Go to the documentation of this file.
46 #define BITSTREAM_READER_LE
57 #define VP8X_FLAG_ANIMATION 0x02
58 #define VP8X_FLAG_XMP_METADATA 0x04
59 #define VP8X_FLAG_EXIF_METADATA 0x08
60 #define VP8X_FLAG_ALPHA 0x10
61 #define VP8X_FLAG_ICC 0x20
63 #define MAX_PALETTE_SIZE 256
64 #define MAX_CACHE_BITS 11
65 #define NUM_CODE_LENGTH_CODES 19
66 #define HUFFMAN_CODES_PER_META_CODE 5
67 #define NUM_LITERAL_CODES 256
68 #define NUM_LENGTH_CODES 24
69 #define NUM_DISTANCE_CODES 40
70 #define NUM_SHORT_DISTANCES 120
71 #define MAX_HUFFMAN_CODE_LENGTH 15
80 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
84 { 0, 1 }, { 1, 0 }, { 1, 1 }, { -1, 1 }, { 0, 2 }, { 2, 0 }, { 1, 2 }, { -1, 2 },
85 { 2, 1 }, { -2, 1 }, { 2, 2 }, { -2, 2 }, { 0, 3 }, { 3, 0 }, { 1, 3 }, { -1, 3 },
86 { 3, 1 }, { -3, 1 }, { 2, 3 }, { -2, 3 }, { 3, 2 }, { -3, 2 }, { 0, 4 }, { 4, 0 },
87 { 1, 4 }, { -1, 4 }, { 4, 1 }, { -4, 1 }, { 3, 3 }, { -3, 3 }, { 2, 4 }, { -2, 4 },
88 { 4, 2 }, { -4, 2 }, { 0, 5 }, { 3, 4 }, { -3, 4 }, { 4, 3 }, { -4, 3 }, { 5, 0 },
89 { 1, 5 }, { -1, 5 }, { 5, 1 }, { -5, 1 }, { 2, 5 }, { -2, 5 }, { 5, 2 }, { -5, 2 },
90 { 4, 4 }, { -4, 4 }, { 3, 5 }, { -3, 5 }, { 5, 3 }, { -5, 3 }, { 0, 6 }, { 6, 0 },
91 { 1, 6 }, { -1, 6 }, { 6, 1 }, { -6, 1 }, { 2, 6 }, { -2, 6 }, { 6, 2 }, { -6, 2 },
92 { 4, 5 }, { -4, 5 }, { 5, 4 }, { -5, 4 }, { 3, 6 }, { -3, 6 }, { 6, 3 }, { -6, 3 },
93 { 0, 7 }, { 7, 0 }, { 1, 7 }, { -1, 7 }, { 5, 5 }, { -5, 5 }, { 7, 1 }, { -7, 1 },
94 { 4, 6 }, { -4, 6 }, { 6, 4 }, { -6, 4 }, { 2, 7 }, { -2, 7 }, { 7, 2 }, { -7, 2 },
95 { 3, 7 }, { -3, 7 }, { 7, 3 }, { -7, 3 }, { 5, 6 }, { -5, 6 }, { 6, 5 }, { -6, 5 },
96 { 8, 0 }, { 4, 7 }, { -4, 7 }, { 7, 4 }, { -7, 4 }, { 8, 1 }, { 8, 2 }, { 6, 6 },
97 { -6, 6 }, { 8, 3 }, { 5, 7 }, { -5, 7 }, { 7, 5 }, { -7, 5 }, { 8, 4 }, { 6, 7 },
98 { -6, 7 }, { 7, 6 }, { -7, 6 }, { 8, 5 }, { 7, 7 }, { -7, 7 }, { 8, 6 }, { 8, 7 }
221 #define GET_PIXEL(frame, x, y) \
222 ((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x))
224 #define GET_PIXEL_COMP(frame, x, y, c) \
225 (*((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x) + c))
234 if (
img->huffman_groups) {
235 for (
i = 0;
i <
img->nb_huffman_groups;
i++) {
241 memset(
img, 0,
sizeof(*
img));
247 if (
r->nb_symbols == 1)
248 return r->simple_symbols[0];
259 int max_code_length = 0;
263 for (sym = 0; sym < alphabet_size; sym++) {
264 if (code_lengths[sym] > 0) {
273 r->simple_symbols[0] =
code;
278 for (sym = 0; sym < alphabet_size; sym++)
279 max_code_length =
FFMAX(max_code_length, code_lengths[sym]);
290 for (
len = 1;
len <= max_code_length;
len++) {
291 for (sym = 0; sym < alphabet_size; sym++) {
292 if (code_lengths[sym] !=
len)
299 if (!
