Go to the documentation of this file.
   45 #define PSY_3GPP_THR_SPREAD_HI   1.5f // spreading factor for low-to-hi threshold spreading  (15 dB/Bark) 
   46 #define PSY_3GPP_THR_SPREAD_LOW  3.0f // spreading factor for hi-to-low threshold spreading  (30 dB/Bark) 
   48 #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f 
   50 #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f 
   52 #define PSY_3GPP_EN_SPREAD_HI_S  1.5f 
   54 #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f 
   56 #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f 
   58 #define PSY_3GPP_RPEMIN      0.01f 
   59 #define PSY_3GPP_RPELEV      2.0f 
   61 #define PSY_3GPP_C1          3.0f            
   62 #define PSY_3GPP_C2          1.3219281f      
   63 #define PSY_3GPP_C3          0.55935729f     
   65 #define PSY_SNR_1DB          7.9432821e-1f   
   66 #define PSY_SNR_25DB         3.1622776e-3f   
   68 #define PSY_3GPP_SAVE_SLOPE_L  -0.46666667f 
   69 #define PSY_3GPP_SAVE_SLOPE_S  -0.36363637f 
   70 #define PSY_3GPP_SAVE_ADD_L    -0.84285712f 
   71 #define PSY_3GPP_SAVE_ADD_S    -0.75f 
   72 #define PSY_3GPP_SPEND_SLOPE_L  0.66666669f 
   73 #define PSY_3GPP_SPEND_SLOPE_S  0.81818181f 
   74 #define PSY_3GPP_SPEND_ADD_L   -0.35f 
   75 #define PSY_3GPP_SPEND_ADD_S   -0.26111111f 
   76 #define PSY_3GPP_CLIP_LO_L      0.2f 
   77 #define PSY_3GPP_CLIP_LO_S      0.2f 
   78 #define PSY_3GPP_CLIP_HI_L      0.95f 
   79 #define PSY_3GPP_CLIP_HI_S      0.75f 
   81 #define PSY_3GPP_AH_THR_LONG    0.5f 
   82 #define PSY_3GPP_AH_THR_SHORT   0.63f 
   84 #define PSY_PE_FORGET_SLOPE  511 
   92 #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f) 
   93 #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f) 
   96 #define PSY_LAME_FIR_LEN 21          
   97 #define AAC_BLOCK_SIZE_LONG 1024    
 
   98 #define AAC_BLOCK_SIZE_SHORT 128    
 
   99 #define AAC_NUM_BLOCKS_SHORT 8      
 
  100 #define PSY_LAME_NUM_SUBBLOCKS 3    
 
  221     -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
 
  222     -3.36639e-17 * 2, -0.0438162 * 2,  -1.54175e-17 * 2, 0.0931738 * 2,
 
  223     -5.52212e-17 * 2, -0.313819 * 2
 
  232     int lower_range = 12, upper_range = 12;
 
  240     for (
i = 1; 
i < 13; 
i++) {
 
  281     return 13.3f * 
atanf(0.00076
f * 
f) + 3.5f * 
atanf((
f / 7500.0
f) * (
f / 7500.0
f));
 
  292     return    3.64 * pow(
f, -0.8)
 
  293             - 6.8  * 
exp(-0.6  * (
f - 3.4) * (
f - 3.4))
 
  294             + 6.0  * 
exp(-0.15 * (
f - 8.7) * (
f - 8.7))
 
  295             + (0.6 + 0.04 * add) * 0.001 * 
f * 
f * 
f * 
f;
 
  302     float prev, minscale, minath, minsnr, pe_min;
 
  306     const float num_bark   = 
calc_bark((
float)bandwidth);
 
  312     if (!
ctx->model_priv_data)
 
  314     pctx = 
ctx->model_priv_data;
 
  319         chan_bitrate = (int)(chan_bitrate / 120.0 * (
ctx->avctx->global_quality ? 
ctx->avctx->global_quality : 120));
 
  327     ctx->bitres.size  -= 
ctx->bitres.size % 8;
 
  330     for (j = 0; j < 2; j++) {
 
  332         const uint8_t *band_sizes = 
ctx->bands[j];
 
  333         float line_to_frequency = 
ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
 
