Go to the documentation of this file.
58 for (
i = e - 1;
i >= 0;
i--)
78 while (i < state->error_sum) {
84 ff_dlog(
NULL,
"v:%d bias:%d error:%d drift:%d count:%d k:%d",
87 v ^= ((2 *
state->drift +
state->count) >> 31);
110 #define RENAME(name) name
116 #define RENAME(name) name ## 32
120 int w,
int h,
int stride,
int plane_index,
125 sample[0] =
s->sample_buffer + 3;
126 sample[1] =
s->sample_buffer +
w + 6 + 3;
130 memset(
s->sample_buffer, 0, 2 * (
w + 6) *
sizeof(*
s->sample_buffer));
132 for (y = 0; y <
h; y++) {
142 if (
s->avctx->bits_per_raw_sample <= 8) {
143 int ret = decode_line(
s,
w,
sample, plane_index, 8);
146 for (x = 0; x <
w; x++)
149 int ret = decode_line(
s,
w,
sample, plane_index,
s->avctx->bits_per_raw_sample);
152 if (
s->packed_at_lsb) {
153 for (x = 0; x <
w; x++) {
157 for (x = 0; x <
w; x++) {
158 ((uint16_t*)(
src +
stride*y))[x*pixel_stride] =
sample[1][x] << (16 -
s->avctx->bits_per_raw_sample) | ((uint16_t **)
sample)[1][x] >> (2 *
s->avctx->bits_per_raw_sample - 16);
181 fs->slice_x /=
f->num_h_slices;
182 fs->slice_y /=
f->num_v_slices;
183 fs->slice_width =
fs->slice_width /
f->num_h_slices -
fs->slice_x;
184 fs->slice_height =
fs->slice_height/
f->num_v_slices -
fs->slice_y;
185 if ((
unsigned)
fs->slice_width >
f->width || (unsigned)
fs->slice_height >
f->height)
187 if ( (
unsigned)
fs->slice_x + (uint64_t)
fs->slice_width >
f->width
188 || (
unsigned)
fs->slice_y + (uint64_t)
fs->slice_height >
f->height)
191 for (
i = 0;
i <
f->plane_count;
i++) {
194 if (idx >= (
unsigned)
f->quant_table_count) {
211 f->cur->interlaced_frame = 1;
212 f->cur->top_field_first = 1;
213 }
else if (ps == 2) {
214 f->cur->interlaced_frame = 1;
215 f->cur->top_field_first = 0;
216 }
else if (ps == 3) {
217 f->cur->interlaced_frame = 0;
223 f->cur->sample_aspect_ratio) < 0) {
225 f->cur->sample_aspect_ratio.num,
226 f->cur->sample_aspect_ratio.den);
227 f->cur->sample_aspect_ratio = (
AVRational){ 0, 1 };
230 if (
fs->version > 3) {
233 if (
fs->slice_coding_mode != 1) {
236 if ((uint64_t)
fs->slice_rct_by_coef + (uint64_t)
fs->slice_rct_ry_coef > 4) {
255 for( si=0;
fs !=
f->slice_context[si]; si ++)
270 for (
i = 0;
i <
f->plane_count;
i++) {
276 memcpy(pdst, psrc,
sizeof(*pdst));
290 fs->slice_rct_by_coef = 1;
291 fs->slice_rct_ry_coef = 1;
293 if (
f->version > 2) {
297 fs->slice_x =
fs->slice_y =
fs->slice_height =
fs->slice_width = 0;
298 fs->slice_damaged = 1;
304 if (
f->cur->key_frame ||
fs->slice_reset_contexts)
313 if (
f->version == 3 &&
f->micro_version > 1 ||
f->version > 3)
315 fs->ac_byte_count =
f->version > 2 || (!x && !y) ?
fs->c.bytestream -
fs->c.bytestream_start - 1 : 0;
317 fs->c.bytestream_start +
fs->ac_byte_count,
318 (
fs->c.bytestream_end -
fs->c.bytestream_start -
fs->ac_byte_count) * 8);
322 if (
f->colorspace == 0 && (
f->chroma_planes || !