r->nb_symbols) {
305 code_lengths,
sizeof(*code_lengths),
sizeof(*code_lengths),
335 HuffReader code_len_hc = { { 0 }, 0, 0, { 0 } };
336 uint8_t *code_lengths;
338 int i, symbol, max_symbol, prev_code_len,
ret;
343 for (
i = 0;
i < num_codes;
i++)
360 if (max_symbol > alphabet_size) {
362 max_symbol, alphabet_size);
367 max_symbol = alphabet_size;
372 while (symbol < alphabet_size) {
380 code_lengths[symbol++] = code_len;
382 prev_code_len = code_len;
384 int repeat = 0, length = 0;
391 length = prev_code_len;
404 if (symbol + repeat > alphabet_size) {
406 "invalid symbol %d + repeat %d > alphabet size %d\n",
407 symbol, repeat, alphabet_size);
412 code_lengths[symbol++] = length;
427 #define PARSE_BLOCK_SIZE(w, h) do { \
428 block_bits = get_bits(&s->gb, 3) + 2; \
429 blocks_w = FFALIGN((w), 1 << block_bits) >> block_bits; \
430 blocks_h = FFALIGN((h), 1 << block_bits) >> block_bits; \
450 for (y = 0; y <
img->frame->height; y++) {
451 for (x = 0; x <
img->frame->width; x++) {
454 int p = p0 << 8 | p1;
458 s->nb_huffman_groups =
max + 1;
498 int width_bits, index_size,
ret, x;
505 else if (index_size <= 4)
507 else if (index_size <= 16)
518 img->size_reduction = width_bits;
520 s->reduced_width = (
s->width + ((1 << width_bits) - 1)) >> width_bits;
523 ct =
img->frame->data[0] + 4;
524 for (x = 4; x <
img->frame->width * 4; x++, ct++)
541 group = g0 << 8 | g1;
549 uint32_t cache_idx = (0x1E35A7BD *
c) >> (32 -
img->color_cache_bits);
550 img->color_cache[cache_idx] =
c;
560 img = &
s->image[role];
570 img->frame->width =
w;
571 img->frame->height =
h;
582 if (
img->color_cache_bits < 1 ||
img->color_cache_bits > 11) {
584 img->color_cache_bits);
588 sizeof(*
img->color_cache));
589 if (!
img->color_cache)
592 img->color_cache_bits = 0;
595 img->nb_huffman_groups = 1;
600 img->nb_huffman_groups =
s->nb_huffman_groups;
604 sizeof(*
img->huffman_groups));
605 if (!
img->huffman_groups)
608 for (
i = 0;
i <
img->nb_huffman_groups;
i++) {
612 if (!j &&
img->color_cache_bits > 0)
613 alphabet_size += 1 <<
img->color_cache_bits;
630 while (y < img->
frame->height) {
645 if (
img->color_cache_bits)
654 int prefix_code, length,
distance, ref_x, ref_y;
658 if (prefix_code < 4) {
659 length = prefix_code + 1;
666 if (prefix_code > 39
U) {
668 "distance prefix code too large: %d\n", prefix_code);
671 if (prefix_code < 4) {
704 ref_x =
FFMAX(0, ref_x);
705 ref_y =
FFMAX(0, ref_y);
710 for (
i = 0;
i < length;
i++) {
715 if (
img->color_cache_bits)
723 if (ref_x ==
width) {
727 if (y ==
img->frame->height || ref_y ==
img->frame->height)
735 if (!