  334         float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / 
ctx->avctx->sample_rate;
 
  343         for (
g = 0; 
g < 
ctx->num_bands[j]; 
g++) {
 
  346             coeffs[
g].
barks = (bark + prev) / 2.0;
 
  349         for (
g = 0; 
g < 
ctx->num_bands[j] - 1; 
g++) {
 
  351             float bark_width = coeffs[
g+1].
barks - coeffs->
barks;
 
  354             coeff->spread_low[1] = 
ff_exp10(-bark_width * en_spread_low);
 
  356             pe_min = bark_pe * bark_width;
 
  357             minsnr = 
exp2(pe_min / band_sizes[
g]) - 1.5f;
 
  361         for (
g = 0; 
g < 
ctx->num_bands[j]; 
g++) {
 
  362             minscale = 
ath(start * line_to_frequency, 
ATH_ADD);
 
  363             for (
i = 1; 
i < band_sizes[
g]; 
i++)
 
  365             coeffs[
g].
ath = minscale - minath;
 
  366             start += band_sizes[
g];
 
  398     0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
 
  406                                                  const int16_t *audio,
 
  412     int attack_ratio     = br <= 16000 ? 18 : 10;
 
  415     uint8_t grouping     = 0;
 
  421         int switch_to_eight = 0;
 
  422         float sum = 0.0, sum2 = 0.0;
 
  425         for (
i = 0; 
i < 8; 
i++) {
 
  426             for (j = 0; j < 128; j++) {
 
  433         for (
i = 0; 
i < 8; 
i++) {
 
  434             if (
s[
i] > pch->win_energy * attack_ratio) {
 
  440         pch->win_energy = pch->win_energy*7/8 + sum2/64;
 
  442         wi.window_type[1] = prev_type;
 
  450             grouping = pch->next_grouping;
 
  466         pch->next_window_seq = next_type;
 
  468         for (
i = 0; 
i < 3; 
i++)
 
  469             wi.window_type[
i] = prev_type;
 
  480         for (
i = 0; 
i < 8; 
i++) {
 
  481             if (!((grouping >> 
i) & 1))
 
  483             wi.grouping[lastgrp]++;
 
  500     float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe;
 
  504     fill_level = 
av_clipf((
float)
ctx->fill_level / 
size, clip_low, clip_high);
 
  506     bit_save   = (fill_level + bitsave_add) * bitsave_slope;
 
  507     assert(bit_save <= 0.3f && bit_save >= -0.05000001
f);
 
  508     bit_spend  = (fill_level + bitspend_add) * bitspend_slope;
 
  509     assert(bit_spend <= 0.5f && bit_spend >= -0.1
f);
 
  516     bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (
ctx->pe.max - 
ctx->pe.min)) * (clipped_pe - 
ctx->pe.min);
 
  524     ctx->pe.min = 
FFMIN(pe, forgetful_min_pe);
 
  530         ctx->frame_bits * bit_factor,
 
  560     float thr_avg, reduction;
 
  562     if(active_lines == 0.0)
 
  565     thr_avg   = 
exp2f((
a - pe) / (4.0
f * active_lines));
 
  566     reduction = 
exp2f((
a - desired_pe) / (4.0
f * active_lines)) - thr_avg;
 
  568     return FFMAX(reduction, 0.0
f);
 
  574     float thr = band->
thr;
 
  578         thr = 
sqrtf(thr) + reduction;
 
  597                           const uint8_t *band_sizes, 
const float *coefs, 
const int cutoff)
 
  600     int start = 0, wstart = 0;
 
  603         for (
g = 0; 
g < num_bands; 
g++) {
 
  606             float form_factor = 0.0f;
 
  609             if (wstart < cutoff) {
 
  610                 for (
i = 0; 
i < band_sizes[
g]; 
i++) {
 
  611                     band->
energy += coefs[start+
i] * coefs[start+
i];
 
  619             start += band_sizes[
g];
 
  620             wstart += band_sizes[
g];
 
  638         hpfsmpl[
i] = (sum1 + sum2) * 32768.0
f;
 
  651     float desired_bits, desired_pe, delta_pe, reduction= 
NAN, spread_en[128] = {0};
 
