FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
alsdec.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bgmc.h"
35 #include "bswapdsp.h"
36 #include "internal.h"
37 #include "mlz.h"
38 #include "libavutil/samplefmt.h"
39 #include "libavutil/crc.h"
41 #include "libavutil/intfloat.h"
42 #include "libavutil/intreadwrite.h"
43 
44 #include <stdint.h>
45 
46 /** Rice parameters and corresponding index offsets for decoding the
47  * indices of scaled PARCOR values. The table chosen is set globally
48  * by the encoder and stored in ALSSpecificConfig.
49  */
50 static const int8_t parcor_rice_table[3][20][2] = {
51  { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
52  { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
53  { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
54  { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
55  { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
56  { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
57  {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
58  { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
59  { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
60  { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
61  {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
62  { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
63 };
64 
65 
66 /** Scaled PARCOR values used for the first two PARCOR coefficients.
67  * To be indexed by the Rice coded indices.
68  * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
69  * Actual values are divided by 32 in order to be stored in 16 bits.
70  */
71 static const int16_t parcor_scaled_values[] = {
72  -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
73  -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
74  -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
75  -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
76  -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
77  -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
78  -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
79  -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
80  -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
81  -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
82  -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
83  -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
84  -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
85  -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
86  -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
87  -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
88  -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
89  -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
90  -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
91  -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
92  -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
93  -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
94  -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
95  46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
96  143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
97  244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
98  349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
99  458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
100  571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
101  688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
102  810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
103  935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
104 };
105 
106 
107 /** Gain values of p(0) for long-term prediction.
108  * To be indexed by the Rice coded indices.
109  */
110 static const uint8_t ltp_gain_values [4][4] = {
111  { 0, 8, 16, 24},
112  {32, 40, 48, 56},
113  {64, 70, 76, 82},
114  {88, 92, 96, 100}
115 };
116 
117 
118 /** Inter-channel weighting factors for multi-channel correlation.
119  * To be indexed by the Rice coded indices.
120  */
121 static const int16_t mcc_weightings[] = {
122  204, 192, 179, 166, 153, 140, 128, 115,
123  102, 89, 76, 64, 51, 38, 25, 12,
124  0, -12, -25, -38, -51, -64, -76, -89,
125  -102, -115, -128, -140, -153, -166, -179, -192
126 };
127 
128 
129 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
130  */
131 static const uint8_t tail_code[16][6] = {
132  { 74, 44, 25, 13, 7, 3},
133  { 68, 42, 24, 13, 7, 3},
134  { 58, 39, 23, 13, 7, 3},
135  {126, 70, 37, 19, 10, 5},
136  {132, 70, 37, 20, 10, 5},
137  {124, 70, 38, 20, 10, 5},
138  {120, 69, 37, 20, 11, 5},
139  {116, 67, 37, 20, 11, 5},
140  {108, 66, 36, 20, 10, 5},
141  {102, 62, 36, 20, 10, 5},
142  { 88, 58, 34, 19, 10, 5},
143  {162, 89, 49, 25, 13, 7},
144  {156, 87, 49, 26, 14, 7},
145  {150, 86, 47, 26, 14, 7},
146  {142, 84, 47, 26, 14, 7},
147  {131, 79, 46, 26, 14, 7}
148 };
149 
150 
151 enum RA_Flag {
155 };
156 
157 
158 typedef struct ALSSpecificConfig {
159  uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
160  int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
161  int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
162  int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
163  int frame_length; ///< frame length for each frame (last frame may differ)
164  int ra_distance; ///< distance between RA frames (in frames, 0...255)
165  enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
166  int adapt_order; ///< adaptive order: 1 = on, 0 = off
167  int coef_table; ///< table index of Rice code parameters
168  int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
169  int max_order; ///< maximum prediction order (0..1023)
170  int block_switching; ///< number of block switching levels
171  int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
172  int sb_part; ///< sub-block partition
173  int joint_stereo; ///< joint stereo: 1 = on, 0 = off
174  int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
175  int chan_config; ///< indicates that a chan_config_info field is present
176  int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
177  int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
178  int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
179  int *chan_pos; ///< original channel positions
180  int crc_enabled; ///< enable Cyclic Redundancy Checksum
182 
183 
184 typedef struct ALSChannelData {
190  int weighting[6];
192 
193 
194 typedef struct ALSDecContext {
199  const AVCRC *crc_table;
200  uint32_t crc_org; ///< CRC value of the original input data
201  uint32_t crc; ///< CRC value calculated from decoded data
202  unsigned int cur_frame_length; ///< length of the current frame to decode
203  unsigned int frame_id; ///< the frame ID / number of the current frame
204  unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
205  unsigned int cs_switch; ///< if true, channel rearrangement is done
206  unsigned int num_blocks; ///< number of blocks used in the current frame
207  unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
208  uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
209  int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
210  int ltp_lag_length; ///< number of bits used for ltp lag value
211  int *const_block; ///< contains const_block flags for all channels
212  unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
213  unsigned int *opt_order; ///< contains opt_order flags for all channels
214  int *store_prev_samples; ///< contains store_prev_samples flags for all channels
215  int *use_ltp; ///< contains use_ltp flags for all channels
216  int *ltp_lag; ///< contains ltp lag values for all channels
217  int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
218  int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
219  int32_t **quant_cof; ///< quantized parcor coefficients for a channel
220  int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
221  int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
222  int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
223  int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
224  ALSChannelData **chan_data; ///< channel data for multi-channel correlation
225  ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
226  int *reverted_channels; ///< stores a flag for each reverted channel
227  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
228  int32_t **raw_samples; ///< decoded raw samples for each channel
229  int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
230  uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
231  MLZ* mlz; ///< masked lz decompression structure
232  SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
233  int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
234  int *shift_value; ///< value by which the binary point is to be shifted for all channels
235  int *last_shift_value; ///< contains last shift value for all channels
236  int **raw_mantissa; ///< decoded mantissa bits of the difference signal
237  unsigned char *larray; ///< buffer to store the output of masked lz decompression
238  int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
239 } ALSDecContext;
240 
241 
242 typedef struct ALSBlockData {
243  unsigned int block_length; ///< number of samples within the block
244  unsigned int ra_block; ///< if true, this is a random access block
245  int *const_block; ///< if true, this is a constant value block
246  int js_blocks; ///< true if this block contains a difference signal
247  unsigned int *shift_lsbs; ///< shift of values for this block
248  unsigned int *opt_order; ///< prediction order of this block
249  int *store_prev_samples;///< if true, carryover samples have to be stored
250  int *use_ltp; ///< if true, long-term prediction is used
251  int *ltp_lag; ///< lag value for long-term prediction
252  int *ltp_gain; ///< gain values for ltp 5-tap filter
253  int32_t *quant_cof; ///< quantized parcor coefficients
254  int32_t *lpc_cof; ///< coefficients of the direct form prediction
255  int32_t *raw_samples; ///< decoded raw samples / residuals for this block
256  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
257  int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
258 } ALSBlockData;
259 
260 
262 {
263 #ifdef DEBUG
264  AVCodecContext *avctx = ctx->avctx;
265  ALSSpecificConfig *sconf = &ctx->sconf;
266 
267  ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
268  ff_dlog(avctx, "floating = %i\n", sconf->floating);
269  ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
270  ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
271  ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
272  ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
273  ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
274  ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
275  ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
276  ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
277  ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
278  ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
279  ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
280  ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
281  ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
282  ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
283  ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
284  ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
285 #endif
286 }
287 
288 
289 /** Read an ALSSpecificConfig from a buffer into the output struct.
