw = (avctx->width + s->num_h_slices - 1) / s->num_h_slices;
575  int maxh = (avctx->height + s->num_v_slices - 1) / s->num_v_slices;
576  if (s->num_h_slices > max_h_slices || s->num_v_slices > max_v_slices)
577  continue;
578  if (maxw * maxh * (int64_t)(s->bits_per_raw_sample+1) * plane_count > 8<<24)
579  continue;
580  if (s->version < 4)
581  if ( ff_need_new_slices(avctx->width , s->num_h_slices, s->chroma_h_shift)
582  ||ff_need_new_slices(avctx->height, s->num_v_slices, s->chroma_v_shift))
583  continue;
584  if (avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= MAX_SLICES)
585  return 0;
586  if (maxw*maxh > 360*288)
587  continue;
588  if (!avctx->slices)
589  return 0;
590  }
591  }
592  av_log(avctx, AV_LOG_ERROR,
593  "Unsupported number %d of slices requested, please specify a "
594  "supported number with -slices (ex:4,6,9,12,16, ...)\n",
595  avctx->slices);
596  return AVERROR(ENOSYS);
597 }
598 
600 {
601  FFV1Context *s = avctx->priv_data;
602  int i, j, k, m, ret;
603 
604  if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) ||
605  avctx->slices > 1)
606  s->version = FFMAX(s->version, 2);
607 
608  if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) && s->ac == AC_GOLOMB_RICE) {
609  av_log(avctx, AV_LOG_ERROR, "2 Pass mode is not possible with golomb coding\n");
610  return AVERROR(EINVAL);
611  }
612 
613  // Unspecified level & slices, we choose version 1.2+ to ensure multithreaded decodability
614  if (avctx->slices == 0 && avctx->level < 0 && avctx->width * avctx->height > 720*576)
615  s->version = FFMAX(s->version, 2);
616 
617  if (avctx->level <= 0 && s->version == 2) {
618  s->version = 3;
619  }
620  if (avctx->level >= 0 && avctx->level <= 4) {
621  if (avctx->level < s->version) {
622  av_log(avctx, AV_LOG_ERROR, "Version %d needed for requested features but %d requested\n", s->version, avctx->level);
623  return AVERROR(EINVAL);
624  }
625  s->version = avctx->level;
626  } else if (s->version < 3)
627  s->version = 3;
628 
629  if (s->ec < 0) {
630  if (s->version >= 4) {
631  s->ec = 2;
632  s->crcref = 0x7a8c4079;
633  } else if (s->version >= 3) {
634  s->ec = 1;
635  } else
636  s->ec = 0;
637  }
638 
639  // CRC requires version 3+
640  if (s->ec == 1)
641  s->version = FFMAX(s->version, 3);
642  if (s->ec == 2)
643  s->version = FFMAX(s->version, 4);
644 
645  if ((s->version == 2 || s->version>3) && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
646  av_log(avctx, AV_LOG_ERROR, "Version 2 or 4 needed for requested features but version 2 or 4 is experimental and not enabled\n");
647  return AVERROR_INVALIDDATA;
648  }
649 
650  if (s->ac == AC_RANGE_CUSTOM_TAB) {
651  for (i = 1; i < 256; i++)
652  s->state_transition[i] = ver2_state[i];
653  } else {
654  RangeCoder c;
655  ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
656  for (i = 1; i < 256; i++)
657  s->state_transition[i] = c.one_state[i];
658  }
659 
660  for (i = 0; i < 256; i++) {
661  s->quant_table_count = 2;
662  if ((s->qtable == -1 && s->bits_per_raw_sample <= 8) || s->qtable == 1) {
663  s->quant_tables[0][0][i]= quant11[i];
664  s->quant_tables[0][1][i]= 11*quant11[i];
665  s->quant_tables[0][2][i]= 11*11*quant11[i];
666  s->quant_tables[1][0][i]= quant11[i];
667  s->quant_tables[1][1][i]= 11*quant11[i];
668  s->quant_tables[1][2][i]= 11*11*quant5 [i];
669  s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
670  s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
671  s->context_count[0] = (11 * 11 * 11 + 1) / 2;
672  s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
673  } else {
674  s->quant_tables[0][0][i]= quant9_10bit[i];
675  s->quant_tables[0][1][i]= 9*quant9_10bit[i];
676  s->quant_tables[0][2][i]= 9*9*quant9_10bit[i];
677  s->quant_tables[1][0][i]= quant9_10bit[i];
678  s->quant_tables[1][1][i]= 9*quant9_10bit[i];
679  s->quant_tables[1][2][i]= 9*9*quant5_10bit[i];
680  s->quant_tables[1][3][i]= 5*9*9*quant5_10bit[i];
681  s->quant_tables[1][4][i]= 5*5*9*9*quant5_10bit[i];
682  s->context_count[0] = (9 * 9 * 9 + 1) / 2;
683  s->context_count[1] = (9 * 9 * 5 * 5 * 5 + 1) / 2;
684  }
685  }
686 
688  return ret;
689 
690  if (!s->transparency)
691  s->plane_count = 2;
692  if (!s->chroma_planes && s->version > 3)
693  s->plane_count--;
694 
695  s->picture_number = 0;
696 
697  if (avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
698  for (i = 0; i < s->quant_table_count; i++) {
699  s->rc_stat2[i] = av_mallocz(s->context_count[i] *
700  sizeof(*s->rc_stat2[i]));
701  if (!s->rc_stat2[i])
702  return AVERROR(ENOMEM);
703  }
704  }
705  if (avctx->stats_in) {
706  char *p = avctx->stats_in;
707  uint8_t (*best_state)[256] = av_malloc_array(256, 256);
708  int gob_count = 0;
709  char *next;
710  if (!best_state)
711  return AVERROR(ENOMEM);
712 
713  av_assert0(s->version >= 2);
714 
715  for (;;) {
716  for (j = 0; j < 256; j++)
717  for (i = 0; i < 2; i++) {
718  s->rc_stat[j][i] = strtol(p, &next, 0);
719  if (next == p) {
720  av_log(avctx, AV_LOG_ERROR,
721  "2Pass file invalid at %d %d [%s]\n", j, i, p);
722  av_freep(&best_state);
723  return AVERROR_INVALIDDATA;
724  }
725  p = next;
726  }
727  for (i = 0; i < s->quant_table_count; i++)
728  for (j = 0; j < s->context_count[i]; j++) {
729  for (k = 0; k < 32; k++)
730  for (m = 0; m < 2; m++) {
731  s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
732  if (next == p) {
733  av_log(avctx, AV_LOG_ERROR,
734  "2Pass file invalid at %d %d %d %d [%s]\n",
735  i, j, k, m, p);
736  av_freep(&best_state);
737  return AVERROR_INVALIDDATA;
738  }
739  p = next;
740  }
741  }
742  gob_count = strtol(p, &next, 0);
743  if (next == p || gob_count <= 0) {
744  av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
745  av_freep(&best_state);
746  return AVERROR_INVALIDDATA;
747  }
748  p = next;
749  while (*p == '\n' || *p == ' ')
750  p++;
751  if (p[0] == 0)
752  break;
753  }
754  if (s->ac == AC_RANGE_CUSTOM_TAB)
755  sort_stt(s, s->state_transition);
756 
757  find_best_state(best_state, s->state_transition);
758 
759  for (i = 0; i < s->quant_table_count; i++) {
760  for (k = 0; k < 32; k++) {
761  double a=0, b=0;
762  int jp = 0;
763  for (j = 0; j < s->context_count[i]; j++) {
764  double p = 128;
765  if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1] > 200 && j || a+b > 200) {
766  if (a+b)
767  p = 256.0 * b / (a + b);
768  s->initial_states[i][jp][k] =
769  best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
770  for(jp++; jp<j; jp++)
771  s->initial_states[i][jp][k] = s->initial_states[i][jp-1][k];
772  a=b=0;
773  }
774  a += s->rc_stat2[i][j][k][0];
775  b += s->rc_stat2[i][j][k][1];
776  if (a+b) {
777  p = 256.0 * b / (a + b);
778  }
779  s->initial_states[i][j][k] =
780  best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
781  }
782  }
783  }
784  av_freep(&best_state);
785  }
786 
787  if (s->version <= 1) {
788  /* Disable slices when the version doesn't support them */
789  s->num_h_slices = 1;
790  s->num_v_slices = 1;
791  }
792 
794 
795  return 0;
796 }
797 
799  enum AVPixelFormat pix_fmt)
800 {
801  FFV1Context *s = avctx->priv_data;
803 
804  s->plane_count = 3;
805  switch(pix_fmt) {
806  case AV_PIX_FMT_GRAY9:
807  case AV_PIX_FMT_YUV444P9:
808  case AV_PIX_FMT_YUV422P9:
809  case AV_PIX_FMT_YUV420P9:
813  if (!avctx->bits_per_raw_sample)
814  s->bits_per_raw_sample = 9;
815  case AV_PIX_FMT_GRAY10:
823  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
824  s->bits_per_raw_sample = 10;
825  case AV_PIX_FMT_GRAY12:
832  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
833  s->bits_per_raw_sample = 12;
834  case AV_PIX_FMT_GRAY14:
838  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