fs->transparency)) {
325 const int cx = x >>
f->chroma_h_shift;
326 const int cy = y >>
f->chroma_v_shift;
329 if (
f->chroma_planes) {
333 if (
fs->transparency)
335 }
else if (
f->colorspace == 0) {
338 }
else if (
f->use32bit) {
354 v =
fs->c.bytestream_end -
fs->c.bytestream - 2 - 5*
f->ec;
357 fs->slice_damaged = 1;
376 for (v = 0;
i < 128; v++) {
388 for (
i = 1;
i < 128;
i++)
401 for (
i = 0;
i < 5;
i++) {
421 memset(state2, 128,
sizeof(state2));
428 if (
f->version < 2) {
432 if (
f->version > 2) {
433 c->bytestream_end -= 4;
435 if (
f->micro_version < 0)
441 for (
i = 1;
i < 256;
i++)
451 f->plane_count = 1 + (
f->chroma_planes ||
f->version<4) +
f->transparency;
455 if (
f->chroma_h_shift > 4
U ||
f->chroma_v_shift > 4
U) {
457 f->chroma_h_shift,
f->chroma_v_shift);
461 if (
f->num_h_slices > (
unsigned)
f->width || !
f->num_h_slices ||
462 f->num_v_slices > (
unsigned)
f->height || !
f->num_v_slices
471 f->quant_table_count = 0;
475 for (
i = 0;
i <
f->quant_table_count;
i++) {
477 if (
f->context_count[
i] < 0) {
485 for (
i = 0;
i <
f->quant_table_count;
i++)
487 for (j = 0; j <
f->context_count[
i]; j++)
489 int pred = j ?
f->initial_states[
i][j - 1][k] : 128;
490 f->initial_states[
i][j][k] =
495 if (
f->version > 2) {
497 if (
f->micro_version > 2)
501 if (
f->version > 2) {
504 f->avctx->extradata,
f->avctx->extradata_size);
505 if (v ||
f->avctx->extradata_size < 4) {
509 crc =
AV_RB32(
f->avctx->extradata +
f->avctx->extradata_size - 4);
514 "global: ver:%d.%d, coder:%d, colorspace: %d bpr:%d chroma:%d(%d:%d), alpha:%d slices:%dx%d qtabs:%d ec:%d intra:%d CRC:0x%08X\n",
515 f->version,
f->micro_version,
518 f->avctx->bits_per_raw_sample,
519 f->chroma_planes,
f->chroma_h_shift,
f->chroma_v_shift,
521 f->num_h_slices,
f->num_v_slices,
522 f->quant_table_count,
538 if (
f->version < 2) {
549 for (
i = 1;
i < 256;
i++) {
551 if (st < 1 || st > 255) {
555 f->state_transition[
i] = st;
568 if (
f->plane_count) {
593 f->plane_count = 2 +
f->transparency;
596 if (
f->colorspace == 0) {
597 if (!
f->transparency && !
f->chroma_planes) {
598 if (
f->avctx->bits_per_raw_sample <= 8)
600 else if (
f->avctx->bits_per_raw_sample == 9) {
601 f->packed_at_lsb = 1;
603 }
else if (
f->avctx->bits_per_raw_sample == 10) {
604 f->packed_at_lsb = 1;
606 }
else if (
f->avctx->bits_per_raw_sample == 12) {
607 f->packed_at_lsb = 1;
609 }
else if (
f->avctx->bits_per_raw_sample == 16) {
610 f->packed_at_lsb = 1;
612 }
else if (
f->avctx->bits_per_raw_sample < 16) {
616 }
else if (
f->transparency && !
f->chroma_planes) {
617 if (
f->avctx->bits_per_raw_sample <= 8)
621 }
else if (
f->avctx->bits_per_raw_sample<=8 && !
f->transparency) {
622 switch(16 *
f->chroma_h_shift +
f->chroma_v_shift) {
630 }
else if (
f->avctx->bits_per_raw_sample <= 8 &&
f->transparency) {
631 switch(16*
f->chroma_h_shift +
f->chroma_v_shift) {
636 }
else if (
f->avctx->bits_per_raw_sample == 9 && !
f->transparency) {
637 f->packed_at_lsb = 1;
638 switch(16 *
f->chroma_h_shift +
f->chroma_v_shift) {
643 }
else if (
f->avctx->bits_per_raw_sample == 9 &&
f->transparency) {
644 f->packed_at_lsb = 1;
645 switch(16 *
f->chroma_h_shift +
f->chroma_v_shift) {
650 }
else if (
f->avctx->bits_per_raw_sample == 10 && !