290  */
292 {
293  GetBitContext gb;
294  uint64_t ht_size;
295  int i, config_offset;
296  MPEG4AudioConfig m4ac = {0};
297  ALSSpecificConfig *sconf = &ctx->sconf;
298  AVCodecContext *avctx = ctx->avctx;
299  uint32_t als_id, header_size, trailer_size;
300  int ret;
301 
302  if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
303  return ret;
304 
305  config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
306  avctx->extradata_size * 8, 1);
307 
308  if (config_offset < 0)
309  return AVERROR_INVALIDDATA;
310 
311  skip_bits_long(&gb, config_offset);
312 
313  if (get_bits_left(&gb) < (30 << 3))
314  return AVERROR_INVALIDDATA;
315 
316  // read the fixed items
317  als_id = get_bits_long(&gb, 32);
318  avctx->sample_rate = m4ac.sample_rate;
319  skip_bits_long(&gb, 32); // sample rate already known
320  sconf->samples = get_bits_long(&gb, 32);
321  avctx->channels = m4ac.channels;
322  skip_bits(&gb, 16); // number of channels already known
323  skip_bits(&gb, 3); // skip file_type
324  sconf->resolution = get_bits(&gb, 3);
325  sconf->floating = get_bits1(&gb);
326  sconf->msb_first = get_bits1(&gb);
327  sconf->frame_length = get_bits(&gb, 16) + 1;
328  sconf->ra_distance = get_bits(&gb, 8);
329  sconf->ra_flag = get_bits(&gb, 2);
330  sconf->adapt_order = get_bits1(&gb);
331  sconf->coef_table = get_bits(&gb, 2);
332  sconf->long_term_prediction = get_bits1(&gb);
333  sconf->max_order = get_bits(&gb, 10);
334  sconf->block_switching = get_bits(&gb, 2);
335  sconf->bgmc = get_bits1(&gb);
336  sconf->sb_part = get_bits1(&gb);
337  sconf->joint_stereo = get_bits1(&gb);
338  sconf->mc_coding = get_bits1(&gb);
339  sconf->chan_config = get_bits1(&gb);
340  sconf->chan_sort = get_bits1(&gb);
341  sconf->crc_enabled = get_bits1(&gb);
342  sconf->rlslms = get_bits1(&gb);
343  skip_bits(&gb, 5); // skip 5 reserved bits
344  skip_bits1(&gb); // skip aux_data_enabled
345 
346 
347  // check for ALSSpecificConfig struct
348  if (als_id != MKBETAG('A','L','S','\0'))
349  return AVERROR_INVALIDDATA;
350 
351  ctx->cur_frame_length = sconf->frame_length;
352 
353  // read channel config
354  if (sconf->chan_config)
355  sconf->chan_config_info = get_bits(&gb, 16);
356  // TODO: use this to set avctx->channel_layout
357 
358 
359  // read channel sorting
360  if (sconf->chan_sort && avctx->channels > 1) {
361  int chan_pos_bits = av_ceil_log2(avctx->channels);
362  int bits_needed = avctx->channels * chan_pos_bits + 7;
363  if (get_bits_left(&gb) < bits_needed)
364  return AVERROR_INVALIDDATA;
365 
366  if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
367  return AVERROR(ENOMEM);
368 
369  ctx->cs_switch = 1;
370 
371  for (i = 0; i < avctx->channels; i++) {
372  sconf->chan_pos[i] = -1;
373  }
374 
375  for (i = 0; i < avctx->channels; i++) {
376  int idx;
377 
378  idx = get_bits(&gb, chan_pos_bits);
379  if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
380  av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
381  ctx->cs_switch = 0;
382  break;
383  }
384  sconf->chan_pos[idx] = i;
385  }
386 
387  align_get_bits(&gb);
388  }
389 
390 
391  // read fixed header and trailer sizes,
392  // if size = 0xFFFFFFFF then there is no data field!
393  if (get_bits_left(&gb) < 64)
394  return AVERROR_INVALIDDATA;
395 
396  header_size = get_bits_long(&gb, 32);
397  trailer_size = get_bits_long(&gb, 32);
398  if (header_size == 0xFFFFFFFF)
399  header_size = 0;
400  if (trailer_size == 0xFFFFFFFF)
401  trailer_size = 0;
402 
403  ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
404 
405 
406  // skip the header and trailer data
407  if (get_bits_left(&gb) < ht_size)
408  return AVERROR_INVALIDDATA;
409 
410  if (ht_size > INT32_MAX)
411  return AVERROR_PATCHWELCOME;
412 
413  skip_bits_long(&gb, ht_size);
414 
415 
416  // initialize CRC calculation
417  if (sconf->crc_enabled) {
418  if (get_bits_left(&gb) < 32)
419  return AVERROR_INVALIDDATA;
420 
423  ctx->crc = 0xFFFFFFFF;
424  ctx->crc_org = ~get_bits_long(&gb, 32);
425  } else
426  skip_bits_long(&gb, 32);
427  }
428 
429 
430  // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
431 
433 
434  return 0;
435 }
436 
437 
438 /** Check the ALSSpecificConfig for unsupported features.