839  s->bits_per_raw_sample = 14;
840  s->packed_at_lsb = 1;
841  case AV_PIX_FMT_GRAY16:
842  case AV_PIX_FMT_P016:
843  case AV_PIX_FMT_P216:
844  case AV_PIX_FMT_P416:
851  case AV_PIX_FMT_GRAYF16:
852  case AV_PIX_FMT_YAF16:
853  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
854  s->bits_per_raw_sample = 16;
855  } else if (!s->bits_per_raw_sample) {
856  s->bits_per_raw_sample = avctx->bits_per_raw_sample;
857  }
858  if (s->bits_per_raw_sample <= 8) {
859  av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
860  return AVERROR_INVALIDDATA;
861  }
862  s->version = FFMAX(s->version, 1);
863  case AV_PIX_FMT_GRAY8:
864  case AV_PIX_FMT_YA8:
865  case AV_PIX_FMT_NV12:
866  case AV_PIX_FMT_NV16:
867  case AV_PIX_FMT_NV24:
868  case AV_PIX_FMT_YUV444P:
869  case AV_PIX_FMT_YUV440P:
870  case AV_PIX_FMT_YUV422P:
871  case AV_PIX_FMT_YUV420P:
872  case AV_PIX_FMT_YUV411P:
873  case AV_PIX_FMT_YUV410P:
874  case AV_PIX_FMT_YUVA444P:
875  case AV_PIX_FMT_YUVA422P:
876  case AV_PIX_FMT_YUVA420P:
877  s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
878  s->colorspace = 0;
879  s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
880  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
881  s->bits_per_raw_sample = 8;
882  else if (!s->bits_per_raw_sample)
883  s->bits_per_raw_sample = 8;
884  break;
885  case AV_PIX_FMT_RGB32:
886  s->colorspace = 1;
887  s->transparency = 1;
888  s->chroma_planes = 1;
889  s->bits_per_raw_sample = 8;
890  break;
891  case AV_PIX_FMT_RGBA64:
892  s->colorspace = 1;
893  s->transparency = 1;
894  s->chroma_planes = 1;
895  s->bits_per_raw_sample = 16;
896  s->use32bit = 1;
897  s->version = FFMAX(s->version, 1);
898  break;
899  case AV_PIX_FMT_RGB48:
900  s->colorspace = 1;
901  s->chroma_planes = 1;
902  s->bits_per_raw_sample = 16;
903  s->use32bit = 1;
904  s->version = FFMAX(s->version, 1);
905  break;
906  case AV_PIX_FMT_0RGB32:
907  s->colorspace = 1;
908  s->chroma_planes = 1;
909  s->bits_per_raw_sample = 8;
910  break;
911  case AV_PIX_FMT_GBRP9:
912  if (!avctx->bits_per_raw_sample)
913  s->bits_per_raw_sample = 9;
914  case AV_PIX_FMT_GBRP10:
915  case AV_PIX_FMT_GBRAP10:
916  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
917  s->bits_per_raw_sample = 10;
918  case AV_PIX_FMT_GBRP12:
919  case AV_PIX_FMT_GBRAP12:
920  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
921  s->bits_per_raw_sample = 12;
922  case AV_PIX_FMT_GBRP14:
923  case AV_PIX_FMT_GBRAP14:
924  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
925  s->bits_per_raw_sample = 14;
926  case AV_PIX_FMT_GBRP16:
927  case AV_PIX_FMT_GBRAP16:
928  case AV_PIX_FMT_GBRPF16:
929  case AV_PIX_FMT_GBRAPF16:
930  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
931  s->bits_per_raw_sample = 16;
932  case AV_PIX_FMT_GBRPF32:
933  case AV_PIX_FMT_GBRAPF32:
934  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
935  s->bits_per_raw_sample = 32;
936  else if (!s->bits_per_raw_sample)
937  s->bits_per_raw_sample = avctx->bits_per_raw_sample;
938  s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
939  s->colorspace = 1;
940  s->chroma_planes = 1;
941  if (s->bits_per_raw_sample >= 16) {
942  s->use32bit = 1;
943  }
944  s->version = FFMAX(s->version, 1);
945  break;
946  default:
947  av_log(avctx, AV_LOG_ERROR, "format %s not supported\n",
949  return AVERROR(ENOSYS);
950  }
951  s->flt = !!(desc->flags & AV_PIX_FMT_FLAG_FLOAT);
952  if (s->flt || s->remap_mode > 0)
953  s->version = FFMAX(s->version, 4);
954  av_assert0(s->bits_per_raw_sample >= 8);
955 
956  if (s->remap_mode < 0)
957  s->remap_mode = s->flt ? 2 : 0;
958  if (s->remap_mode == 0 && s->bits_per_raw_sample == 32) {
959  av_log(avctx, AV_LOG_ERROR, "32bit requires remap\n");
960  return AVERROR(EINVAL);
961  }
962  if (s->remap_mode == 2 &&
963  !((s->bits_per_raw_sample == 16 || s->bits_per_raw_sample == 32 || s->bits_per_raw_sample == 64) && s->flt)) {
964  av_log(avctx, AV_LOG_ERROR, "remap 2 is for float16/32/64 only\n");
965  return AVERROR(EINVAL);
966  }
967 
968  return av_pix_fmt_get_chroma_sub_sample(pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
969 }
970 
972 {
973  int ret;
974  FFV1Context *s = avctx->priv_data;
975 
976  if ((ret = ff_ffv1_common_init(avctx, s)) < 0)
977  return ret;
978 
979  if (s->ac == 1) // Compatbility with common command line usage
980  s->ac = AC_RANGE_CUSTOM_TAB;
981  else if (s->ac == AC_RANGE_DEFAULT_TAB_FORCE)
982  s->ac = AC_RANGE_DEFAULT_TAB;
983 
985  if (ret < 0)
986  return ret;
987 
988  if (s->bits_per_raw_sample > (s->version > 3 ? 16 : 8) && !s->remap_mode) {
989  if (s->ac == AC_GOLOMB_RICE) {
990  av_log(avctx, AV_LOG_INFO,
991  "high bits_per_raw_sample, forcing range coder\n");
992  s->ac = AC_RANGE_CUSTOM_TAB;
993  }
994  }
995 
996 
997  ret = ff_ffv1_encode_init(avctx);
998  if (ret < 0)
999  return ret;
1000 
1001  if (s->version > 1) {
1002  if ((ret = ff_ffv1_encode_determine_slices(avctx)) < 0)
1003  return ret;
1004 
1005  if ((ret = ff_ffv1_write_extradata(avctx)) < 0)
1006  return ret;
1007  }
1008 
1009  if ((ret = ff_ffv1_init_slice_contexts(s)) < 0)
1010  return ret;
1011  s->slice_count = s->max_slice_count;
1012 
1013  for (int j = 0; j < s->slice_count; j++) {
1014  FFV1SliceContext *sc = &s->slices[j];
1015 
1016  for (int i = 0; i < s->plane_count; i++) {
1017  PlaneContext *const p = &s->slices[j].plane[i];
1018 
1019  p->quant_table_index = s->context_model;
1020  p->context_count = s->context_count[p->quant_table_index];
1021  }
1022  av_assert0(s->remap_mode >= 0);
1023  if (s->remap_mode) {
1024  for (int p = 0; p < 1 + 2*s->chroma_planes + s->transparency ; p++) {
1025  if (s->bits_per_raw_sample == 32) {
1026  sc->unit[p] = av_malloc_array(sc->slice_width, sc->slice_height * sizeof(**sc->unit));
1027  if (!sc->unit[p])
1028  return AVERROR(ENOMEM);
1029  sc->bitmap[p] = av_malloc_array(sc->slice_width * sc->slice_height, sizeof(*sc->bitmap[p]));
1030  if (!sc->bitmap[p])
1031  return AVERROR(ENOMEM);
1032  } else {
1033  sc->fltmap[p] = av_malloc_array(65536, sizeof(*sc->fltmap[p]));
1034  if (!sc->fltmap[p])
1035  return AVERROR(ENOMEM);
1036  }
1037  }
1038  }
1039 
1040  ff_build_rac_states(&s->slices[j].c, 0.05 * (1LL << 32), 256 - 8);
1041 
1042  s->slices[j].remap = s->remap_mode;
1043  }
1044 
1045  if ((ret = ff_ffv1_init_slices_state(s)) < 0)
1046  return ret;
1047 
1048 #define STATS_OUT_SIZE 1024 * 1024 * 6
1049  if (avctx->flags & AV_CODEC_FLAG_PASS1) {
1051  if (!avctx->stats_out)
1052  return AVERROR(ENOMEM);
1053  for (int i = 0; i < s->quant_table_count; i++)
1054  for (int j = 0; j < s->max_slice_count; j++) {
1055  FFV1SliceContext *sc = &s->slices[j];
1056  av_assert0(!sc->rc_stat2[i]);
1057  sc->rc_stat2[i] = av_mallocz(s->context_count[i] *
1058  sizeof(*sc->rc_stat2[i]));
1059  if (!sc->rc_stat2[i])
1060  return AVERROR(ENOMEM);
1061  }
1062  }
1063 
1064  return 0;
1065 }
1066 
1068 {
1069  RangeCoder *c = &sc->c;
1070  uint8_t state[CONTEXT_SIZE];
1071  int j;
1072  memset(state, 128, sizeof(state));
1073 
1074  put_symbol(c, state, sc->sx, 0);
1075  put_symbol(c, state, sc->sy, 0);
1076  put_symbol(c, state, 0, 0);
1077  put_symbol(c, state, 0, 0);
1078  for (j=0; j<f->plane_count; j++) {
1079  put_symbol(c, state, sc->plane[j].quant_table_index, 0);
1080  av_assert0(sc->plane[j].quant_table_index == f->context_model);
1081  }
1082  if (!(f->cur_enc_frame->flags & AV_FRAME_FLAG_INTERLACED))
1083  put_symbol(c, state, 3, 0);
1084  else
1085  put_symbol(c, state, 1 + !(f->cur_enc_frame->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST), 0);
1086  put_symbol(c, state, f->cur_enc_frame->sample_aspect_ratio.num, 0);
1087  put_symbol(c, state, f->cur_enc_frame->sample_aspect_ratio.den, 0);