  652     float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
 
  653     float pe = pctx->chan_bitrate > 32000 ? 0.0f : 
FFMAX(50.0
f, 100.0
f - pctx->chan_bitrate * 100.0f / 32000.0f);
 
  654     const int      num_bands   = 
ctx->num_bands[wi->num_windows == 8];
 
  655     const uint8_t *band_sizes  = 
ctx->bands[wi->num_windows == 8];
 
  656     AacPsyCoeffs  *coeffs      = pctx->psy_coef[wi->num_windows == 8];
 
  659     const int cutoff           = bandwidth * 2048 / wi->num_windows / 
ctx->avctx->sample_rate;
 
  662     calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff);
 
  665     for (
w = 0; 
w < wi->num_windows*16; 
w += 16) {
 
  669         spread_en[0] = 
bands[0].energy;
 
  670         for (
g = 1; 
g < num_bands; 
g++) {
 
  672             spread_en[
w+
g] = 
FFMAX(
bands[
g].energy, spread_en[
w+
g-1] * coeffs[
g].spread_hi[1]);
 
  674         for (
g = num_bands - 2; 
g >= 0; 
g--) {
 
  676             spread_en[
w+
g] = 
FFMAX(spread_en[
w+
g], spread_en[
w+
g+1] * coeffs[
g].spread_low[1]);
 
  679         for (
g = 0; 
g < num_bands; 
g++) {
 
  694             if (spread_en[
w+
g] * avoid_hole_thr > band->
energy || coeffs[
g].min_snr > 1.0f)
 
  707         desired_pe = pe * (
ctx->avctx->global_quality ? 
ctx->avctx->global_quality : 120) / (2 * 2.5
f * 120.0
f);
 
  712         if (
ctx->bitres.bits > 0) {
 
  717         pctx->pe.max = 
FFMAX(pe, pctx->pe.max);
 
  718         pctx->pe.min = 
FFMIN(pe, pctx->pe.min);
 
  727         if (
ctx->bitres.bits > 0)
 
  732     ctx->bitres.alloc = desired_bits;
 
  734     if (desired_pe < pe) {
 
  736         for (
w = 0; 
w < wi->num_windows*16; 
w += 16) {
 
  741             for (
g = 0; 
g < num_bands; 
g++) {
 
  753         for (
i = 0; 
i < 2; 
i++) {
 
  754             float pe_no_ah = 0.0f, desired_pe_no_ah;
 
  755             active_lines = 
a = 0.0f;
 
  756             for (
w = 0; 
w < wi->num_windows*16; 
w += 16) {
 
  757                 for (
g = 0; 
g < num_bands; 
g++) {
 
  761                         pe_no_ah += band->
pe;
 
  767             desired_pe_no_ah = 
FFMAX(desired_pe - (pe - pe_no_ah), 0.0
f);
 
  768             if (active_lines > 0.0
f)
 
  772             for (
w = 0; 
w < wi->num_windows*16; 
w += 16) {
 
  773                 for (
g = 0; 
g < num_bands; 
g++) {
 
  776                     if (active_lines > 0.0
f)
 
  779                     if (band->
thr > 0.0f)
 
  786             delta_pe = desired_pe - pe;
 
  787             if (
fabs(delta_pe) > 0.05
f * desired_pe)
 
  791         if (pe < 1.15
f * desired_pe) {
 
  793             norm_fac = norm_fac ? 1.0f / norm_fac : 0;
 
  794             for (
w = 0; 
w < wi->num_windows*16; 
w += 16) {
 
  795                 for (
g = 0; 
g < num_bands; 
g++) {
 
  799                         float delta_sfb_pe = band->
norm_fac * norm_fac * delta_pe;
 
  800                         float thr = band->
thr;
 
  812             while (pe > desired_pe && 
g--) {
 
  813                 for (
w = 0; 
w < wi->num_windows*16; 
w+= 16) {
 
  826     for (
w = 0; 
w < wi->num_windows*16; 
w += 16) {
 
  827         for (
g = 0; 
g < num_bands; 
g++) {
 
  838     memcpy(pch->prev_band, pch->band, 
sizeof(pch->band));
 
  847     for (ch = 0; ch < group->
num_ch; ch++)
 
  874     ctx->next_window_seq = blocktype;
 