439  */
441 {
442  ALSSpecificConfig *sconf = &ctx->sconf;
443  int error = 0;
444 
445  // report unsupported feature and set error value
446  #define MISSING_ERR(cond, str, errval) \
447  { \
448  if (cond) { \
449  avpriv_report_missing_feature(ctx->avctx, \
450  str); \
451  error = errval; \
452  } \
453  }
454 
455  MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
456 
457  return error;
458 }
459 
460 
461 /** Parse the bs_info field to extract the block partitioning used in
462  * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
463  */
464 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
465  unsigned int div, unsigned int **div_blocks,
466  unsigned int *num_blocks)
467 {
468  if (n < 31 && ((bs_info << n) & 0x40000000)) {
469  // if the level is valid and the investigated bit n is set
470  // then recursively check both children at bits (2n+1) and (2n+2)
471  n *= 2;
472  div += 1;
473  parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
474  parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
475  } else {
476  // else the bit is not set or the last level has been reached
477  // (bit implicitly not set)
478  **div_blocks = div;
479  (*div_blocks)++;
480  (*num_blocks)++;
481  }
482 }
483 
484 
485 /** Read and decode a Rice codeword.
486  */
487 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
488 {
489  int max = get_bits_left(gb) - k;
490  int q = get_unary(gb, 0, max);
491  int r = k ? get_bits1(gb) : !(q & 1);
492 
493  if (k > 1) {
494  q <<= (k - 1);
495  q += get_bits_long(gb, k - 1);
496  } else if (!k) {
497  q >>= 1;
498  }
499  return r ? q : ~q;
500 }
501 
502 
503 /** Convert PARCOR coefficient k to direct filter coefficient.
504  */
505 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
506 {
507  int i, j;
508 
509  for (i = 0, j = k - 1; i < j; i++, j--) {
510  int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
511  cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
512  cof[i] += tmp1;
513  }
514  if (i == j)
515  cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
516 
517  cof[k] = par[k];
518 }
519 
520 
521 /** Read block switching field if necessary and set actual block sizes.
522  * Also assure that the block sizes of the last frame correspond to the
523  * actual number of samples.
524  */
525 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
526  uint32_t *bs_info)
527 {
528  ALSSpecificConfig *sconf = &ctx->sconf;
529  GetBitContext *gb = &ctx->gb;
530  unsigned int *ptr_div_blocks = div_blocks;
531  unsigned int b;
532 
533  if (sconf->block_switching) {
534  unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
535  *bs_info = get_bits_long(gb, bs_info_len);
536  *bs_info <<= (32 - bs_info_len);
537  }
538 
539  ctx->num_blocks = 0;
540  parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
541 
542  // The last frame may have an overdetermined block structure given in
543  // the bitstream. In that case the defined block structure would need
544  // more samples than available to be consistent.
545  // The block structure is actually used but the block sizes are adapted
546  // to fit the actual number of available samples.
547  // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
548  // This results in the actual block sizes: 2 2 1 0.
549  // This is not specified in 14496-3 but actually done by the reference
550  // codec RM22 revision 2.
551  // This appears to happen in case of an odd number of samples in the last
552  // frame which is actually not allowed by the block length switching part
553  // of 14496-3.
554  // The ALS conformance files feature an odd number of samples in the last
555  // frame.
556 
557  for (b = 0; b < ctx->num_blocks; b++)
558  div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
559 
560  if (ctx->cur_frame_length != ctx->sconf.frame_length) {
561  unsigned int remaining = ctx->cur_frame_length;
562 
563  for (b = 0; b < ctx->num_blocks; b++) {
564  if (remaining <= div_blocks[b]) {
565  div_blocks[b] = remaining;
566  ctx->num_blocks = b + 1;
567  break;
568  }
569 
570  remaining -= div_blocks[b];
571  }
572  }
573 }
574 
575 
576 /** Read the block data for a constant block
577  */
579 {
580  ALSSpecificConfig *sconf = &ctx->sconf;
581  AVCodecContext *avctx = ctx->avctx;
582  GetBitContext *gb = &ctx->gb;
583 
584  if (bd->block_length <= 0)
585  return AVERROR_INVALIDDATA;
586 
587  *bd->raw_samples = 0;
588  *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
589  bd->js_blocks = get_bits1(gb);
590 
591  // skip 5 reserved bits
592  skip_bits(gb, 5);
593 
594  if (*bd->const_block) {
595  unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
596  *bd->raw_samples = get_sbits_long(gb, const_val_bits);
597  }
598 
599  // ensure constant block decoding by reusing this field
600  *bd->const_block = 1;
601 
602  return 0;
603 }
604 
605 
606 /** Decode the block data for a constant block
607  */
609 {
610  int smp = bd->block_length - 1;
611  int32_t val = *bd->raw_samples;
612  int32_t *dst = bd->raw_samples + 1;
613 
614  // write raw samples into buffer
615  for (; smp; smp--)
616  *dst++ = val;
617 }
618 
619 
620 /** Read the block data for a non-constant block
621  */
623 {
624  ALSSpecificConfig *sconf = &ctx->sconf;
625  AVCodecContext *avctx = ctx->avctx;
626  GetBitContext *gb = &ctx->gb;
627  unsigned int k;
628  unsigned int s[8];
629  unsigned int sx[8];