img->color_cache_bits) {
739 if (cache_idx >= 1 <<
img->color_cache_bits) {
741 "color cache index out-of-bounds\n");
757 static void inv_predict_0(uint8_t *p,
const uint8_t *p_l,
const uint8_t *p_tl,
758 const uint8_t *p_t,
const uint8_t *p_tr)
764 static void inv_predict_1(uint8_t *p,
const uint8_t *p_l,
const uint8_t *p_tl,
765 const uint8_t *p_t,
const uint8_t *p_tr)
771 static void inv_predict_2(uint8_t *p,
const uint8_t *p_l,
const uint8_t *p_tl,
772 const uint8_t *p_t,
const uint8_t *p_tr)
778 static void inv_predict_3(uint8_t *p,
const uint8_t *p_l,
const uint8_t *p_tl,
779 const uint8_t *p_t,
const uint8_t *p_tr)
785 static void inv_predict_4(uint8_t *p,
const uint8_t *p_l,
const uint8_t *p_tl,
786 const uint8_t *p_t,
const uint8_t *p_tr)
792 static void inv_predict_5(uint8_t *p,
const uint8_t *p_l,
const uint8_t *p_tl,
793 const uint8_t *p_t,
const uint8_t *p_tr)
795 p[0] = p_t[0] + (p_l[0] + p_tr[0] >> 1) >> 1;
796 p[1] = p_t[1] + (p_l[1] + p_tr[1] >> 1) >> 1;
797 p[2] = p_t[2] + (p_l[2] + p_tr[2] >> 1) >> 1;
798 p[3] = p_t[3] + (p_l[3] + p_tr[3] >> 1) >> 1;
802 static void inv_predict_6(uint8_t *p,
const uint8_t *p_l,
const uint8_t *p_tl,
803 const uint8_t *p_t,
const uint8_t *p_tr)
805 p[0] = p_l[0] + p_tl[0] >> 1;
806 p[1] = p_l[1] + p_tl[1] >> 1;
807 p[2] = p_l[2] + p_tl[2] >> 1;
808 p[3] = p_l[3] + p_tl[3] >> 1;
812 static void inv_predict_7(uint8_t *p,
const uint8_t *p_l,
const uint8_t *p_tl,
813 const uint8_t *p_t,
const uint8_t *p_tr)
815 p[0] = p_l[0] + p_t[0] >> 1;
816 p[1] = p_l[1] + p_t[1] >> 1;
817 p[2] = p_l[2] + p_t[2] >> 1;
818 p[3] = p_l[3] + p_t[3] >> 1;
822 static void inv_predict_8(uint8_t *p,
const uint8_t *p_l,
const uint8_t *p_tl,
823 const uint8_t *p_t,
const uint8_t *p_tr)
825 p[0] = p_tl[0] + p_t[0] >> 1;
826 p[1] = p_tl[1] + p_t[1] >> 1;
827 p[2] = p_tl[2] + p_t[2] >> 1;
828 p[3] = p_tl[3] + p_t[3] >> 1;
832 static void inv_predict_9(uint8_t *p,
const uint8_t *p_l,
const uint8_t *p_tl,
833 const uint8_t *p_t,
const uint8_t *p_tr)
835 p[0] = p_t[0] + p_tr[0] >> 1;
836 p[1] = p_t[1] + p_tr[1] >> 1;
837 p[2] = p_t[2] + p_tr[2] >> 1;
838 p[3] = p_t[3] + p_tr[3] >> 1;
843 const uint8_t *p_t,
const uint8_t *p_tr)
845 p[0] = (p_l[0] + p_tl[0] >> 1) + (p_t[0] + p_tr[0] >> 1) >> 1;
846 p[1] = (p_l[1] + p_tl[1] >> 1) + (p_t[1] + p_tr[1] >> 1) >> 1;
847 p[2] = (p_l[2] + p_tl[2] >> 1) + (p_t[2] + p_tr[2] >> 1) >> 1;
848 p[3] = (p_l[3] + p_tl[3] >> 1) + (p_t[3] + p_tr[3] >> 1) >> 1;
853 const uint8_t *p_t,
const uint8_t *p_tr)
856 (
FFABS(p_l[1] - p_tl[1]) -
FFABS(p_t[1] - p_tl[1])) +
857 (
FFABS(p_l[2] - p_tl[2]) -
FFABS(p_t[2] - p_tl[2])) +
858 (
FFABS(p_l[3] - p_tl[3]) -
FFABS(p_t[3] - p_tl[3]));
867 const uint8_t *p_t,
const uint8_t *p_tr)
883 const uint8_t *p_t,
const uint8_t *p_tr)
892 const uint8_t *p_tl,
const uint8_t *p_t,
893 const uint8_t *p_tr);
904 uint8_t *dec, *p_l, *p_tl, *p_t, *p_tr;
911 if (x ==
frame->width - 1)
930 for (y = 0; y <
img->frame->height; y++) {
931 for (x = 0; x <
s->reduced_width; x++) {
946 "invalid predictor mode: %d\n", m);
970 for (y = 0; y <
img->frame->height; y++) {
971 for (x = 0; x <
s->reduced_width; x++) {
990 for (y = 0; y <
img->frame->height; y++) {
991 for (x = 0; x <
s->reduced_width; x++) {
1019 for (y = 0; y <
img->frame->height; y++) {
1021 memcpy(
line, p,
img->frame->linesize[0]);
1025 for (x = 0; x <
img->frame->width; x++) {
1027 p[2] =
get_bits(&gb_g, pixel_bits);
1036 s->reduced_width =
s->width;
1040 if (
img->frame->height *
img->frame->width > 300) {
1041 uint8_t palette[256 * 4];
1046 memset(palette +
size, 0, 256 * 4 -
size);
1047 for (y = 0; y <
img->frame->height; y++) {
1048 for (x = 0; x <
img->frame->width; x++) {
1055 for (y = 0; y <
img->frame->height; y++) {
1056 for (x = 0; x <
img->frame->width; x++) {
1075 if (
s->width &&
s->width !=
w) {
1080 if (
s->height &&
s->height !=
h) {
1088 int *got_frame,
const uint8_t *data_start,
1089 unsigned int data_size,
int is_alpha_chunk)
1094 if (!is_alpha_chunk) {
1103 if (!is_alpha_chunk) {
1125 if (!