1088  if (f->version > 3) {
1089  put_rac(c, state, sc->slice_coding_mode == 1);
1090  if (sc->slice_coding_mode == 1)
1092  put_symbol(c, state, sc->slice_coding_mode, 0);
1093  if (sc->slice_coding_mode != 1 && f->colorspace == 1) {
1094  put_symbol(c, state, sc->slice_rct_by_coef, 0);
1095  put_symbol(c, state, sc->slice_rct_ry_coef, 0);
1096  }
1097  put_symbol(c, state, sc->remap, 0);
1098  }
1099 }
1100 
1102  const uint8_t *src[3], const int stride[3], int w, int h)
1103 {
1104 #define NB_Y_COEFF 15
1105  static const int rct_y_coeff[15][2] = {
1106  {0, 0}, // 4G
1107  {1, 1}, // R + 2G + B
1108  {2, 2}, // 2R + 2B
1109  {0, 2}, // 2G + 2B
1110  {2, 0}, // 2R + 2G
1111  {4, 0}, // 4R
1112  {0, 4}, // 4B
1113 
1114  {0, 3}, // 1G + 3B
1115  {3, 0}, // 3R + 1G
1116  {3, 1}, // 3R + B
1117  {1, 3}, // R + 3B
1118  {1, 2}, // R + G + 2B
1119  {2, 1}, // 2R + G + B
1120  {0, 1}, // 3G + B
1121  {1, 0}, // R + 3G
1122  };
1123 
1124  int stat[NB_Y_COEFF] = {0};
1125  int x, y, i, p, best;
1126  int16_t *sample[3];
1127  int lbd = f->bits_per_raw_sample <= 8;
1128  int packed = !src[1];
1129  int transparency = f->transparency;
1130  int packed_size = (3 + transparency)*2;
1131 
1132  for (y = 0; y < h; y++) {
1133  int lastr=0, lastg=0, lastb=0;
1134  for (p = 0; p < 3; p++)
1135  sample[p] = sc->sample_buffer + p*w;
1136 
1137  for (x = 0; x < w; x++) {
1138  int b, g, r;
1139  int ab, ag, ar;
1140  if (lbd) {
1141  unsigned v = *((const uint32_t*)(src[0] + x*4 + stride[0]*y));
1142  b = v & 0xFF;
1143  g = (v >> 8) & 0xFF;
1144  r = (v >> 16) & 0xFF;
1145  } else if (packed) {
1146  const uint16_t *p = ((const uint16_t*)(src[0] + x*packed_size + stride[0]*y));
1147  r = p[0];
1148  g = p[1];
1149  b = p[2];
1150  } else if (f->use32bit || transparency) {
1151  g = *((const uint16_t *)(src[0] + x*2 + stride[0]*y));
1152  b = *((const uint16_t *)(src[1] + x*2 + stride[1]*y));
1153  r = *((const uint16_t *)(src[2] + x*2 + stride[2]*y));
1154  } else {
1155  b = *((const uint16_t*)(src[0] + x*2 + stride[0]*y));
1156  g = *((const uint16_t*)(src[1] + x*2 + stride[1]*y));
1157  r = *((const uint16_t*)(src[2] + x*2 + stride[2]*y));
1158  }
1159 
1160  ar = r - lastr;
1161  ag = g - lastg;
1162  ab = b - lastb;
1163  if (x && y) {
1164  int bg = ag - sample[0][x];
1165  int bb = ab - sample[1][x];
1166  int br = ar - sample[2][x];
1167 
1168  br -= bg;
1169  bb -= bg;
1170 
1171  for (i = 0; i<NB_Y_COEFF; i++) {
1172  stat[i] += FFABS(bg + ((br*rct_y_coeff[i][0] + bb*rct_y_coeff[i][1])>>2));
1173  }
1174 
1175  }
1176  sample[0][x] = ag;
1177  sample[1][x] = ab;
1178  sample[2][x] = ar;
1179 
1180  lastr = r;
1181  lastg = g;
1182  lastb = b;
1183  }
1184  }
1185 
1186  best = 0;
1187  for (i=1; i<NB_Y_COEFF; i++) {
1188  if (stat[i] < stat[best])
1189  best = i;
1190  }
1191 
1192  sc->slice_rct_by_coef = rct_y_coeff[best][1];
1193  sc->slice_rct_ry_coef = rct_y_coeff[best][0];
1194 }
1195 
1197 {
1198  int len = 1 << f->bits_per_raw_sample;
1199  int flip = sc->remap == 2 ? 0x7FFF : 0;
1200 
1201  for (int p= 0; p < 1 + 2*f->chroma_planes + f->transparency; p++) {
1202  int j = 0;
1203  int lu = 0;
1204  uint8_t state[2][32];
1205  int run = 0;
1206 
1207  memset(state, 128, sizeof(state));
1208  put_symbol(&sc->c, state[0], 0, 0);
1209  memset(state, 128, sizeof(state));
1210  for (int i= 0; i<len; i++) {
1211  int ri = i ^ ((i&0x8000) ? 0 : flip);
1212  int u = sc->fltmap[p][ri];
1213  sc->fltmap[p][ri] = j;
1214  j+= u;
1215 
1216  if (lu == u) {
1217  run ++;
1218  } else {
1219  put_symbol_inline(&sc->c, state[lu], run, 0, NULL, NULL);
1220  if (run == 0)
1221  lu = u;
1222  run = 0;
1223  }
1224  }
1225  if (run)
1226  put_symbol(&sc->c, state[lu], run, 0);
1227  sc->remap_count[p] = j;
1228  }
1229 }
1230 
1232  const uint8_t *src[4],
1233  int w, int h, const int stride[4])
1234 {
1235  int x, y;
1236  int transparency = f->transparency;
1237  int i = 0;
1238 
1239  for (y = 0; y < h; y++) {
1240  for (x = 0; x < w; x++) {
1241  int b, g, r, av_uninit(a);
1242 
1243  g = *((const uint32_t *)(src[0] + x*4 + stride[0]*y));
1244  b = *((const uint32_t *)(src[1] + x*4 + stride[1]*y));
1245  r = *((const uint32_t *)(src[2] + x*4 + stride[2]*y));
1246  if (transparency)
1247  a = *((const uint32_t *)(src[3] + x*4 + stride[3]*y));
1248 
1249  if (sc->remap == 2) {
1250 #define FLIP(f) (((f)&0x80000000) ? (f) : (f)^0x7FFFFFFF);
1251  g = FLIP(g);
1252  b = FLIP(b);
1253  r = FLIP(r);
1254  }
1255  // We cannot build a histogram as we do for 16bit, we need a bit of magic here
1256  // Its possible to reduce the memory needed at the cost of more dereferencing
1257  sc->unit[0][i].val = g;
1258  sc->unit[0][i].ndx = x + y*w;
1259 
1260  sc->unit[1][i].val = b;
1261  sc->unit[1][i].ndx = x + y*w;
1262 
1263  sc->unit[2][i].val = r;
1264  sc->unit[2][i].ndx = x + y*w;
1265 
1266  if (transparency) {
1267  sc->unit[3][i].val = a;
1268  sc->unit[3][i].ndx = x + y*w;
1269  }
1270  i++;
1271  }
1272  }
1273 
1274  //TODO switch to radix sort
1275 #define CMP(A,B) ((A)->val - (int64_t)(B)->val)
1276  AV_QSORT(sc->unit[0], i, struct Unit, CMP);
1277  AV_QSORT(sc->unit[1], i, struct Unit, CMP);
1278  AV_QSORT(sc->unit[2], i, struct Unit, CMP);
1279  if (transparency)
1280  AV_QSORT(sc->unit[3], i, struct Unit, CMP);
1281 }
1282 
1284  int p, int mul_count, int *mul_tab, int update, int final)
1285 {
1286  const int pixel_num = sc->slice_width * sc->slice_height;
1287  uint8_t state[2][3][32];
1288  int mul[4096+1];
1289  RangeCoder rc = sc->c;
1290  int lu = 0;
1291  int run = 0;
1292  int64_t last_val = -1;
1293  int compact_index = -1;
1294  int i = 0;
1295  int current_mul_index = -1;
1296  int run1final = 0;
1297  int run1start_i;
1298  int run1start_last_val;
1299  int run1start_mul_index;
1300 
1301  memcpy(mul, mul_tab, sizeof(*mul_tab)*(mul_count+1));
1302  memset(state, 128, sizeof(state));
1303  put_symbol(&rc, state[0][0], mul_count, 0);
1304  memset(state, 128, sizeof(state));
1305 
1306  for (; i < pixel_num+1; i++) {
1307  int current_mul = current_mul_index < 0 ? 1 : FFABS(mul[current_mul_index]);
1308  int64_t val;
1309  if (i == pixel_num) {
1310  if (last_val == 0xFFFFFFFF) {
1311  break;
1312  } else {
1313  val = last_val + ((1LL<<32) - last_val + current_mul - 1) / current_mul * current_mul;
1314  av_assert2(val >= (1LL<<32));
1315  val += lu * current_mul; //ensure a run1 ends
1316  }
1317  } else
1318  val = sc->unit[p][i].val;
1319 
1320  if (last_val != val) {
1321  int64_t delta = val - last_val;
1322  int64_t step = FFMAX(1, (delta + current_mul/2) / current_mul);
1323  av_assert2(last_val < val);
1324  av_assert2(current_mul > 0);
1325 
1326  delta -= step*current_mul;
1327  av_assert2(delta <= current_mul/2);
1328  av_assert2(delta > -current_mul);
1329 
1330  av_assert2(step > 0);
1331  if (lu) {
1332  if (!run) {
1333  run1start_i = i - 1;
1334  run1start_last_val = last_val;
1335  run1start_mul_index= current_mul_index;
1336  }
1337  if (step == 1) {
1338  if (run1final) {
1339  if (current_mul>1)
1340  put_symbol_inline(&rc, state[lu][1], delta, 1, NULL, NULL);
1341  }
1342  run ++;
1343  av_assert2(last_val + current_mul + delta == val);
1344  } else {
1345  if (run1final) {
1346  if (run == 0)
1347  lu ^= 1;
1348  i--; // we did not encode val so we need to backstep
1349  last_val += current_mul;
1350  } else {
1351  put_symbol_inline(&rc, state[lu][0], run, 0, NULL, NULL);
1352  i = run1start_i;
1353  last_val = run1start_last_val; // we could compute this instead of storing
1354  current_mul_index = run1start_mul_index;
1355  }
1356  run1final ^= 1;
1357 
1358  run = 0;
1359  continue;
1360  }
1361  } else {