630  unsigned int sub_blocks, log2_sub_blocks, sb_length;
631  unsigned int start = 0;
632  unsigned int opt_order;
633  int sb;
634  int32_t *quant_cof = bd->quant_cof;
635  int32_t *current_res;
636 
637 
638  // ensure variable block decoding by reusing this field
639  *bd->const_block = 0;
640 
641  *bd->opt_order = 1;
642  bd->js_blocks = get_bits1(gb);
643 
644  opt_order = *bd->opt_order;
645 
646  // determine the number of subblocks for entropy decoding
647  if (!sconf->bgmc && !sconf->sb_part) {
648  log2_sub_blocks = 0;
649  } else {
650  if (sconf->bgmc && sconf->sb_part)
651  log2_sub_blocks = get_bits(gb, 2);
652  else
653  log2_sub_blocks = 2 * get_bits1(gb);
654  }
655 
656  sub_blocks = 1 << log2_sub_blocks;
657 
658  // do not continue in case of a damaged stream since
659  // block_length must be evenly divisible by sub_blocks
660  if (bd->block_length & (sub_blocks - 1)) {
661  av_log(avctx, AV_LOG_WARNING,
662  "Block length is not evenly divisible by the number of subblocks.\n");
663  return AVERROR_INVALIDDATA;
664  }
665 
666  sb_length = bd->block_length >> log2_sub_blocks;
667 
668  if (sconf->bgmc) {
669  s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
670  for (k = 1; k < sub_blocks; k++)
671  s[k] = s[k - 1] + decode_rice(gb, 2);
672 
673  for (k = 0; k < sub_blocks; k++) {
674  sx[k] = s[k] & 0x0F;
675  s [k] >>= 4;
676  }
677  } else {
678  s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
679  for (k = 1; k < sub_blocks; k++)
680  s[k] = s[k - 1] + decode_rice(gb, 0);
681  }
682  for (k = 1; k < sub_blocks; k++)
683  if (s[k] > 32) {
684  av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
685  return AVERROR_INVALIDDATA;
686  }
687 
688  if (get_bits1(gb))
689  *bd->shift_lsbs = get_bits(gb, 4) + 1;
690 
691  *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
692 
693 
694  if (!sconf->rlslms) {
695  if (sconf->adapt_order && sconf->max_order) {
696  int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
697  2, sconf->max_order + 1));
698  *bd->opt_order = get_bits(gb, opt_order_length);
699  if (*bd->opt_order > sconf->max_order) {
700  *bd->opt_order = sconf->max_order;
701  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
702  return AVERROR_INVALIDDATA;
703  }
704  } else {
705  *bd->opt_order = sconf->max_order;
706  }
707  if (*bd->opt_order > bd->block_length) {
708  *bd->opt_order = bd->block_length;
709  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
710  return AVERROR_INVALIDDATA;
711  }
712  opt_order = *bd->opt_order;
713 
714  if (opt_order) {
715  int add_base;
716 
717  if (sconf->coef_table == 3) {
718  add_base = 0x7F;
719 
720  // read coefficient 0
721  quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
722 
723  // read coefficient 1
724  if (opt_order > 1)
725  quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
726 
727  // read coefficients 2 to opt_order
728  for (k = 2; k < opt_order; k++)
729  quant_cof[k] = get_bits(gb, 7);
730  } else {
731  int k_max;
732  add_base = 1;
733 
734  // read coefficient 0 to 19
735  k_max = FFMIN(opt_order, 20);
736  for (k = 0; k < k_max; k++) {
737  int rice_param = parcor_rice_table[sconf->coef_table][k][1];
738  int offset = parcor_rice_table[sconf->coef_table][k][0];
739  quant_cof[k] = decode_rice(gb, rice_param) + offset;
740  if (quant_cof[k] < -64 || quant_cof[k] > 63) {
741  av_log(avctx, AV_LOG_ERROR,
742  "quant_cof %"PRId32" is out of range.\n",
743  quant_cof[k]);
744  return AVERROR_INVALIDDATA;
745  }
746  }
747 
748  // read coefficients 20 to 126
749  k_max = FFMIN(opt_order, 127);
750  for (; k < k_max; k++)
751  quant_cof[k] = decode_rice(gb, 2) + (k & 1);
752 
753  // read coefficients 127 to opt_order
754  for (; k < opt_order; k++)
755  quant_cof[k] = decode_rice(gb, 1);
756 
757  quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
758 
759  if (opt_order > 1)
760  quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
761  }
762 
763  for (k = 2; k < opt_order; k++)
764  quant_cof[k] = (quant_cof[k] * (1 << 14)) + (add_base << 13);
765  }
766  }
767 
768  // read LTP gain and lag values
769  if (sconf->long_term_prediction) {
770  *bd->use_ltp = get_bits1(gb);
771 
772  if (*bd->use_ltp) {
773  int r, c;
774 
775  bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
776  bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
777 
778  r = get_unary(gb, 0, 4);
779  c = get_bits(gb, 2);
780  if (r >= 4) {
781  av_log(avctx, AV_LOG_ERROR, "r overflow\n");
782  return AVERROR_INVALIDDATA;
783  }
784 
785  bd->ltp_gain[2] = ltp_gain_values[r][c];
786 
787  bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
788  bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
789 
790  *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
791  *bd->ltp_lag += FFMAX(4, opt_order + 1);
792  }
793  }
794 
795  // read first value and residuals in case of a random access block
796  if (bd->ra_block) {
797  if (opt_order)
798  bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
799  if (opt_order > 1)
800  bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
801  if (opt_order > 2)
802  bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
803 
804  start = FFMIN(opt_order, 3);
805  }
806 
807  // read all residuals
808  if (sconf->bgmc) {
809  int delta[8];
810  unsigned int k [8];
811  unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