s->width || !
s->height)
1132 s->nb_transforms = 0;
1133 s->reduced_width =
s->width;
1141 goto free_and_return;
1157 goto free_and_return;
1166 goto free_and_return;
1169 for (
i =
s->nb_transforms - 1;
i >= 0;
i--) {
1170 switch (
s->transforms[
i]) {
1185 goto free_and_return;
1205 ls =
frame->linesize[3];
1208 dec =
frame->data[3] + 1;
1209 for (x = 1; x <
frame->width; x++, dec++)
1213 dec =
frame->data[3] + ls;
1214 for (y = 1; y <
frame->height; y++, dec += ls)
1215 *dec += *(dec - ls);
1220 for (y = 1; y <
frame->height; y++) {
1221 dec =
frame->data[3] + y * ls + 1;
1222 for (x = 1; x <
frame->width; x++, dec++)
1227 for (y = 1; y <
frame->height; y++) {
1228 dec =
frame->data[3] + y * ls + 1;
1229 for (x = 1; x <
frame->width; x++, dec++)
1230 *dec += *(dec - ls);
1234 for (y = 1; y <
frame->height; y++) {
1235 dec =
frame->data[3] + y * ls + 1;
1236 for (x = 1; x <
frame->width; x++, dec++)
1237 dec[0] +=
av_clip_uint8(*(dec - 1) + *(dec - ls) - *(dec - ls - 1));
1244 const uint8_t *data_start,
1245 unsigned int data_size)
1254 for (y = 0; y <
s->height; y++)
1259 int alpha_got_frame = 0;
1262 if (!
s->alpha_frame)
1266 data_start, data_size, 1);
1271 if (!alpha_got_frame) {
1277 for (y = 0; y <
s->height; y++) {
1280 for (x = 0; x <
s->width; x++) {
1290 if (
s->alpha_filter)
1297 int *got_frame, uint8_t *data_start,
1298 unsigned int data_size)
1303 if (!
s->initialized) {
1306 s->v.actually_webp = 1;
1311 if (data_size > INT_MAX) {
1317 s->pkt->data = data_start;
1318 s->pkt->size = data_size;
1331 s->alpha_data_size);
1344 uint32_t chunk_type, chunk_size;
1359 if (bytestream2_get_le32(&gb) !=
MKTAG(
'R',
'I',
'F',
'F')) {
1364 chunk_size = bytestream2_get_le32(&gb);
1368 if (bytestream2_get_le32(&gb) !=
MKTAG(
'W',
'E',
'B',
'P')) {
1374 char chunk_str[5] = { 0 };
1376 chunk_type = bytestream2_get_le32(&gb);
1377 chunk_size = bytestream2_get_le32(&gb);
1378 if (chunk_size == UINT32_MAX)
1380 chunk_size += chunk_size & 1;
1388 switch (chunk_type) {
1389 case MKTAG(
'V',
'P',
'8',
' '):
1399 case MKTAG(
'V',
'P',
'8',
'L'):
1410 case MKTAG(
'V',
'P',
'8',
'X'):
1411 if (
s->width ||
s->height || *got_frame) {
1415 vp8x_flags = bytestream2_get_byte(&gb);
1417 s->width = bytestream2_get_le24(&gb) + 1;
1418 s->height = bytestream2_get_le24(&gb) + 1;
1423 case MKTAG(
'A',
'L',
'P',
'H'): {
1424 int alpha_header, filter_m, compression;
1428 "ALPHA chunk present, but alpha bit not set in the "
1431 if (chunk_size == 0) {
1435 alpha_header = bytestream2_get_byte(&gb);
1437 s->alpha_data_size = chunk_size - 1;
1440 filter_m = (alpha_header >> 2) & 0x03;
1441 compression = alpha_header & 0x03;
1445 "skipping unsupported ALPHA chunk\n");
1448 s->alpha_compression = compression;
1449 s->alpha_filter = filter_m;
1454 case MKTAG(
'E',
'X',
'I',
'F'): {
1465 "EXIF chunk present, but Exif bit not set in the "
1470 avpkt->
size - exif_offset);
1490 case MKTAG(
'I',
'C',
'C',
'P'): {
1500 "ICCP chunk present, but ICC Profile bit not set in the "
1516 case MKTAG(
'A',
'N',
'I',
'M'):
1517 case MKTAG(
'A',
'N',
'M',
'F'):
1518 case MKTAG(
'X',
'M',
'P',
' '):
1519 AV_WL32(chunk_str, chunk_type);
1525 AV_WL32(chunk_str, chunk_type);
void av_packet_unref(AVPacket *pkt)
Wipe the packet.