  878                                        const float *la, 
int channel, 
int prev_type)
 
  883     int uselongblock = 1;
 
  890         const float *pf = hpfsmpl;
 
  905             energy_short[0] += energy_subshort[
i];
 
  911             for (; pf < pfe; pf++)
 
  922             if (
p > energy_subshort[
i + 1])
 
  923                 p = 
p / energy_subshort[
i + 1];
 
  924             else if (energy_subshort[
i + 1] > 
p * 10.0
f)
 
  925                 p = energy_subshort[
i + 1] / (
p * 10.0f);
 
  934                 if (attack_intensity[
i] > pch->attack_threshold)
 
  942             const float u = energy_short[
i - 1];
 
  943             const float v = energy_short[
i];
 
  944             const float m = 
FFMAX(
u, v);
 
  946                 if (
u < 1.7
f * v && v < 1.7
f * 
u) {   
 
  947                     if (
i == 1 && attacks[0] < attacks[
i])
 
  952             att_sum += attacks[
i];
 
  955         if (attacks[0] <= pch->prev_attack)
 
  958         att_sum += attacks[0];
 
  960         if (pch->prev_attack == 3 || att_sum) {
 
  964                 if (attacks[
i] && attacks[
i-1])
 
  989         for (
i = 0; 
i < 8; 
i++) {
 
  990             if (!((pch->next_grouping >> 
i) & 1))
 
 1002     for (
i = 0; 
i < 9; 
i++) {
 
 1010     pch->prev_attack = attacks[8];
 