812 
813  // read most significant bits
814  unsigned int high;
815  unsigned int low;
816  unsigned int value;
817 
818  ff_bgmc_decode_init(gb, &high, &low, &value);
819 
820  current_res = bd->raw_samples + start;
821 
822  for (sb = 0; sb < sub_blocks; sb++) {
823  unsigned int sb_len = sb_length - (sb ? 0 : start);
824 
825  k [sb] = s[sb] > b ? s[sb] - b : 0;
826  delta[sb] = 5 - s[sb] + k[sb];
827 
828  ff_bgmc_decode(gb, sb_len, current_res,
829  delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
830 
831  current_res += sb_len;
832  }
833 
834  ff_bgmc_decode_end(gb);
835 
836 
837  // read least significant bits and tails
838  current_res = bd->raw_samples + start;
839 
840  for (sb = 0; sb < sub_blocks; sb++, start = 0) {
841  unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
842  unsigned int cur_k = k[sb];
843  unsigned int cur_s = s[sb];
844 
845  for (; start < sb_length; start++) {
846  int32_t res = *current_res;
847 
848  if (res == cur_tail_code) {
849  unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
850  << (5 - delta[sb]);
851 
852  res = decode_rice(gb, cur_s);
853 
854  if (res >= 0) {
855  res += (max_msb ) << cur_k;
856  } else {
857  res -= (max_msb - 1) << cur_k;
858  }
859  } else {
860  if (res > cur_tail_code)
861  res--;
862 
863  if (res & 1)
864  res = -res;
865 
866  res >>= 1;
867 
868  if (cur_k) {
869  res *= 1 << cur_k;
870  res |= get_bits_long(gb, cur_k);
871  }
872  }
873 
874  *current_res++ = res;
875  }
876  }
877  } else {
878  current_res = bd->raw_samples + start;
879 
880  for (sb = 0; sb < sub_blocks; sb++, start = 0)
881  for (; start < sb_length; start++)
882  *current_res++ = decode_rice(gb, s[sb]);
883  }
884 
885  return 0;
886 }
887 
888 
889 /** Decode the block data for a non-constant block
890  */
892 {
893  ALSSpecificConfig *sconf = &ctx->sconf;
894  unsigned int block_length = bd->block_length;
895  unsigned int smp = 0;
896  unsigned int k;
897  int opt_order = *bd->opt_order;
898  int sb;
899  int64_t y;
900  int32_t *quant_cof = bd->quant_cof;
901  int32_t *lpc_cof = bd->lpc_cof;
902  int32_t *raw_samples = bd->raw_samples;
903  int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
904  int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
905 
906  // reverse long-term prediction
907  if (*bd->use_ltp) {
908  int ltp_smp;
909 
910  for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
911  int center = ltp_smp - *bd->ltp_lag;
912  int begin = FFMAX(0, center - 2);
913  int end = center + 3;
914  int tab = 5 - (end - begin);
915  int base;
916 
917  y = 1 << 6;
918 
919  for (base = begin; base < end; base++, tab++)
920  y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
921 
922  raw_samples[ltp_smp] += y >> 7;
923  }
924  }
925 
926  // reconstruct all samples from residuals
927  if (bd->ra_block) {
928  for (smp = 0; smp < opt_order; smp++) {
929  y = 1 << 19;
930 
931  for (sb = 0; sb < smp; sb++)
932  y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
933 
934  *raw_samples++ -= y >> 20;
935  parcor_to_lpc(smp, quant_cof, lpc_cof);
936  }
937  } else {
938  for (k = 0; k < opt_order; k++)
939  parcor_to_lpc(k, quant_cof, lpc_cof);
940 
941  // store previous samples in case that they have to be altered
942  if (*bd->store_prev_samples)
943  memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
944  sizeof(*bd->prev_raw_samples) * sconf->max_order);
945 
946  // reconstruct difference signal for prediction (joint-stereo)
947  if (bd->js_blocks && bd->raw_other) {
948  int32_t *left, *right;
949 
950  if (bd->raw_other > raw_samples) { // D = R - L
951  left = raw_samples;
952  right = bd->raw_other;
953  } else { // D = R - L
954  left = bd->raw_other;
955  right = raw_samples;
956  }
957 
958  for (sb = -1; sb >= -sconf->max_order; sb--)
959  raw_samples[sb] = right[sb] - left[sb];
960  }
961 
962  // reconstruct shifted signal
963  if (*bd->shift_lsbs)
964  for (sb = -1; sb >= -sconf->max_order; sb--)
965  raw_samples[sb] >>= *bd->shift_lsbs;
966  }
967 
968  // reverse linear prediction coefficients for efficiency
969  lpc_cof = lpc_cof + opt_order;
970 
971  for (sb = 0; sb < opt_order; sb++)
972  lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
973 
974  // reconstruct raw samples
975  raw_samples = bd->raw_samples + smp;
976  lpc_cof = lpc_cof_reversed + opt_order;
977 
978  for (; raw_samples < raw_samples_end; raw_samples++) {
979  y = 1 << 19;
980 
981  for (sb = -opt_order; sb < 0; sb++)
982  y += MUL64(lpc_cof[sb], raw_samples[sb]);
983 
984  *raw_samples -= y >> 20;
985  }
986 
987  raw_samples = bd->raw_samples;
988 
989  // restore previous samples in case that they have been altered
990  if (*bd->store_prev_samples)
991  memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
992  sizeof(*raw_samples) * sconf->max_order);
993 
994  return 0;
995 }
996 
997 
998 /** Read the block data.
999  */
1001 {
1002  int ret;
1003  GetBitContext *gb = &ctx->gb;
1004  ALSSpecificConfig *sconf = &ctx->sconf;
1005 
1006  *bd->shift_lsbs = 0;
1007  // read block type flag and read the samples accordingly
1008  if (get_bits1(gb)) {
1009  ret = read_var_block_data(ctx, bd);
1010  } else {
1011  ret = read_const_block_data(ctx, bd);
1012  }
1013 
1014  if (!sconf->mc_coding || ctx->js_switch)
1015  align_get_bits(gb);
1016 
1017  return ret;
1018 }
1019 
1020 
1021 /** Decode the block data.