1362  av_assert2(run == 0);
1363  av_assert2(run1final == 0);
1364  put_symbol_inline(&rc, state[lu][0], step - 1, 0, NULL, NULL);
1365 
1366  if (current_mul > 1)
1367  put_symbol_inline(&rc, state[lu][1], delta, 1, NULL, NULL);
1368  if (step == 1)
1369  lu ^= 1;
1370 
1371  av_assert2(last_val + step * current_mul + delta == val);
1372  }
1373  last_val = val;
1374  current_mul_index = ((last_val + 1) * mul_count) >> 32;
1375  if (!run || run1final) {
1376  av_assert2(mul[ current_mul_index ]);
1377  if (mul[ current_mul_index ] < 0) {
1378  av_assert2(i < pixel_num);
1379  mul[ current_mul_index ] *= -1;
1380  put_symbol_inline(&rc, state[0][2], mul[ current_mul_index ], 0, NULL, NULL);
1381  }
1382  if (i < pixel_num)
1383  compact_index ++;
1384  }
1385  }
1386  if (!run || run1final)
1387  if (final && i < pixel_num)
1388  sc->bitmap[p][sc->unit[p][i].ndx] = compact_index;
1389  }
1390 
1391  if (update) {
1392  sc->c = rc;
1393  sc->remap_count[p] = compact_index + 1;
1394  }
1395  return get_rac_count(&rc);
1396 }
1397 
1399  const uint8_t *src[4])
1400 {
1401  int pixel_num = sc->slice_width * sc->slice_height;
1402  const int max_log2_mul_count = ((int[]){ 1, 1, 1, 9, 9, 10})[f->remap_optimizer];
1403  const int log2_mul_count_step = ((int[]){ 1, 1, 1, 9, 9, 1})[f->remap_optimizer];
1404  const int max_log2_mul = ((int[]){ 1, 8, 8, 9, 22, 22})[f->remap_optimizer];
1405  const int log2_mul_step = ((int[]){ 1, 8, 1, 1, 1, 1})[f->remap_optimizer];
1406  const int bruteforce_count = ((int[]){ 0, 0, 0, 1, 1, 1})[f->remap_optimizer];
1407  const int stair_mode = ((int[]){ 0, 0, 0, 1, 0, 0})[f->remap_optimizer];
1408  const int magic_log2 = ((int[]){ 1, 1, 1, 1, 0, 0})[f->remap_optimizer];
1409 
1410  for (int p= 0; p < 1 + 2*f->chroma_planes + f->transparency; p++) {
1411  int best_log2_mul_count = 0;
1412  float score_sum[11] = {0};
1413  int mul_all[11][1025];
1414 
1415  for (int log2_mul_count= 0; log2_mul_count <= max_log2_mul_count; log2_mul_count += log2_mul_count_step) {
1416  float score_tab_all[1025][23] = {0};
1417  int64_t last_val = -1;
1418  int *mul_tab = mul_all[log2_mul_count];
1419  int last_mul_index = -1;
1420  int mul_count = 1 << log2_mul_count;
1421 
1422  score_sum[log2_mul_count] = 2 * log2_mul_count;
1423  if (magic_log2)
1424  score_sum[log2_mul_count] = av_float2int((float)mul_count * mul_count);
1425  for (int i= 0; i<pixel_num; i++) {
1426  int64_t val = sc->unit[p][i].val;
1427  int mul_index = (val + 1LL)*mul_count >> 32;
1428  if (val != last_val) {
1429  float *score_tab = score_tab_all[(last_val + 1LL)*mul_count >> 32];
1430  av_assert2(last_val < val);
1431  for(int si= 0; si <= max_log2_mul; si += log2_mul_step) {
1432  int64_t delta = val - last_val;
1433  int mul;
1434  int64_t cost;
1435 
1436  if (last_val < 0) {
1437  mul = 1;
1438  } else if (stair_mode && mul_count == 512 && si == max_log2_mul ) {
1439  if (mul_index >= 0x378/8 && mul_index <= 23 + 0x378/8) {
1440  mul = (0x800080 >> (mul_index - 0x378/8));
1441  } else
1442  mul = 1;
1443  } else {
1444  mul = (0x10001LL)<<si >> 16;
1445  }
1446 
1447  cost = FFMAX((delta + mul/2) / mul, 1);
1448  float score = 1;
1449  if (mul > 1) {
1450  score *= (FFABS(delta - cost*mul)+1);
1451  if (mul_count > 1)
1452  score *= score;
1453  }
1454  score *= cost;
1455  score *= score;
1456  if (mul_index != last_mul_index)
1457  score *= mul;
1458  if (magic_log2) {
1459  score_tab[si] += av_float2int(score);
1460  } else
1461  score_tab[si] += log2f(score);
1462  }
1463  }
1464  last_val = val;
1465  last_mul_index = mul_index;
1466  }
1467  for(int i= 0; i<mul_count; i++) {
1468  int best_index = 0;
1469  float *score_tab = score_tab_all[i];
1470  for(int si= 0; si <= max_log2_mul; si += log2_mul_step) {
1471  if (score_tab[si] < score_tab[ best_index ])
1472  best_index = si;
1473  }
1474  if (stair_mode && mul_count == 512 && best_index == max_log2_mul ) {
1475  if (i >= 0x378/8 && i <= 23 + 0x378/8) {
1476  mul_tab[i] = -(0x800080 >> (i - 0x378/8));
1477  } else
1478  mul_tab[i] = -1;
1479  } else
1480  mul_tab[i] = -((0x10001LL)<<best_index >> 16);
1481  score_sum[log2_mul_count] += score_tab[ best_index ];
1482  }
1483  mul_tab[mul_count] = 1;
1484 
1485  if (bruteforce_count)
1486  score_sum[log2_mul_count] = encode_float32_remap_segment(sc, p, mul_count, mul_all[log2_mul_count], 0, 0);
1487 
1488  if (score_sum[log2_mul_count] < score_sum[best_log2_mul_count])
1489  best_log2_mul_count = log2_mul_count;
1490  }
1491 
1492  encode_float32_remap_segment(sc, p, 1<<best_log2_mul_count, mul_all[best_log2_mul_count], 1, 1);
1493  }
1494 }
1495 
1497  const uint8_t *src[4],
1498  int w, int h, const int stride[4], int ac)
1499 {
1500  int x, y, p, i;
1501  const int ring_size = f->context_model ? 3 : 2;
1502  int32_t *sample[4][3];
1503  const int pass1 = !!(f->avctx->flags & AV_CODEC_FLAG_PASS1);
1504  int bits[4], offset;
1505  int transparency = f->transparency;
1506 
1507  ff_ffv1_compute_bits_per_plane(f, sc, bits, &offset, NULL, f->bits_per_raw_sample);
1508 
1509  sc->run_index = 0;
1510 
1511  memset(RENAME(sc->sample_buffer), 0, ring_size * MAX_PLANES *
1512  (w + 6) * sizeof(*RENAME(sc->sample_buffer)));
1513 
1514  for (y = 0; y < h; y++) {
1515  for (i = 0; i < ring_size; i++)
1516  for (p = 0; p < MAX_PLANES; p++)
1517  sample[p][i]= RENAME(sc->sample_buffer) + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
1518 
1519  for (x = 0; x < w; x++) {
1520  int b, g, r, av_uninit(a);
1521  g = sc->bitmap[0][x + w*y];
1522  b = sc->bitmap[1][x + w*y];
1523  r = sc->bitmap[2][x + w*y];
1524  if (transparency)
1525  a = sc->bitmap[3][x + w*y];
1526 
1527  if (sc->slice_coding_mode != 1) {
1528  b -= g;
1529  r -= g;
1530  g += (b * sc->slice_rct_by_coef + r * sc->slice_rct_ry_coef) >> 2;
1531  b += offset;
1532  r += offset;
1533  }
1534 
1535  sample[0][0][x] = g;
1536  sample[1][0][x] = b;
1537  sample[2][0][x] = r;
1538  sample[3][0][x] = a;
1539  }
1540  for (p = 0; p < 3 + transparency; p++) {
1541  int ret;
1542  sample[p][0][-1] = sample[p][1][0 ];
1543  sample[p][1][ w] = sample[p][1][w-1];
1544  ret = encode_line32(f, sc, f->avctx, w, sample[p], (p + 1) / 2,
1545  bits[p], ac, pass1);
1546  if (ret < 0)
1547  return ret;
1548  }
1549  }
1550  return 0;
1551 }
1552 
1553 
1554 static int encode_slice(AVCodecContext *c, void *arg)
1555 {
1556  FFV1SliceContext *sc = arg;
1557  FFV1Context *f = c->priv_data;
1558  int width = sc->slice_width;
1559  int height = sc->slice_height;
1560  int x = sc->slice_x;
1561  int y = sc->slice_y;
1562  const AVFrame *const p = f->cur_enc_frame;
1563  const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step;
1564  int ret;
1565  RangeCoder c_bak = sc->c;
1566  const int chroma_width = AV_CEIL_RSHIFT(width, f->chroma_h_shift);
1567  const int chroma_height = AV_CEIL_RSHIFT(height, f->chroma_v_shift);
1568  const uint8_t *planes[4] = {p->data[0] + ps*x + y*p->linesize[0],
1569  p->data[1] ? p->data[1] + ps*x + y*p->linesize[1] : NULL,
1570  p->data[2] ? p->data[2] + ps*x + y*p->linesize[2] : NULL,
1571  p->data[3] ? p->data[3] + ps*x + y*p->linesize[3] : NULL};
1572  int ac = f->ac;
1573 
1574  sc->slice_coding_mode = 0;
1575  if (f->version > 3 && f->colorspace == 1) {
1577  } else {
1578  sc->slice_rct_by_coef = 1;
1579  sc->slice_rct_ry_coef = 1;
1580  }
1581 
1582 retry:
1583  if (f->key_frame)
1585  if (f->version > 2) {
1586  encode_slice_header(f, sc);
1587  }
1588 
1589  if (sc->remap) {
1590  //Both the 16bit and 32bit remap do exactly the same thing but with 16bits we can
1591  //Implement this using a "histogram" while for 32bit that would be gb sized, thus a more
1592  //complex implementation sorting pairs is used.