f->transparency) {
651 f->packed_at_lsb = 1;
652 switch(16 *
f->chroma_h_shift +
f->chroma_v_shift) {
658 }
else if (
f->avctx->bits_per_raw_sample == 10 &&
f->transparency) {
659 f->packed_at_lsb = 1;
660 switch(16 *
f->chroma_h_shift +
f->chroma_v_shift) {
665 }
else if (
f->avctx->bits_per_raw_sample == 12 && !
f->transparency) {
666 f->packed_at_lsb = 1;
667 switch(16 *
f->chroma_h_shift +
f->chroma_v_shift) {
673 }
else if (
f->avctx->bits_per_raw_sample == 14 && !
f->transparency) {
674 f->packed_at_lsb = 1;
675 switch(16 *
f->chroma_h_shift +
f->chroma_v_shift) {
680 }
else if (
f->avctx->bits_per_raw_sample == 16 && !
f->transparency){
681 f->packed_at_lsb = 1;
682 switch(16 *
f->chroma_h_shift +
f->chroma_v_shift) {
687 }
else if (
f->avctx->bits_per_raw_sample == 16 &&
f->transparency){
688 f->packed_at_lsb = 1;
689 switch(16 *
f->chroma_h_shift +
f->chroma_v_shift) {
695 }
else if (
f->colorspace == 1) {
696 if (
f->chroma_h_shift ||
f->chroma_v_shift) {
698 "chroma subsampling not supported in this colorspace\n");
701 if (
f->avctx->bits_per_raw_sample <= 8 && !
f->transparency)
703 else if (
f->avctx->bits_per_raw_sample <= 8 &&
f->transparency)
705 else if (
f->avctx->bits_per_raw_sample == 9 && !
f->transparency)
707 else if (
f->avctx->bits_per_raw_sample == 10 && !
f->transparency)
709 else if (
f->avctx->bits_per_raw_sample == 10 &&
f->transparency)
711 else if (
f->avctx->bits_per_raw_sample == 12 && !
f->transparency)
713 else if (
f->avctx->bits_per_raw_sample == 12 &&
f->transparency)
715 else if (
f->avctx->bits_per_raw_sample == 14 && !
f->transparency)
717 else if (
f->avctx->bits_per_raw_sample == 16 && !
f->transparency) {
721 else if (
f->avctx->bits_per_raw_sample == 16 &&
f->transparency) {
735 f->chroma_h_shift,
f->chroma_v_shift,
f->avctx->pix_fmt);
736 if (
f->version < 2) {
742 f->slice_count =
f->max_slice_count;
743 }
else if (
f->version < 3) {
746 const uint8_t *p =
c->bytestream_end;
747 for (
f->slice_count = 0;
748 f->slice_count <
MAX_SLICES && 3 + 5*!!
f->ec < p -
c->bytestream_start;
750 int trailer = 3 + 5*!!
f->ec;
752 if (
size + trailer > p -
c->bytestream_start)
757 if (
f->slice_count > (
unsigned)
MAX_SLICES ||
f->slice_count <= 0 ||
f->slice_count >
f->max_slice_count) {
758 av_log(
f->avctx,
AV_LOG_ERROR,
"slice count %d is invalid (max=%d)\n",
f->slice_count,
f->max_slice_count);
762 for (j = 0; j <
f->slice_count; j++) {
765 fs->packed_at_lsb =
f->packed_at_lsb;
767 fs->slice_damaged = 0;
769 if (
f->version == 2) {
775 fs->slice_x /=
f->num_h_slices;
776 fs->slice_y /=
f->num_v_slices;
777 fs->slice_width =
fs->slice_width /
f->num_h_slices -
fs->slice_x;
778 fs->slice_height =
fs->slice_height /
f->num_v_slices -
fs->slice_y;
779 if ((
unsigned)
fs->slice_width >
f->width ||
780 (unsigned)
fs->slice_height >
f->height)
782 if ( (
unsigned)
fs->slice_x + (uint64_t)
fs->slice_width >
f->width
783 || (
unsigned)
fs->slice_y + (uint64_t)
fs->slice_height >
f->height)
787 for (
i = 0;
i <
f->plane_count;
i++) {
790 if (
f->version == 2) {
792 if (idx >= (
unsigned)
f->quant_table_count) {
794 "quant_table_index out of range\n");
805 if (
f->version <= 2) {
840 int buf_size = avpkt->
size;
848 if (
f->last_picture.f)
852 f->cur = p =
f->picture.f;
873 if (!