1022  */
1024 {
1025  unsigned int smp;
1026  int ret = 0;
1027 
1028  // read block type flag and read the samples accordingly
1029  if (*bd->const_block)
1030  decode_const_block_data(ctx, bd);
1031  else
1032  ret = decode_var_block_data(ctx, bd); // always return 0
1033 
1034  if (ret < 0)
1035  return ret;
1036 
1037  // TODO: read RLSLMS extension data
1038 
1039  if (*bd->shift_lsbs)
1040  for (smp = 0; smp < bd->block_length; smp++)
1041  bd->raw_samples[smp] <<= *bd->shift_lsbs;
1042 
1043  return 0;
1044 }
1045 
1046 
1047 /** Read and decode block data successively.
1048  */
1050 {
1051  int ret;
1052 
1053  if ((ret = read_block(ctx, bd)) < 0)
1054  return ret;
1055 
1056  return decode_block(ctx, bd);
1057 }
1058 
1059 
1060 /** Compute the number of samples left to decode for the current frame and
1061  * sets these samples to zero.
1062  */
1063 static void zero_remaining(unsigned int b, unsigned int b_max,
1064  const unsigned int *div_blocks, int32_t *buf)
1065 {
1066  unsigned int count = 0;
1067 
1068  while (b < b_max)
1069  count += div_blocks[b++];
1070 
1071  if (count)
1072  memset(buf, 0, sizeof(*buf) * count);
1073 }
1074 
1075 
1076 /** Decode blocks independently.
1077  */
1078 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1079  unsigned int c, const unsigned int *div_blocks,
1080  unsigned int *js_blocks)
1081 {
1082  int ret;
1083  unsigned int b;
1084  ALSBlockData bd = { 0 };
1085 
1086  bd.ra_block = ra_frame;
1087  bd.const_block = ctx->const_block;
1088  bd.shift_lsbs = ctx->shift_lsbs;
1089  bd.opt_order = ctx->opt_order;
1091  bd.use_ltp = ctx->use_ltp;
1092  bd.ltp_lag = ctx->ltp_lag;
1093  bd.ltp_gain = ctx->ltp_gain[0];
1094  bd.quant_cof = ctx->quant_cof[0];
1095  bd.lpc_cof = ctx->lpc_cof[0];
1097  bd.raw_samples = ctx->raw_samples[c];
1098 
1099 
1100  for (b = 0; b < ctx->num_blocks; b++) {
1101  bd.block_length = div_blocks[b];
1102 
1103  if ((ret = read_decode_block(ctx, &bd)) < 0) {
1104  // damaged block, write zero for the rest of the frame
1105  zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1106  return ret;
1107  }
1108  bd.raw_samples += div_blocks[b];
1109  bd.ra_block = 0;
1110  }
1111 
1112  return 0;
1113 }
1114 
1115 
1116 /** Decode blocks dependently.
1117  */
1118 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1119  unsigned int c, const unsigned int *div_blocks,
1120  unsigned int *js_blocks)
1121 {
1122  ALSSpecificConfig *sconf = &ctx->sconf;
1123  unsigned int offset = 0;
1124  unsigned int b;
1125  int ret;
1126  ALSBlockData bd[2] = { { 0 } };
1127 
1128  bd[0].ra_block = ra_frame;
1129  bd[0].const_block = ctx->const_block;
1130  bd[0].shift_lsbs = ctx->shift_lsbs;
1131  bd[0].opt_order = ctx->opt_order;
1133  bd[0].use_ltp = ctx->use_ltp;
1134  bd[0].ltp_lag = ctx->ltp_lag;
1135  bd[0].ltp_gain = ctx->ltp_gain[0];
1136  bd[0].quant_cof = ctx->quant_cof[0];
1137  bd[0].lpc_cof = ctx->lpc_cof[0];
1138  bd[0].prev_raw_samples = ctx->prev_raw_samples;
1139  bd[0].js_blocks = *js_blocks;
1140 
1141  bd[1].ra_block = ra_frame;
1142  bd[1].const_block = ctx->const_block;
1143  bd[1].shift_lsbs = ctx->shift_lsbs;
1144  bd[1].opt_order = ctx->opt_order;
1146  bd[1].use_ltp = ctx->use_ltp;
1147  bd[1].ltp_lag = ctx->ltp_lag;
1148  bd[1].ltp_gain = ctx->ltp_gain[0];
1149  bd[1].quant_cof = ctx->quant_cof[0];
1150  bd[1].lpc_cof = ctx->lpc_cof[0];
1151  bd[1].prev_raw_samples = ctx->prev_raw_samples;
1152  bd[1].js_blocks = *(js_blocks + 1);
1153 
1154  // decode all blocks
1155  for (b = 0; b < ctx->num_blocks; b++) {
1156  unsigned int s;
1157 
1158  bd[0].block_length = div_blocks[b];
1159  bd[1].block_length = div_blocks[b];
1160 
1161  bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1162  bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1163 
1164  bd[0].raw_other = bd[1].raw_samples;
1165  bd[1].raw_other = bd[0].raw_samples;
1166 
1167  if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1168  (ret = read_decode_block(ctx, &bd[1])) < 0)
1169  goto fail;
1170 
1171  // reconstruct joint-stereo blocks
1172  if (bd[0].js_blocks) {
1173  if (bd[1].js_blocks)
1174  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1175 
1176  for (s = 0; s < div_blocks[b]; s++)
1177  bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1178  } else if (bd[1].js_blocks) {
1179  for (s = 0; s < div_blocks[b]; s++)
1180  bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1181  }
1182 
1183  offset += div_blocks[b];
1184  bd[0].ra_block = 0;
1185  bd[1].ra_block = 0;
1186  }
1187 
1188  // store carryover raw samples,
1189  // the others channel raw samples are stored by the calling function.
1190  memmove(ctx->raw_samples[c] - sconf->max_order,
1191  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1192  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1193 
1194  return 0;
1195 fail:
1196  // damaged block, write zero for the rest of the frame
1197  zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1198  zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1199  return ret;
1200 }
1201 
1202 static inline int als_weighting(GetBitContext *gb, int k, int off)
1203 {
1204  int idx = av_clip(decode_rice(gb, k) + off,
1205  0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1206  return mcc_weightings[idx];
1207 }
1208 
1209 /** Read the channel data.