1593  if (f->bits_per_raw_sample != 32) {
1594  if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8 && c->pix_fmt != AV_PIX_FMT_YAF16) {
1595  const int cx = x >> f->chroma_h_shift;
1596  const int cy = y >> f->chroma_v_shift;
1597 
1598  //TODO decide on the order for the encoded remaps and loads. with golomb rice it
1599  // easier to have all range coded ones together, otherwise it may be nicer to handle each plane as a whole?
1600 
1601  load_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 1);
1602 
1603  if (f->chroma_planes) {
1604  load_plane(f, sc, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1);
1605  load_plane(f, sc, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 2, 1);
1606  }
1607  if (f->transparency)
1608  load_plane(f, sc, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 3, 1);
1609  } else if (c->pix_fmt == AV_PIX_FMT_YA8 || c->pix_fmt == AV_PIX_FMT_YAF16) {
1610  load_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 2);
1611  load_plane(f, sc, p->data[0] + (ps>>1) + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 2);
1612  } else if (f->use32bit) {
1613  load_rgb_frame32(f, sc, planes, width, height, p->linesize);
1614  } else
1615  load_rgb_frame (f, sc, planes, width, height, p->linesize);
1616 
1618  } else {
1621  }
1622  }
1623 
1624  if (ac == AC_GOLOMB_RICE) {
1625  sc->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate(&sc->c, f->version > 2) : 0;
1626  init_put_bits(&sc->pb,
1627  sc->c.bytestream_start + sc->ac_byte_count,
1628  sc->c.bytestream_end - sc->c.bytestream_start - sc->ac_byte_count);
1629  }
1630 
1631  if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8 && c->pix_fmt != AV_PIX_FMT_YAF16) {
1632  const int cx = x >> f->chroma_h_shift;
1633  const int cy = y >> f->chroma_v_shift;
1634 
1635  ret = encode_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 0, 1, ac);
1636 
1637  if (f->chroma_planes) {
1638  ret |= encode_plane(f, sc, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1, 1, ac);
1639  ret |= encode_plane(f, sc, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1, 2, 1, ac);
1640  }
1641  if (f->transparency)
1642  ret |= encode_plane(f, sc, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2, 3, 1, ac);
1643  } else if (c->pix_fmt == AV_PIX_FMT_YA8 || c->pix_fmt == AV_PIX_FMT_YAF16) {
1644  ret = encode_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 0, 2, ac);
1645  ret |= encode_plane(f, sc, p->data[0] + (ps>>1) + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 1, 2, ac);
1646  } else if (f->bits_per_raw_sample == 32) {
1648  } else if (f->use32bit) {
1649  ret = encode_rgb_frame32(f, sc, planes, width, height, p->linesize, ac);
1650  } else {
1651  ret = encode_rgb_frame(f, sc, planes, width, height, p->linesize, ac);
1652  }
1653 
1654  if (ac != AC_GOLOMB_RICE) {
1655  sc->ac_byte_count = ff_rac_terminate(&sc->c, 1);
1656  } else {
1657  flush_put_bits(&sc->pb); // FIXME: nicer padding
1658  sc->ac_byte_count += put_bytes_output(&sc->pb);
1659  }
1660 
1661  if (ret < 0) {
1662  av_assert0(sc->slice_coding_mode == 0);
1663  if (f->version < 4) {
1664  av_log(c, AV_LOG_ERROR, "Buffer too small\n");
1665  return ret;
1666  }
1667  av_log(c, AV_LOG_DEBUG, "Coding slice as PCM\n");
1668  ac = 1;
1669  sc->slice_coding_mode = 1;
1670  sc->c = c_bak;
1671  goto retry;
1672  }
1673 
1674  return 0;
1675 }
1676 
1678 {
1679  FFV1Context *f = avctx->priv_data;
1680 
1681  size_t maxsize = avctx->width*avctx->height * (1 + f->transparency);
1682  if (f->chroma_planes)
1683  maxsize += AV_CEIL_RSHIFT(avctx->width, f->chroma_h_shift) * AV_CEIL_RSHIFT(f->height, f->chroma_v_shift) * 2;
1684  maxsize += f->slice_count * 800; //for slice header
1685  if (f->version > 3) {
1686  maxsize *= f->bits_per_raw_sample + 1;
1687  if (f->remap_mode)
1688  maxsize += f->slice_count * 70000 * (1 + 2*f->chroma_planes + f->transparency);
1689  } else {
1690  maxsize += f->slice_count * 2 * (avctx->width + avctx->height); //for bug with slices that code some pixels more than once
1691  maxsize *= 8*(2*f->bits_per_raw_sample + 5);
1692  }
1693  maxsize >>= 3;
1694  maxsize += FF_INPUT_BUFFER_MIN_SIZE;
1695 
1696  return maxsize;
1697 }
1698 
1700  const AVFrame *pict, int *got_packet)
1701 {
1702  FFV1Context *f = avctx->priv_data;
1703  RangeCoder *const c = &f->slices[0].c;
1704  uint8_t keystate = 128;
1705  uint8_t *buf_p;
1706  int i, ret;
1707  int64_t maxsize;
1708 
1709  if(!pict) {
1710  if (avctx->flags & AV_CODEC_FLAG_PASS1) {
1711  int j, k, m;
1712  char *p = avctx->stats_out;
1713  char *end = p + STATS_OUT_SIZE;
1714 
1715  memset(f->rc_stat, 0, sizeof(f->rc_stat));
1716  for (i = 0; i < f->quant_table_count; i++)
1717  memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
1718 
1719  av_assert0(f->slice_count == f->max_slice_count);
1720  for (j = 0; j < f->slice_count; j++) {
1721  const FFV1SliceContext *sc = &f->slices[j];
1722  for (i = 0; i < 256; i++) {
1723  f->rc_stat[i][0] += sc->rc_stat[i][0];
1724  f->rc_stat[i][1] += sc->rc_stat[i][1];
1725  }
1726  for (i = 0; i < f->quant_table_count; i++) {
1727  for (k = 0; k < f->context_count[i]; k++)
1728  for (m = 0; m < 32; m++) {
1729  f->rc_stat2[i][k][m][0] += sc->rc_stat2[i][k][m][0];
1730  f->rc_stat2[i][k][m][1] += sc->rc_stat2[i][k][m][1];
1731  }
1732  }
1733  }
1734 
1735  for (j = 0; j < 256; j++) {
1736  snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
1737  f->rc_stat[j][0], f->rc_stat[j][1]);
1738  p += strlen(p);
1739  }
1740  snprintf(p, end - p, "\n");
1741 
1742  for (i = 0; i < f->quant_table_count; i++) {
1743  for (j = 0; j < f->context_count[i]; j++)
1744  for (m = 0; m < 32; m++) {
1745  snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
1746  f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
1747  p += strlen(p);
1748  }
1749  }
1750  snprintf(p, end - p, "%d\n", f->gob_count);
1751  }
1752  return 0;
1753  }
1754 
1755  /* Maximum packet size */
1756  maxsize = ff_ffv1_encode_buffer_size(avctx);
1757 
1758  if (maxsize > INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32) {
1759  FFV1Context *f = avctx->priv_data;
1760  if (!f->maxsize_warned) {
1761  av_log(avctx, AV_LOG_WARNING, "Cannot allocate worst case packet size, the encoding could fail\n");
1762  f->maxsize_warned++;
1763  }
1764  maxsize = INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32;
1765  }
1766 
1767  if ((ret = ff_alloc_packet(avctx, pkt, maxsize)) < 0)
1768  return ret;
1769 
1771  ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
1772 
1773  f->cur_enc_frame = pict;
1774 
1775  if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
1776  put_rac(c, &keystate, 1);
1777  f->key_frame = 1;
1778  f->gob_count++;
1779  write_header(f);
1780  } else {
1781  put_rac(c, &keystate, 0);
1782  f->key_frame = 0;
1783  }
1784 
1785  if (f->ac == AC_RANGE_CUSTOM_TAB) {
1786  int i;
1787  for (i = 1; i < 256; i++) {
1788  c->one_state[i] = f->state_transition[i];
1789  c->zero_state[256 - i] = 256 - c->one_state[i];
1790  }
1791  }
1792 
1793  for (i = 0; i < f->slice_count; i++) {
1794  FFV1SliceContext *sc = &f->slices[i];
1795  uint8_t *start = pkt->data + pkt->size * (int64_t)i / f->slice_count;
1796  int len = pkt->size / f->slice_count;
1797  if (i) {
1798  ff_init_range_encoder(&sc->c, start, len);
1799  } else {
1802  sc->c.bytestream_end = sc->c.bytestream_start + len;
1803  }
1804  }
1805  avctx->execute(avctx, encode_slice, f->slices, NULL,
1806  f->slice_count, sizeof(*f->slices));
1807 
1808  buf_p = pkt->data;
1809  for (i = 0; i < f->slice_count; i++) {
1810  FFV1SliceContext *sc = &f->slices[i];
1811  int bytes = sc->ac_byte_count;
1812  if (i > 0 || f->version > 2) {
1813  av_assert0(bytes < pkt->size / f->slice_count);
1814  memmove(buf_p, sc->c.bytestream_start, bytes);
1815  av_assert0(bytes < (1 << 24));
1816  AV_WB24(buf_p + bytes, bytes);
1817  bytes += 3;
1818  }
1819  if (f->ec) {
1820  unsigned v;
1821  buf_p[bytes++] = 0;
1822  v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), f->crcref, buf_p, bytes) ^ (f->crcref ? 0x8CD88196 : 0);
1823  AV_WL32(buf_p + bytes, v);
1824  bytes += 4;
1825  }
1826  buf_p += bytes;
1827  }
1828 
1829  if (avctx->flags & AV_CODEC_FLAG_PASS1)
1830  avctx->stats_out[0] = '\0';
1831 