f->key_frame_ok) {
875 "Cannot decode non-keyframe without valid keyframe\n");
886 f->version, p->
key_frame,
f->ac,
f->ec,
f->slice_count,
f->avctx->bits_per_raw_sample);
890 buf_p =
buf + buf_size;
891 for (
i =
f->slice_count - 1;
i >= 0;
i--) {
893 int trailer = 3 + 5*!!
f->ec;
896 if (
i ||
f->version > 2) {
897 if (trailer > buf_p -
buf) v = INT_MAX;
898 else v =
AV_RB24(buf_p-trailer) + trailer;
899 }
else v = buf_p -
c->bytestream_start;
900 if (buf_p -
c->bytestream_start < v) {
919 fs->slice_damaged = 1;
929 fs->c.bytestream_end = buf_p + v;
937 &
f->slice_context[0],
942 for (
i =
f->slice_count - 1;
i >= 0;
i--) {
945 if (
fs->slice_damaged &&
f->last_picture.f->data[0]) {
950 for (j = 0; j <
desc->nb_components; j++) {
951 int pixshift =
desc->comp[j].depth > 8;
952 int sh = (j == 1 || j == 2) ?
f->chroma_h_shift : 0;
953 int sv = (j == 1 || j == 2) ?
f->chroma_v_shift : 0;
955 (
fs->slice_y >> sv) + ((
fs->slice_x >> sh) << pixshift);
956 src[j] =
f->last_picture.f->data[j] +
f->last_picture.f->linesize[j] *
957 (
fs->slice_y >> sv) + ((
fs->slice_x >> sh) << pixshift);
963 src[1] =
f->last_picture.f->data[1];
966 f->last_picture.f->linesize,
976 if (
f->last_picture.f)
994 f->last_picture.f =
NULL;
995 f->sample_buffer =
NULL;
996 f->max_slice_count = 0;
999 for (
i = 0;
i <
f->quant_table_count;
i++) {
1002 f->context_count[
i] *
sizeof(*
f->initial_states[
i]));
1060 memcpy(fdst,
fsrc,
sizeof(*fdst));
#define AV_PIX_FMT_YUVA422P16
static int read_extra_header(FFV1Context *f)
#define AV_PIX_FMT_GBRAP16
#define AV_LOG_WARNING
Something somehow does not look correct.
static void update_vlc_state(VlcState *const state, const int v)
static av_cold int init(AVCodecContext *avctx)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int decode_slice(AVCodecContext *c, void *arg)
@ AV_PIX_FMT_YA8
8 bits gray, 8 bits alpha
#define FFSWAP(type, a, b)
static int is_input_end(FFV1Context *s)
int context_count[MAX_QUANT_TABLES]
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
#define AV_PIX_FMT_YUVA422P9
static int get_sr_golomb(GetBitContext *gb, int k, int limit, int esc_len)
read signed golomb rice code (ffv1).
This structure describes decoded (raw) audio or video data.
av_cold int ff_ffv1_common_init(AVCodecContext *avctx)
#define AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P10
enum AVFieldOrder field_order
Field order.
int top_field_first
If the content is interlaced, is top field displayed first.
enum AVPictureType last_picture
int step
Number of elements between 2 horizontally consecutive pixels.
#define AV_PIX_FMT_YUV420P10
uint8_t(* state)[CONTEXT_SIZE]
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
struct FFV1Context * slice_context[MAX_SLICES]
static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale)
av_cold int ff_ffv1_init_slice_state(FFV1Context *f, FFV1Context *fs)
#define AC_RANGE_CUSTOM_TAB
#define AV_PIX_FMT_YUVA422P10
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_thread_report_progress() has been called on them. This includes draw_edges(). Porting codecs to frame threading
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
void * av_memdup(const void *p, size_t size)
Duplicate a buffer with av_malloc().
#define AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUV422P9
int key_frame
1 -> keyframe, 0-> not
#define AV_PIX_FMT_GRAY16
static av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
#define AV_PIX_FMT_YUV444P10
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define AV_PIX_FMT_YUV422P16
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
#define AV_PIX_FMT_GBRAP10
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
void ff_ffv1_clear_slice_state(FFV1Context *f, FFV1Context *fs)
#define AV_PIX_FMT_GBRAP12
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
static double av_q2d(AVRational a)
Convert an AVRational to a double.