1210  */
1212 {
1213  GetBitContext *gb = &ctx->gb;
1214  ALSChannelData *current = cd;
1215  unsigned int channels = ctx->avctx->channels;
1216  int entries = 0;
1217 
1218  while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1219  current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1220 
1221  if (current->master_channel >= channels) {
1222  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1223  return AVERROR_INVALIDDATA;
1224  }
1225 
1226  if (current->master_channel != c) {
1227  current->time_diff_flag = get_bits1(gb);
1228  current->weighting[0] = als_weighting(gb, 1, 16);
1229  current->weighting[1] = als_weighting(gb, 2, 14);
1230  current->weighting[2] = als_weighting(gb, 1, 16);
1231 
1232  if (current->time_diff_flag) {
1233  current->weighting[3] = als_weighting(gb, 1, 16);
1234  current->weighting[4] = als_weighting(gb, 1, 16);
1235  current->weighting[5] = als_weighting(gb, 1, 16);
1236 
1237  current->time_diff_sign = get_bits1(gb);
1238  current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1239  }
1240  }
1241 
1242  current++;
1243  entries++;
1244  }
1245 
1246  if (entries == channels) {
1247  av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1248  return AVERROR_INVALIDDATA;
1249  }
1250 
1251  align_get_bits(gb);
1252  return 0;
1253 }
1254 
1255 
1256 /** Recursively reverts the inter-channel correlation for a block.
1257  */
1259  ALSChannelData **cd, int *reverted,
1260  unsigned int offset, int c)
1261 {
1262  ALSChannelData *ch = cd[c];
1263  unsigned int dep = 0;
1264  unsigned int channels = ctx->avctx->channels;
1265  unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1266 
1267  if (reverted[c])
1268  return 0;
1269 
1270  reverted[c] = 1;
1271 
1272  while (dep < channels && !ch[dep].stop_flag) {
1273  revert_channel_correlation(ctx, bd, cd, reverted, offset,
1274  ch[dep].master_channel);
1275 
1276  dep++;
1277  }
1278 
1279  if (dep == channels) {
1280  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1281  return AVERROR_INVALIDDATA;
1282  }
1283 
1284  bd->const_block = ctx->const_block + c;
1285  bd->shift_lsbs = ctx->shift_lsbs + c;
1286  bd->opt_order = ctx->opt_order + c;
1288  bd->use_ltp = ctx->use_ltp + c;
1289  bd->ltp_lag = ctx->ltp_lag + c;
1290  bd->ltp_gain = ctx->ltp_gain[c];
1291  bd->lpc_cof = ctx->lpc_cof[c];
1292  bd->quant_cof = ctx->quant_cof[c];
1293  bd->raw_samples = ctx->raw_samples[c] + offset;
1294 
1295  for (dep = 0; !ch[dep].stop_flag; dep++) {
1296  ptrdiff_t smp;
1297  ptrdiff_t begin = 1;
1298  ptrdiff_t end = bd->block_length - 1;
1299  int64_t y;
1300  int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1301 
1302  if (ch[dep].master_channel == c)
1303  continue;
1304 
1305  if (ch[dep].time_diff_flag) {
1306  int t = ch[dep].time_diff_index;
1307 
1308  if (ch[dep].time_diff_sign) {
1309  t = -t;
1310  if (begin < t) {
1311  av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1312  return AVERROR_INVALIDDATA;
1313  }
1314  begin -= t;
1315  } else {
1316  if (end < t) {
1317  av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1318  return AVERROR_INVALIDDATA;
1319  }
1320  end -= t;
1321  }
1322 
1323  if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1324  FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1325  av_log(ctx->avctx, AV_LOG_ERROR,
1326  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1327  master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1328  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1329  return AVERROR_INVALIDDATA;
1330  }
1331 
1332  for (smp = begin; smp < end; smp++) {
1333  y = (1 << 6) +
1334  MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1335  MUL64(ch[dep].weighting[1], master[smp ]) +
1336  MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1337  MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1338  MUL64(ch[dep].weighting[4], master[smp + t]) +
1339  MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1340 
1341  bd->raw_samples[smp] += y >> 7;
1342  }
1343  } else {
1344 
1345  if (begin - 1 < ctx->raw_buffer - master ||
1346  end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1347  av_log(ctx->avctx, AV_LOG_ERROR,
1348  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1349  master + begin - 1, master + end + 1,
1350  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1351  return AVERROR_INVALIDDATA;
1352  }
1353 
1354  for (smp = begin; smp < end; smp++) {
1355  y = (1 << 6) +
1356  MUL64(ch[dep].weighting[0], master[smp - 1]) +
1357  MUL64(ch[dep].weighting[1], master[smp ]) +
1358  MUL64(ch[dep].weighting[2], master[smp + 1]);
1359 
1360  bd->raw_samples[smp] += y >> 7;
1361  }
1362  }
1363  }
1364 
1365  return 0;
1366 }
1367 
1368 
1369 /** multiply two softfloats and handle the rounding off
1370  */
1372  uint64_t mantissa_temp;
1373  uint64_t mask_64;
1374  int cutoff_bit_count;
1375  unsigned char last_2_bits;
1376  unsigned int mantissa;
1377  int32_t sign;
1378  uint32_t return_val = 0;
1379  int bit_count = 48;
1380 
1381  sign = a.sign ^ b.sign;
1382 
1383  // Multiply mantissa bits in a 64-bit register
1384  mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1385  mask_64 = (uint64_t)0x1 << 47;
1386 
1387  // Count the valid bit count
1388  while (!(mantissa_temp & mask_64) && mask_64) {
1389  bit_count--;
1390  mask_64 >>= 1;
1391  }
1392 
1393  // Round off
1394  cutoff_bit_count = bit_count - 24;
1395  if (cutoff_bit_count > 0) {
1396  last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1397  if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1398  // Need to round up
1399  mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1400  }
1401  }
1402 
1403  mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1404 
1405  // Need one more shift?