1832  f->picture_number++;
1833  pkt->size = buf_p - pkt->data;
1834  pkt->flags |= AV_PKT_FLAG_KEY * f->key_frame;
1835  *got_packet = 1;
1836 
1837  return 0;
1838 }
1839 
1841 {
1842  FFV1Context *const s = avctx->priv_data;
1843 
1844  for (int j = 0; j < s->max_slice_count; j++) {
1845  FFV1SliceContext *sc = &s->slices[j];
1846 
1847  for(int p = 0; p<4; p++) {
1848  av_freep(&sc->unit[p]);
1849  av_freep(&sc->bitmap[p]);
1850  }
1851  }
1852 
1853  av_freep(&avctx->stats_out);
1854  ff_ffv1_close(s);
1855 
1856  return 0;
1857 }
1858 
1859 #define OFFSET(x) offsetof(FFV1Context, x)
1860 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1861 static const AVOption options[] = {
1862  { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 2, VE },
1863  { "coder", "Coder type", OFFSET(ac), AV_OPT_TYPE_INT,
1864  { .i64 = 0 }, -2, 2, VE, .unit = "coder" },
1865  { "rice", "Golomb rice", 0, AV_OPT_TYPE_CONST,
1866  { .i64 = AC_GOLOMB_RICE }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1867  { "range_def", "Range with default table", 0, AV_OPT_TYPE_CONST,
1868  { .i64 = AC_RANGE_DEFAULT_TAB_FORCE }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1869  { "range_tab", "Range with custom table", 0, AV_OPT_TYPE_CONST,
1870  { .i64 = AC_RANGE_CUSTOM_TAB }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1871  { "ac", "Range with custom table (the ac option exists for compatibility and is deprecated)", 0, AV_OPT_TYPE_CONST,
1872  { .i64 = 1 }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1873  { "context", "Context model", OFFSET(context_model), AV_OPT_TYPE_INT,
1874  { .i64 = 0 }, 0, 1, VE },
1875  { "qtable", "Quantization table", OFFSET(qtable), AV_OPT_TYPE_INT,
1876  { .i64 = -1 }, -1, 2, VE , .unit = "qtable"},
1877  { "default", NULL, 0, AV_OPT_TYPE_CONST,
1878  { .i64 = QTABLE_DEFAULT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1879  { "8bit", NULL, 0, AV_OPT_TYPE_CONST,
1880  { .i64 = QTABLE_8BIT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1881  { "greater8bit", NULL, 0, AV_OPT_TYPE_CONST,
1882  { .i64 = QTABLE_GT8BIT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1883  { "remap_mode", "Remap Mode", OFFSET(remap_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 2, VE, .unit = "remap_mode" },
1884  { "auto", "Automatic", 0, AV_OPT_TYPE_CONST,
1885  { .i64 = -1 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1886  { "off", "Disabled", 0, AV_OPT_TYPE_CONST,
1887  { .i64 = 0 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1888  { "dualrle", "Dual RLE", 0, AV_OPT_TYPE_CONST,
1889  { .i64 = 1 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1890  { "flipdualrle", "Dual RLE", 0, AV_OPT_TYPE_CONST,
1891  { .i64 = 2 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1892  { "remap_optimizer", "Remap Optimizer", OFFSET(remap_optimizer), AV_OPT_TYPE_INT, { .i64 = 3 }, 0, 5, VE, .unit = "remap_optimizer" },
1893 
1894  { NULL }
1895 };
1896 
1897 static const AVClass ffv1_class = {
1898  .class_name = "ffv1 encoder",
1899  .item_name = av_default_item_name,
1900  .option = options,
1901  .version = LIBAVUTIL_VERSION_INT,
1902 };
1903 
1905  .p.name = "ffv1",
1906  CODEC_LONG_NAME("FFmpeg video codec #1"),
1907  .p.type = AVMEDIA_TYPE_VIDEO,
1908  .p.id = AV_CODEC_ID_FFV1,
1909  .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
1912  .priv_data_size = sizeof(FFV1Context),
1915  .close = encode_close,
1916  CODEC_PIXFMTS(
1940  .color_ranges = AVCOL_RANGE_MPEG,
1941  .p.priv_class = &ffv1_class,
1943 };
load_rgb_frame
static void RENAME() load_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4])
Definition: ffv1enc_template.c:133
AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_YUVA422P16
Definition: pixfmt.h:579
set_micro_version
static void set_micro_version(FFV1Context *f)
Definition: ffv1enc.c:429
CODEC_PIXFMTS
#define CODEC_PIXFMTS(...)
Definition: codec_internal.h:386
AV_PIX_FMT_GBRAP16
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:551
encode_init_internal
static av_cold int encode_init_internal(AVCodecContext *avctx)
Definition: ffv1enc.c:971
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:216
FFV1SliceContext::slice_height
int slice_height
Definition: ffv1.h:78
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:71
ff_ffv1_encode_determine_slices
int ff_ffv1_encode_determine_slices(AVCodecContext *avctx)
Definition: ffv1enc.c:564
encode_line
static av_always_inline int RENAME() encode_line(FFV1Context *f, FFV1SliceContext *sc, void *logctx, int w, TYPE *sample[3], int plane_index, int bits, int ac, int pass1)
Definition: ffv1enc_template.c:26
av_clip
#define av_clip
Definition: common.h:100
update_vlc_state
static void update_vlc_state(VlcState *const state, const int v)
Definition: ffv1.h:223
FF_CODEC_CAP_INIT_CLEANUP
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: codec_internal.h:42
r
const char * r
Definition: vf_curves.c:127
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
AV_PIX_FMT_YA8
@ AV_PIX_FMT_YA8
8 bits gray, 8 bits alpha
Definition: pixfmt.h:140
AV_WL32
#define AV_WL32(p, v)
Definition: intreadwrite.h:422
put_bytes_output
static int put_bytes_output(const PutBitContext *s)
Definition: put_bits.h:89
encode_float32_remap
static void encode_float32_remap(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4])
Definition: ffv1enc.c:1398
log2f
#define log2f(x)
Definition: libm.h:411
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:3341
FFV1SliceContext::plane
PlaneContext * plane
Definition: ffv1.h:90
FF_CODEC_CAP_EOF_FLUSH
#define FF_CODEC_CAP_EOF_FLUSH
The encoder has AV_CODEC_CAP_DELAY set, but does not actually have delay - it only wants to be flushe...
Definition: codec_internal.h:89
int64_t
long long int64_t
Definition: coverity.c:34
put_symbol_inline
static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2])
Definition: ffv1enc.c:185
init_put_bits
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:62
AV_PIX_FMT_FLAG_FLOAT
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
Definition: pixdesc.h:158
AV_PIX_FMT_YUVA422P9
#define AV_PIX_FMT_YUVA422P9
Definition: pixfmt.h:571
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:410
pixdesc.h
step
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
Definition: rate_distortion.txt:58
AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P16
Definition: pixfmt.h:578
w
uint8_t w
Definition: llviddspenc.c:38
AC_RANGE_DEFAULT_TAB_FORCE
#define AC_RANGE_DEFAULT_TAB_FORCE
Definition: ffv1.h:55
AVPacket::data
uint8_t * data
Definition: packet.h:535
AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:573
AVOption
AVOption.
Definition: opt.h:429
encode.h
b
#define b
Definition: input.c:42
MAX_QUANT_TABLE_SIZE
#define MAX_QUANT_TABLE_SIZE
Definition: ffv1.h:48
rangecoder.h
AVComponentDescriptor::step
int step
Number of elements between 2 horizontally consecutive pixels.
Definition: pixdesc.h:40
AV_PIX_FMT_YUV420P10
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:528
ff_ffv1_write_extradata
av_cold int ff_ffv1_write_extradata(AVCodecContext *avctx)
Definition: ffv1enc.c:445
FFCodec
Definition: codec_internal.h:127
FFV1SliceContext::pb
PutBitContext pb
Definition: ffv1.h:91
RangeCoder::bytestream_end
uint8_t * bytestream_end
Definition: rangecoder.h:44
contains_non_128
static int contains_non_128(uint8_t(*initial_state)[CONTEXT_SIZE], int nb_contexts)
Definition: ffv1enc.c:370
AV_PIX_FMT_YUV440P
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:106
planes
static const struct @502 planes[]
FF_COMPLIANCE_EXPERIMENTAL
#define FF_COMPLIANCE_EXPERIMENTAL
Allow nonstandardized experimental things.
Definition: defs.h:62
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
av_float2int
static av_always_inline uint32_t av_float2int(float f)
Reinterpret a float as a 32-bit integer.
Definition: intfloat.h:50
AC_RANGE_CUSTOM_TAB
#define AC_RANGE_CUSTOM_TAB
Definition: ffv1.h:54
AV_PIX_FMT_YUVA422P10
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:574
ring_size
static int ring_size(RingBuffer *ring)
Definition: async.c:105
AV_PKT_FLAG_KEY
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: packet.h:590
QTABLE_GT8BIT
@ QTABLE_GT8BIT
Definition: ffv1enc.h:31
FF_INPUT_BUFFER_MIN_SIZE
#define FF_INPUT_BUFFER_MIN_SIZE
Used by some encoders as upper bound for the length of headers.