av_cold int ff_vp8_decode_free(AVCodecContext *avctx)
#define AV_LOG_WARNING
Something somehow does not look correct.
static void inv_predict_12(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
#define NUM_SHORT_DISTANCES
static int vp8_lossy_decode_frame(AVCodecContext *avctx, AVFrame *p, int *got_frame, uint8_t *data_start, unsigned int data_size)
int av_frame_get_buffer(AVFrame *frame, int align)
Allocate new buffer(s) for audio or video data.
@ PRED_MODE_AVG_T_AVG_L_TR
@ ALPHA_FILTER_HORIZONTAL
uint16_t simple_symbols[2]
static int8_t ff_u8_to_s8(uint8_t a)
static const uint8_t block_bits[]
static void inv_predict_4(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static void inv_predict_2(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
This structure describes decoded (raw) audio or video data.
#define GET_PIXEL_COMP(frame, x, y, c)
@ PRED_MODE_ADD_SUBTRACT_FULL
@ COLOR_INDEXING_TRANSFORM
static int parse_transform_color(WebPContext *s)
#define AV_LOG_VERBOSE
Detailed information.
int flags
Frame flags, a combination of AV_FRAME_FLAGS.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
static int huff_reader_build_canonical(HuffReader *r, const uint8_t *code_lengths, int alphabet_size)
enum TransformType transforms[4]
void av_packet_free(AVPacket **pkt)
Free the packet, if the packet is reference counted, it will be unreferenced first.
static int vp8_lossless_decode_frame(AVCodecContext *avctx, AVFrame *p, int *got_frame, const uint8_t *data_start, unsigned int data_size, int is_alpha_chunk)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static void skip_bits(GetBitContext *s, int n)
enum AlphaCompression alpha_compression
static void inv_predict_10(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static void inv_predict_8(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
AVCodec p
The public AVCodec.
static void update_canvas_size(AVCodecContext *avctx, int w, int h)
void(* inv_predict_func)(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
#define VP8X_FLAG_EXIF_METADATA
static void inv_predict_3(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
const FFCodec ff_webp_decoder
static av_always_inline uint8_t color_transform_delta(uint8_t color_pred, uint8_t color)
static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role, int w, int h)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
static int read_huffman_code_normal(WebPContext *s, HuffReader *hc, int alphabet_size)
int ff_exif_decode_ifd(void *logctx, GetByteContext *gbytes, int le, int depth, AVDictionary **metadata)
#define FF_CODEC_CAP_USES_PROGRESSFRAMES
The decoder might make use of the ProgressFrame API.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
#define FF_CODEC_PROPERTY_LOSSLESS
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
static void inverse_prediction(AVFrame *frame, enum PredictionMode m, int x, int y)
#define FF_CODEC_DECODE_CB(func)
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static const int8_t transform[32][32]
int ff_thread_get_buffer(AVCodecContext *avctx, AVFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
#define HUFFMAN_CODES_PER_META_CODE
static const uint8_t code_length_code_order[NUM_CODE_LENGTH_CODES]
static av_always_inline void color_cache_put(ImageContext *img, uint32_t c)
#define NUM_DISTANCE_CODES
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static void inv_predict_11(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
#define vlc_init(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, codes, codes_wrap, codes_size, flags)
#define NUM_CODE_LENGTH_CODES
#define xi(width, name, var, range_min, range_max, subs,...)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define GET_PIXEL(frame, x, y)
static av_cold int webp_decode_close(AVCodecContext *avctx)
#define CODEC_LONG_NAME(str)
HuffReader * huffman_groups
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
static int apply_subtract_green_transform(WebPContext *s)
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
static av_always_inline uint8_t clamp_add_subtract_half(int a, int b, int c)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static const inv_predict_func inverse_predict[14]
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
static int parse_transform_color_indexing(WebPContext *s)
@ AV_FRAME_DATA_ICC_PROFILE
The data contains an ICC profile as an opaque octet buffer following the format described by ISO 1507...