PlaneContext plane[MAX_PLANES]
#define av_assert0(cond)
assert() equivalent, that is always enabled.
struct FFV1Context * fsrc
#define AV_PIX_FMT_YUV420P9
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256])
#define AV_PIX_FMT_YUV420P16
static av_always_inline int fold(int diff, int bits)
int ac
1=range coder <-> 0=golomb rice
static int get_vlc_symbol(GetBitContext *gb, VlcState *const state, int bits)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
static int decode_slice_header(FFV1Context *f, FFV1Context *fs)
#define AV_PIX_FMT_GRAY10
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
#define AV_PIX_FMT_GBRP16
static void copy_fields(FFV1Context *fsdst, FFV1Context *fssrc, FFV1Context *fsrc)
static int read_header(FFV1Context *f)
static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed)
#define fs(width, name, subs,...)
Rational number (pair of numerator and denominator).
struct AVCodecInternal * internal
Private context used for internal data.
@ AV_PICTURE_TYPE_I
Intra.
#define AV_PIX_FMT_YUV440P10
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
#define AV_PIX_FMT_YUV422P10
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have update_thread_context() run it in the next thread. If the codec allocates writable tables in its init()
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
av_cold void ff_init_range_decoder(RangeCoder *c, const uint8_t *buf, int buf_size)
enum AVPictureType pict_type
Picture type of the frame.
static const struct @314 planes[]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
int allocate_progress
Whether to allocate progress for frame threading.
#define AV_PIX_FMT_YUV422P12
av_cold int ff_ffv1_close(AVCodecContext *avctx)
AVRational pkt_timebase
Timebase in which pkt_dts/pts and AVPacket.dts/pts are.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have add an init_thread_copy() which re-allocates them for other threads. Add AV_CODEC_CAP_FRAME_THREADS to the codec capabilities. There will be very little speed gain at this point but it should work. If there are inter-frame dependencies
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
#define AV_NOPTS_VALUE
Undefined timestamp value.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
#define AV_PIX_FMT_YUV444P12
int64_t dts
Decompression timestamp in AVStream->time_base units; the time at which the packet is decompressed.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
#define AV_PIX_FMT_YUVA444P10
static float quant_table[96]
uint8_t(*[MAX_QUANT_TABLES] initial_states)[32]
int interlaced_frame
The content of the picture is interlaced.
static int decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index, int pixel_stride)
#define i(width, name, range_min, range_max)
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
#define AV_PIX_FMT_GBRP12
#define av_malloc_array(a, b)
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
const char * name
Name of the codec implementation.
static int get_rac(RangeCoder *c, uint8_t *const state)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
#define AV_PIX_FMT_YUV444P9
#define MAX_CONTEXT_INPUTS
static const float pred[4]
#define AV_PIX_FMT_0RGB32
#define AV_PIX_FMT_YUVA444P9
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
#define AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV422P14
int ff_ffv1_allocate_initial_states(FFV1Context *f)
main external API structure.
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
void av_image_copy(uint8_t *dst_data[4], int dst_linesizes[4], const uint8_t *src_data[4], const int src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height)
Copy image in src_data to dst_data.
static av_cold int decode_init(AVCodecContext *avctx)
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
int ff_thread_ref_frame(ThreadFrame *dst, ThreadFrame *src)
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
This structure stores compressed data.
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
av_cold int ff_ffv1_init_slice_contexts(FFV1Context *f)
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV444P14
int av_image_check_sar(unsigned int w, unsigned int h, AVRational sar)
Check if the given sample aspect ratio of an image is valid.
#define AV_PIX_FMT_GRAY12
int16_t quant_table[MAX_CONTEXT_INPUTS][256]
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_RB24
#define AV_PIX_FMT_FLAG_PAL
Pixel format has a palette in data[1], values are indexes in this palette.
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_PIX_FMT_YUV420P14
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have add an so the codec calls ff_thread_report set AVCodecInternal allocate_progress The frames must then be freed with ff_thread_release_buffer(). Otherwise leave it at zero and decode directly into the user-supplied frames. Call ff_thread_report_progress() after some part of the current picture has decoded. A good place to put this is where draw_horiz_band() is called - add this if it isn 't called anywhere