Definition: encode.h:33
FFV1SliceContext::slice_x
int slice_x
Definition: ffv1.h:79
put_symbol
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed)
Definition: ffv1enc.c:233
ff_ffv1_clear_slice_state
void ff_ffv1_clear_slice_state(const FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1.c:198
AV_PIX_FMT_GRAY9
#define AV_PIX_FMT_GRAY9
Definition: pixfmt.h:507
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:431
state
static struct @501 state
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:31
AV_FRAME_FLAG_TOP_FIELD_FIRST
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
Definition: frame.h:638
crc.h
ff_ffv1_init_slices_state
av_cold int ff_ffv1_init_slices_state(FFV1Context *f)
Definition: ffv1.c:110
AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_YUVA420P9
Definition: pixfmt.h:570
write_quant_tables
static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][MAX_QUANT_TABLE_SIZE])
Definition: ffv1enc.c:362
quant11
static const int8_t quant11[256]
Definition: ffv1enc.c:102
load_plane
static void load_plane(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src, int w, int h, int stride, int remap_index, int pixel_stride)
Definition: ffv1enc.c:323
FFCodec::p
AVCodec p
The public AVCodec.
Definition: codec_internal.h:131
AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:546
u
#define u(width, name, range_min, range_max)
Definition: cbs_apv.c:83
QTABLE_8BIT
@ QTABLE_8BIT
Definition: ffv1enc.h:30
ff_init_range_encoder
av_cold void ff_init_range_encoder(RangeCoder *c, uint8_t *buf, int buf_size)
Definition: rangecoder.c:42
AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:544
AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUVA444P16
Definition: pixfmt.h:580
AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:526
encode_slice
static int encode_slice(AVCodecContext *c, void *arg)
Definition: ffv1enc.c:1554
AVCodecContext::flags
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:488
val
static double val(void *priv, double ch)
Definition: aeval.c:77
av_pix_fmt_get_chroma_sub_sample
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:3369
AV_PIX_FMT_GRAYF16
#define AV_PIX_FMT_GRAYF16
Definition: pixfmt.h:564
av_noinline
#define av_noinline
Definition: attributes.h:72
update
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int current_sample, int64_t nb_samples_notify, AVRational time_base)
Definition: af_silencedetect.c:78
NB_Y_COEFF
#define NB_Y_COEFF
MAX_SLICES
#define MAX_SLICES
Definition: d3d12va_hevc.c:33
CONTEXT_SIZE
#define CONTEXT_SIZE
Definition: ffv1.h:45
AV_PIX_FMT_GRAY16
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:511
FF_CODEC_ENCODE_CB
#define FF_CODEC_ENCODE_CB(func)
Definition: codec_internal.h:353
PlaneContext::context_count
int context_count
Definition: ffv1.h:66
AV_PIX_FMT_YUV444P10
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:531
avassert.h
put_golomb.h
exp golomb vlc writing stuff
pkt
AVPacket * pkt
Definition: movenc.c:60
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:210
av_cold
#define av_cold
Definition: attributes.h:90
AV_PIX_FMT_YUV422P16
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:540
FFV1SliceContext::sample_buffer
int16_t * sample_buffer
Definition: ffv1.h:74
AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:548
s
#define s(width, name)
Definition: cbs_vp9.c:198
MAX_PLANES
#define MAX_PLANES
Definition: ffv1.h:44
AVCodecContext::stats_in
char * stats_in
pass2 encoding statistics input buffer Concatenated stuff from stats_out of pass1 should be placed he...
Definition: avcodec.h:1320
AV_PIX_FMT_GBRAP14
#define AV_PIX_FMT_GBRAP14
Definition: pixfmt.h:550
AV_PIX_FMT_GBRAP12
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:549
AV_PIX_FMT_YUVA420P
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:108
AV_PIX_FMT_YUV444P16
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:541
AV_CEIL_RSHIFT
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:60
g
const char * g
Definition: vf_curves.c:128
pix_fmt
static enum AVPixelFormat pix_fmt
Definition: demux_decode.c:41
FLIP
#define FLIP(f)
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
#define AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
This encoder can reorder user opaque values from input AVFrames and return them with corresponding ou...
Definition: codec.h:144
bits
uint8_t bits
Definition: vp3data.h:128
AC_RANGE_DEFAULT_TAB
#define AC_RANGE_DEFAULT_TAB
Definition: ffv1.h:53
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:40
quant5
static const int8_t quant5[256]
Definition: ffv1enc.c:64
AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUVA444P12
Definition: pixfmt.h:577
AVCodecContext::bits_per_raw_sample
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:1553
AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:525
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:231
AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:539
AV_PIX_FMT_FLAG_ALPHA
#define AV_PIX_FMT_FLAG_ALPHA
The pixel format has an alpha channel.
Definition: pixdesc.h:147
FFV1SliceContext::rc_stat2
uint64_t(*[MAX_QUANT_TABLES] rc_stat2)[32][2]
Definition: ffv1.h:106
encode_float32_remap_segment
static int encode_float32_remap_segment(FFV1SliceContext *sc, int p, int mul_count, int *mul_tab, int update, int final)
Definition: ffv1enc.c:1283
AV_PIX_FMT_GRAY14
#define AV_PIX_FMT_GRAY14
Definition: pixfmt.h:510
fold
static av_always_inline int fold(int diff, int bits)
Definition: ffv1.h:212
ff_ffv1_encode_setup_plane_info
av_cold int ff_ffv1_encode_setup_plane_info(AVCodecContext *avctx, enum AVPixelFormat pix_fmt)
Definition: ffv1enc.c:798
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:73
PutBitContext
Definition: put_bits.h:50
CODEC_LONG_NAME
#define CODEC_LONG_NAME(str)
Definition: codec_internal.h:326
sort_stt
static int sort_stt(FFV1Context *s, uint8_t stt[256])
Definition: ffv1enc.c:515
ver2_state
static const uint8_t ver2_state[256]
Definition: ffv1enc.c:121
arg
const char * arg
Definition: jacosubdec.c:67
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:74
AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GRAY10
Definition: pixfmt.h:508
if
if(ret)
Definition: filter_design.txt:179
encode_frame
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)
Definition: ffv1enc.c:1699
encode_close
static av_cold int encode_close(AVCodecContext *avctx)
Definition: ffv1enc.c:1840
quant_table
static const int16_t quant_table[64]
Definition: intrax8.c:511
AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:547
QTABLE_DEFAULT
@ QTABLE_DEFAULT
Definition: ffv1enc.h:29
AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:518
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
FFV1SliceContext::sx
int sx
Definition: ffv1.h:81
ff_need_new_slices
int ff_need_new_slices(int width, int num_h_slices, int chroma_shift)
Definition: ffv1.c:120
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:76
NULL
#define NULL
Definition: coverity.c:32
AC_GOLOMB_RICE
#define AC_GOLOMB_RICE
Definition: ffv1.h:52
CMP
#define CMP(A, B)
run
uint8_t run
Definition: svq3.c:204
FFV1SliceContext::unit
struct FFV1SliceContext::Unit * unit[4]
fs
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:200
FFV1SliceContext::Unit::val
uint32_t val
Definition: ffv1.h:117
ff_rac_terminate
int ff_rac_terminate(RangeCoder *c, int version)
Terminates the range coder.
Definition: rangecoder.c:109
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:240
AV_PIX_FMT_YUV440P10
#define AV_PIX_FMT_YUV440P10
Definition: pixfmt.h:530
options
Definition: swscale.c:43
PlaneContext
Definition: ffv1.h:64
AV_PIX_FMT_YUV422P10
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:529
AV_PIX_FMT_GRAY8
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:81
AV_PIX_FMT_GBRP9
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:543
AVCodecContext::level
int level
Encoding level descriptor.
Definition: avcodec.h:1628
AV_PIX_FMT_GBRPF16
#define AV_PIX_FMT_GBRPF16
Definition: pixfmt.h:559
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
VlcState
Definition: ffv1.h:57
VE
#define VE
Definition: ffv1enc.c:1860
ff_dlog
#define ff_dlog(a,...)
Definition: tableprint_vlc.h:28
FFV1SliceContext::slice_width
int slice_width
Definition: ffv1.h:77
options
static const AVOption options[]
Definition: ffv1enc.c:1861
AVCodecContext::stats_out
char * stats_out
pass1 encoding statistics output buffer
Definition: avcodec.h:1312
AV_CODEC_ID_FFV1
@ AV_CODEC_ID_FFV1
Definition: codec_id.h:85
qsort.h
f
f
Definition: af_crystalizer.c:122
init
int(* init)(AVBSFContext *ctx)
Definition: dts2pts.c:368
AV_CODEC_CAP_DR1
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
choose_rct_params
static void choose_rct_params(const FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[3], const int stride[3], int w, int h)
Definition: ffv1enc.c:1101
flip
static void flip(AVCodecContext *avctx, AVFrame *frame)
Definition: rawdec.c:131
AVPacket::size
int size
Definition: packet.h:536
AVCodecContext::gop_size
int gop_size
the number of pictures in a group of pictures, or 0 for intra_only
Definition: avcodec.h:1005
height
#define height
Definition: dsp.h:89
FFV1SliceContext::bitmap
uint32_t * bitmap[4]
Definition: ffv1.h:111
codec_internal.h
quant9_10bit
static const int8_t quant9_10bit[256]
Definition: ffv1enc.c:83
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:424
print
static void print(AVTreeNode *t, int depth)
Definition: tree.c:45
AV_PIX_FMT_GBRPF32
#define AV_PIX_FMT_GBRPF32
Definition: pixfmt.h:561
AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:533
sample
#define sample
Definition: flacdsp_template.c:44
AV_PIX_FMT_RGB48
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:514
size
int size
Definition: twinvq_data.h:10344
ff_build_rac_states
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
Definition: rangecoder.c:68
STATS_OUT_SIZE
#define STATS_OUT_SIZE
AV_PIX_FMT_YUV444P12
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:535
AV_WB24
#define AV_WB24(p, d)
Definition: intreadwrite.h:446
encode_plane
static int encode_plane(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src, int w, int h, int stride, int plane_index, int remap_index, int pixel_stride, int ac)
Definition: ffv1enc.c:274
AV_PIX_FMT_NV16
@ AV_PIX_FMT_NV16
interleaved chroma YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:198
RangeCoder::bytestream
uint8_t * bytestream
Definition: rangecoder.h:43
AV_CODEC_FLAG_PASS2
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
Definition: avcodec.h:294
AV_PIX_FMT_RGB32
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:500
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
AV_PIX_FMT_YUVA444P
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:174
FFV1SliceContext::slice_rct_by_coef
int slice_rct_by_coef
Definition: ffv1.h:85
av_crc_get_table
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:374
AV_CODEC_CAP_SLICE_THREADS
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:99
AV_PIX_FMT_YUVA444P10
#define AV_PIX_FMT_YUVA444P10
Definition: pixfmt.h:575
offset
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Definition: writing_filters.txt:86
find_best_state
static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256])
Definition: ffv1enc.c:140
attributes.h
FFV1SliceContext::rc_stat
uint64_t rc_stat[256][2]
Definition: ffv1.h:105
AVPacket::flags
int flags
A combination of AV_PKT_FLAG values.