static av_cold int webp_decode_init(AVCodecContext *avctx)
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
static const uint16_t alphabet_sizes[HUFFMAN_CODES_PER_META_CODE]
#define NUM_LITERAL_CODES
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
av_cold int ff_vp8_decode_init(AVCodecContext *avctx)
static void alpha_inverse_prediction(AVFrame *frame, enum AlphaFilter m)
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
static av_always_inline int bytestream2_tell(GetByteContext *g)
@ IMAGE_ROLE_COLOR_INDEXING
enum AVPictureType pict_type
Picture type of the frame.
int(* init)(AVBSFContext *ctx)
static void inv_predict_0(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
int ff_frame_new_side_data(const AVCodecContext *avctx, AVFrame *frame, enum AVFrameSideDataType type, size_t size, AVFrameSideData **psd)
Wrapper around av_frame_new_side_data, which rejects side data overridden by the demuxer.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
static int decode_entropy_image(WebPContext *s)
static int apply_color_transform(WebPContext *s)
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
AVPacket * av_packet_alloc(void)
Allocate an AVPacket and set its fields to default values.
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
static int parse_transform_predictor(WebPContext *s)
@ PRED_MODE_AVG_AVG_L_TL_AVG_T_TR
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
static void inv_predict_5(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
unsigned properties
Properties of the stream that gets decoded.
#define av_malloc_array(a, b)
static const int8_t lz77_distance_offsets[NUM_SHORT_DISTANCES][2]
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static int apply_predictor_transform(WebPContext *s)
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static void inv_predict_7(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
void * av_calloc(size_t nmemb, size_t size)
static int huff_reader_get_symbol(HuffReader *r, GetBitContext *gb)
#define FF_CODEC_CAP_ICC_PROFILES
Codec supports embedded ICC profiles (AV_FRAME_DATA_ICC_PROFILE).
static void inv_predict_13(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
void ff_vlc_free(VLC *vlc)
ImageContext image[IMAGE_ROLE_NB]
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static void inv_predict_6(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
#define AV_INPUT_BUFFER_PADDING_SIZE
static int vp8_lossy_decode_alpha(AVCodecContext *avctx, AVFrame *p, const uint8_t *data_start, unsigned int data_size)
main external API structure.
static int webp_decode_frame(AVCodecContext *avctx, AVFrame *p, int *got_frame, AVPacket *avpkt)
AVDictionary * metadata
metadata.
int ff_tdecode_header(GetByteContext *gb, int *le, int *ifd_offset)
Decodes a TIFF header from the input bytestream and sets the endianness in *le and the offset to the ...
static void image_ctx_free(ImageContext *img)
static int apply_color_indexing_transform(WebPContext *s)
const uint8_t * alpha_data
Structure to hold side data for an AVFrame.
#define VLC_INIT_OUTPUT_LE
#define MAX_HUFFMAN_CODE_LENGTH
#define PARSE_BLOCK_SIZE(w, h)
This structure stores compressed data.
int ff_vp8_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
int av_dict_copy(AVDictionary **dst, const AVDictionary *src, int flags)
Copy entries from one AVDictionary struct into another.
int width
picture width / height.
static float distance(float x, float y, int band)
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
static void read_huffman_code_simple(WebPContext *s, HuffReader *hc)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
static HuffReader * get_huffman_group(WebPContext *s, ImageContext *img, int x, int y)
static void inv_predict_9(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
static void inv_predict_1(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl, const uint8_t *p_t, const uint8_t *p_tr)
The official guide to swscale for confused that consecutive non overlapping rectangles of slice_bottom special converter These generally are unscaled converters of common like for each output line the vertical scaler pulls lines from a ring buffer When the ring buffer does not contain the wanted line
enum AlphaFilter alpha_filter
@ PRED_MODE_ADD_SUBTRACT_HALF
@ IMAGE_ROLE_COLOR_TRANSFORM