 1017     .
name    = 
"3GPP TS 26.403-inspired model",
 
  
float spread_low[2]
spreading factor for low-to-high threshold spreading in long frame
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
static av_cold int psy_3gpp_init(FFPsyContext *ctx)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, const int16_t *audio, const int16_t *la, int channel, int prev_type)
Tell encoder which window types to use.
static float lame_calc_attack_threshold(int bitrate)
Calculate the ABR attack threshold from the above LAME psymodel table.
#define PSY_PE_FORGET_SLOPE
static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio, const float *la, int channel, int prev_type)
float thr
energy threshold
static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch, const uint8_t *band_sizes, const float *coefs, const int cutoff)
#define PSY_3GPP_PE_TO_BITS(bits)
#define AV_CODEC_FLAG_QSCALE
Use fixed qscale.
static av_cold float calc_bark(float f)
Calculate Bark value for given line.
float nz_lines
number of non-zero spectral lines
#define PSY_3GPP_CLIP_LO_S
#define u(width, name, range_min, range_max)
#define PSY_3GPP_AH_THR_LONG
int window_shape
window shape (sine/KBD/whatever)
static float calc_pe_3gpp(AacPsyBand *band)
float min
minimum allowed PE for bit factor calculation
#define PSY_3GPP_SPEND_SLOPE_L
#define PSY_3GPP_THR_SPREAD_HI
constants for 3GPP AAC psychoacoustic model
int fill_level
bit reservoir fill level
int nb_channels
Number of channels in this layout.
float spread_hi[2]
spreading factor for high-to-low threshold spreading in long frame
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about quality
static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
psychoacoustic model frame type-dependent coefficients
AVChannelLayout ch_layout
Audio channel layout.
static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx)
LAME psy model specific initialization.
float st_lrm
short threshold for L, R, and M channels
#define PSY_3GPP_EN_SPREAD_HI_S
#define PSY_3GPP_SPEND_ADD_L
int flags
AV_CODEC_FLAG_*.
float barks
Bark value for each spectral band in long frame.
float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT *PSY_LAME_NUM_SUBBLOCKS]
static __device__ float fabsf(float a)
windowing related information
int64_t bit_rate
Total stream bitrate in bit/s, 0 if not available.
float previous
allowed PE of the previous frame
const FFPsyModel ff_aac_psy_model
uint8_t num_ch
number of channels in this group
LAME psy model preset struct.
#define PSY_3GPP_CLIP_HI_S
information for single band used by 3GPP TS26.403-inspired psychoacoustic model
int global_quality
Global quality for codecs which cannot change it per frame.
int flags
Flags modifying the (de)muxer behaviour.
int quality
Quality to map the rest of the values to.
float pe_const
constant part of the PE calculation
3GPP TS26.403-inspired psychoacoustic model specific data
static float calc_reduction_3gpp(float a, float desired_pe, float pe, float active_lines)
static const uint8_t window_grouping[9]
window grouping information stored as bits (0 - new group, 1 - group continues)
#define AAC_BLOCK_SIZE_SHORT
short block size
static const float bands[]
static av_cold float ath(float f, float add)
Calculate ATH value for given frequency.
static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, int short_window)
#define PSY_3GPP_AH_THR_SHORT
static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
static float iir_filter(int in, float state[2])
IIR filter used in block switching decision.
static const PsyLamePreset psy_vbr_map[]
LAME psy model preset table for constant quality.
int window_type[3]
window type (short/long/transitional, etc.) - current, previous and next
static __device__ float fabs(float a)
struct AacPsyContext::@34 pe
static const PsyLamePreset psy_abr_map[]
LAME psy model preset table for ABR.
int64_t bit_rate
the average bitrate
static av_cold void psy_3gpp_end(FFPsyContext *apc)
#define PSY_3GPP_BITS_TO_PE(bits)
single band psychoacoustic information
static __device__ float sqrtf(float a)
int grouping[8]
window grouping (for e.g. AAC)
float max
maximum allowed PE for bit factor calculation
float iir_state[2]
hi-pass IIR filter state
AacPsyCoeffs psy_coef[2][64]
float thr_quiet
threshold in quiet
#define AAC_BLOCK_SIZE_LONG
long block size
AacPsyBand band[128]
bands information
static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, float reduction)
float ath
absolute threshold of hearing per bands
float active_lines
number of active spectral lines
#define AAC_NUM_BLOCKS_SHORT
number of blocks in a short sequence
#define PSY_LAME_FIR_LEN
LAME psy model FIR order.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
#define PSY_3GPP_CLIP_LO_L
int avoid_holes
hole avoidance flag
#define PSY_3GPP_THR_SPREAD_LOW
#define PSY_3GPP_SAVE_ADD_S
#define PSY_3GPP_SPEND_ADD_S
static const float psy_fir_coeffs[]
LAME psy model FIR coefficient table.
float attack_threshold
attack threshold for this channel
#define i(width, name, range_min, range_max)
float norm_fac
normalization factor for linearization
#define PSY_3GPP_CLIP_HI_L
float pe
perceptual entropy
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
void * av_calloc(size_t nmemb, size_t size)
psychoacoustic information for an arbitrary group of channels
enum WindowSequence next_window_seq
window sequence to be used in the next frame
float win_energy
sliding average of channel energy
single/pair channel context for psychoacoustic model
float correction
PE correction factor.
void * model_priv_data
psychoacoustic model implementation private data
#define PSY_3GPP_SAVE_SLOPE_S
#define PSY_3GPP_EN_SPREAD_HI_L1
uint8_t next_grouping
stored grouping scheme for the next frame (in case of 8 short window sequence)
main external API structure.
#define PSY_LAME_NUM_SUBBLOCKS
Number of sub-blocks in each short block.
float global_quality
normalized global quality taken from avctx
static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel, const float *coefs, const FFPsyWindowInfo *wi)
Calculate band thresholds as suggested in 3GPP TS26.403.
codec-specific psychoacoustic model implementation
IDirect3DDxgiInterfaceAccess _COM_Outptr_ void ** p
int frame_bits
average bits per frame
FFPsyChannelGroup * ff_psy_find_group(FFPsyContext *ctx, int channel)
Determine what group a channel belongs to.
static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float **coeffs, const FFPsyWindowInfo *wi)
#define PSY_3GPP_EN_SPREAD_LOW_L
int chan_bitrate
bitrate per channel
#define PSY_3GPP_SAVE_SLOPE_L
static const double coeff[2][5]
#define PSY_3GPP_SPEND_SLOPE_S
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
#define PSY_3GPP_EN_SPREAD_LOW_S
int prev_attack
attack value for the last short block in the previous sequence
context used by psychoacoustic model
AacPsyBand prev_band[128]
bands information from the previous frame
int num_windows
number of windows in a frame
#define PSY_3GPP_SAVE_ADD_L