Definition: packet.h:541
AV_PIX_FMT_P216
#define AV_PIX_FMT_P216
Definition: pixfmt.h:603
PlaneContext::quant_table_index
int quant_table_index
Definition: ffv1.h:65
AV_LOG_INFO
#define AV_LOG_INFO
Standard information.
Definition: log.h:221
FFV1SliceContext::c
RangeCoder c
Definition: ffv1.h:92
put_vlc_symbol
static void put_vlc_symbol(PutBitContext *pb, VlcState *const state, int v, int bits)
Definition: ffv1enc.c:240
av_assert2
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:67
ffv1_class
static const AVClass ffv1_class
Definition: ffv1enc.c:1897
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
code
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
Definition: filter_design.txt:178
AV_QSORT
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
round
static av_always_inline av_const double round(double x)
Definition: libm.h:446
FFV1SliceContext::slice_rct_ry_coef
int slice_rct_ry_coef
Definition: ffv1.h:86
av_flatten
#define av_flatten
Definition: attributes.h:96
AV_PIX_FMT_GBRP12
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:545
av_malloc_array
#define av_malloc_array(a, b)
Definition: tableprint_vlc.h:32
AV_PIX_FMT_NV24
@ AV_PIX_FMT_NV24
planar YUV 4:4:4, 24bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:371
FFV1SliceContext::remap_count
int remap_count[4]
Definition: ffv1.h:109
encode_rgb_frame
static int RENAME() encode_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4], int ac)
Definition: ffv1enc_template.c:168
delta
float delta
Definition: vorbis_enc_data.h:430
av_always_inline
#define av_always_inline
Definition: attributes.h:49
ff_ffv1_common_init
av_cold int ff_ffv1_common_init(AVCodecContext *avctx, FFV1Context *s)
Definition: ffv1.c:36
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
ffv1.h
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:256
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:179
FFV1SliceContext
Definition: ffv1.h:73
len
int len
Definition: vorbis_enc_data.h:426
AV_CRC_32_IEEE
@ AV_CRC_32_IEEE
Definition: crc.h:52
AVCodecContext::height
int height
Definition: avcodec.h:592
AVCodecContext::pix_fmt
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:631
write_quant_table
static void write_quant_table(RangeCoder *c, int16_t *quant_table)
Definition: ffv1enc.c:347
AV_FRAME_FLAG_INTERLACED
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
Definition: frame.h:633
AVCOL_RANGE_MPEG
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
Definition: pixfmt.h:733
AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:527
load_rgb_float32_frame
static void load_rgb_float32_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4])
Definition: ffv1enc.c:1231
MAX_CONTEXT_INPUTS
#define MAX_CONTEXT_INPUTS
Definition: ffv1.h:50
log2
#define log2(x)
Definition: libm.h:406
AV_PIX_FMT_P016
#define AV_PIX_FMT_P016
Definition: pixfmt.h:587
avcodec.h
stride
#define stride
Definition: h264pred_template.c:536
FFV1SliceContext::fltmap
uint16_t * fltmap[4]
Definition: ffv1.h:112
AV_PIX_FMT_YAF16
#define AV_PIX_FMT_YAF16
Definition: pixfmt.h:567
av_uninit
#define av_uninit(x)
Definition: attributes.h:154
ret
ret
Definition: filter_design.txt:187
pred
static const float pred[4]
Definition: siprdata.h:259
AV_PIX_FMT_NV12
@ AV_PIX_FMT_NV12
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:96
FFSWAP
#define FFSWAP(type, a, b)
Definition: macros.h:52
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:81
ff_ffv1_encode_buffer_size
size_t ff_ffv1_encode_buffer_size(AVCodecContext *avctx)
Definition: ffv1enc.c:1677
AV_PIX_FMT_0RGB32
#define AV_PIX_FMT_0RGB32
Definition: pixfmt.h:504
quant5_10bit
static const int8_t quant5_10bit[256]
Definition: ffv1enc.c:45
FFV1SliceContext::slice_y
int slice_y
Definition: ffv1.h:80
AVCodecContext::strict_std_compliance
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:1357
AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUVA444P9
Definition: pixfmt.h:572
FFV1SliceContext::Unit::ndx
uint32_t ndx
Definition: ffv1.h:118
set_sr_golomb
static void set_sr_golomb(PutBitContext *pb, int i, int k, int limit, int esc_len)
write signed golomb rice code (ffv1).
Definition: put_golomb.h:143
ff_ffv1_close
av_cold void ff_ffv1_close(FFV1Context *s)
Definition: ffv1.c:264
AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:532
AV_INPUT_BUFFER_PADDING_SIZE
#define AV_INPUT_BUFFER_PADDING_SIZE
Definition: defs.h:40
put_rac
#define put_rac(C, S, B)
U
#define U(x)
Definition: vpx_arith.h:37
AV_PIX_FMT_YUV422P14
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:537
ff_ffv1_allocate_initial_states
int ff_ffv1_allocate_initial_states(FFV1Context *f)
Definition: ffv1.c:183
AVCodecContext
main external API structure.
Definition: avcodec.h:431
RangeCoder::bytestream_start
uint8_t * bytestream_start
Definition: rangecoder.h:42
AVCodecContext::execute
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:1591
av_crc
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:392
AV_PIX_FMT_YUVA422P12
#define AV_PIX_FMT_YUVA422P12
Definition: pixfmt.h:576
OFFSET
#define OFFSET(x)
Definition: ffv1enc.c:1859
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Underlying C type is int.
Definition: opt.h:259
AV_PIX_FMT_GBRAPF32
#define AV_PIX_FMT_GBRAPF32
Definition: pixfmt.h:562
FFV1SliceContext::remap
int remap
Definition: ffv1.h:87
AV_PIX_FMT_GBRAPF16
#define AV_PIX_FMT_GBRAPF16
Definition: pixfmt.h:560
AVPixFmtDescriptor::comp
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:105
get_rac_count
static int get_rac_count(RangeCoder *c)
Definition: rangecoder.h:79
AV_CODEC_CAP_DELAY
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: codec.h:76
FFV1SliceContext::sy
int sy
Definition: ffv1.h:81
ffv1enc.h
COST2
#define COST2(old, new)
av_clip_uint8
#define av_clip_uint8
Definition: common.h:106
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:78
ffv1enc_template.c
desc
const char * desc
Definition: libsvtav1.c:79
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:77
mem.h
flush_put_bits
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:143
ff_ffv1_encode_init
av_cold int ff_ffv1_encode_init(AVCodecContext *avctx)
Definition: ffv1enc.c:599
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
FFV1Context
Definition: ffv1.h:122
AVCodecContext::slices
int slices
Number of slices.
Definition: avcodec.h:1021
AVPacket
This structure stores compressed data.
Definition: packet.h:512
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:458
AV_PIX_FMT_P416
#define AV_PIX_FMT_P416
Definition: pixfmt.h:604
FFV1SliceContext::run_index
int run_index
Definition: ffv1.h:83
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
AV_PIX_FMT_YUV411P
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:80
AVCodecContext::width
int width
picture width / height.
Definition: avcodec.h:592
ff_ffv1_init_slice_contexts
av_cold int ff_ffv1_init_slice_contexts(FFV1Context *f)
Definition: ffv1.c:140
encode_histogram_remap
static void encode_histogram_remap(FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1enc.c:1196
int32_t
int32_t
Definition: audioconvert.c:56
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
Definition: frame.h:455
AV_PIX_FMT_YUV410P
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:79
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:61
AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV440P12
Definition: pixfmt.h:534
h
h
Definition: vp9dsp_template.c:2070
RangeCoder
Definition: mss3.c:63
AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:538
ff_ffv1_encoder
const FFCodec ff_ffv1_encoder
Definition: ffv1enc.c:1904
width
#define width
Definition: dsp.h:89
write_header
static void write_header(FFV1Context *f)
Definition: ffv1enc.c:382
RENAME
#define RENAME(name)
Definition: ffv1enc.c:271
AV_PIX_FMT_GRAY12
#define AV_PIX_FMT_GRAY12
Definition: pixfmt.h:509
FFV1SliceContext::ac_byte_count
int ac_byte_count
number of bytes used for AC coding
Definition: ffv1.h:94
put_bits.h
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
Definition: opt.h:299
snprintf
#define snprintf
Definition: snprintf.h:34
av_log2
int av_log2(unsigned v)
Definition: intmath.c:26
FFV1SliceContext::slice_coding_mode
int slice_coding_mode
Definition: ffv1.h:84
ff_alloc_packet
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
Definition: encode.c:62
ff_ffv1_compute_bits_per_plane
void ff_ffv1_compute_bits_per_plane(const FFV1Context *f, FFV1SliceContext *sc, int bits[4], int *offset, int mask[4], int bits_per_raw_sample)
Definition: ffv1.c:222
src
#define src
Definition: vp8dsp.c:248
encode_float32_rgb_frame
static int encode_float32_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4], int ac)
Definition: ffv1enc.c:1496
AV_PIX_FMT_YUVA422P
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:173
AV_PIX_FMT_YUV420P14
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:536
av_get_pix_fmt_name
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:3261
AV_CODEC_FLAG_PASS1
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:290
encode_slice_header
static void encode_slice_header(FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1enc.c:1067