1406  if (mantissa & 0x01000000ul) {
1407  bit_count++;
1408  mantissa >>= 1;
1409  }
1410 
1411  if (!sign) {
1412  return_val = 0x80000000U;
1413  }
1414 
1415  return_val |= (a.exp + b.exp + bit_count - 47) << 23;
1416  return_val |= mantissa;
1417  return av_bits2sf_ieee754(return_val);
1418 }
1419 
1420 
1421 /** Read and decode the floating point sample data
1422  */
1423 static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1424  AVCodecContext *avctx = ctx->avctx;
1425  GetBitContext *gb = &ctx->gb;
1426  SoftFloat_IEEE754 *acf = ctx->acf;
1427  int *shift_value = ctx->shift_value;
1428  int *last_shift_value = ctx->last_shift_value;
1429  int *last_acf_mantissa = ctx->last_acf_mantissa;
1430  int **raw_mantissa = ctx->raw_mantissa;
1431  int *nbits = ctx->nbits;
1432  unsigned char *larray = ctx->larray;
1433  int frame_length = ctx->cur_frame_length;
1434  SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1435  unsigned int partA_flag;
1436  unsigned int highest_byte;
1437  unsigned int shift_amp;
1438  uint32_t tmp_32;
1439  int use_acf;
1440  int nchars;
1441  int i;
1442  int c;
1443  long k;
1444  long nbits_aligned;
1445  unsigned long acc;
1446  unsigned long j;
1447  uint32_t sign;
1448  uint32_t e;
1449  uint32_t mantissa;
1450 
1451  skip_bits_long(gb, 32); //num_bytes_diff_float
1452  use_acf = get_bits1(gb);
1453 
1454  if (ra_frame) {
1455  memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1456  memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
1457  ff_mlz_flush_dict(ctx->mlz);
1458  }
1459 
1460  for (c = 0; c < avctx->channels; ++c) {
1461  if (use_acf) {
1462  //acf_flag
1463  if (get_bits1(gb)) {
1464  tmp_32 = get_bits(gb, 23);
1465  last_acf_mantissa[c] = tmp_32;
1466  } else {
1467  tmp_32 = last_acf_mantissa[c];
1468  }
1469  acf[c] = av_bits2sf_ieee754(tmp_32);
1470  } else {
1471  acf[c] = FLOAT_1;
1472  }
1473 
1474  highest_byte = get_bits(gb, 2);
1475  partA_flag = get_bits1(gb);
1476  shift_amp = get_bits1(gb);
1477 
1478  if (shift_amp) {
1479  shift_value[c] = get_bits(gb, 8);
1480  last_shift_value[c] = shift_value[c];
1481  } else {
1482  shift_value[c] = last_shift_value[c];
1483  }
1484 
1485  if (partA_flag) {
1486  if (!get_bits1(gb)) { //uncompressed
1487  for (i = 0; i < frame_length; ++i) {
1488  if (ctx->raw_samples[c][i] == 0) {
1489  ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1490  }
1491  }
1492  } else { //compressed
1493  nchars = 0;
1494  for (i = 0; i < frame_length; ++i) {
1495  if (ctx->raw_samples[c][i] == 0) {
1496  nchars += 4;
1497  }
1498  }
1499 
1500  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1501  if(tmp_32 != nchars) {
1502  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1503  return AVERROR_INVALIDDATA;
1504  }
1505 
1506  for (i = 0; i < frame_length; ++i) {
1507  ctx->raw_mantissa[c][i] = AV_RB32(larray);
1508  }
1509  }
1510  }
1511 
1512  //decode part B
1513  if (highest_byte) {
1514  for (i = 0; i < frame_length; ++i) {
1515  if (ctx->raw_samples[c][i] != 0) {
1516  //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1517  if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1518  nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1519  } else {
1520  nbits[i] = 23;
1521  }
1522  nbits[i] = FFMIN(nbits[i], highest_byte*8);
1523  }
1524  }
1525 
1526  if (!get_bits1(gb)) { //uncompressed
1527  for (i = 0; i < frame_length; ++i) {
1528  if (ctx->raw_samples[c][i] != 0) {
1529  raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1530  }
1531  }
1532  } else { //compressed
1533  nchars = 0;
1534  for (i = 0; i < frame_length; ++i) {
1535  if (ctx->raw_samples[c][i]) {
1536  nchars += (int) nbits[i] / 8;
1537  if (nbits[i] & 7) {
1538  ++nchars;
1539  }
1540  }
1541  }
1542 
1543  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1544  if(tmp_32 != nchars) {
1545  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1546  return AVERROR_INVALIDDATA;
1547  }
1548 
1549  j = 0;
1550  for (i = 0; i < frame_length; ++i) {
1551  if (ctx->raw_samples[c][i]) {
1552  if (nbits[i] & 7) {
1553  nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1554  } else {
1555  nbits_aligned = nbits[i];
1556  }
1557  acc = 0;
1558  for (k = 0; k < nbits_aligned/8; ++k) {
1559  acc = (acc << 8) + larray[j++];
1560  }
1561  acc >>= (nbits_aligned - nbits[i]);
1562  raw_mantissa[c][i] = acc;
1563  }
1564  }
1565  }
1566  }
1567 
1568  for (i = 0; i < frame_length; ++i) {
1569  SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1570  pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1571 
1572  if (ctx->raw_samples[c][i] != 0) {
1573  if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1574  pcm_sf = multiply(acf[c], pcm_sf);
1575  }
1576 
1577  sign = pcm_sf.sign;
1578  e = pcm_sf.exp;
1579  mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1580 
1581  while(mantissa >= 0x1000000) {
1582  e++;
1583  mantissa >>= 1;
1584  }
1585 
1586  if (mantissa) e += (shift_value[c] - 127);
1587  mantissa &= 0x007fffffUL;
1588 
1589  tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1590  ctx->raw_samples[c][i] = tmp_32;
1591  } else {
1592  ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1593  }
1594  }
1595  align_get_bits(gb);
1596  }
1597  return 0;
1598 }
1599 
1600 
1601 /** Read the frame data.
1602  */
1603 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1604 {
1605  ALSSpecificConfig *sconf = &ctx->sconf;
1606  AVCodecContext *avctx = ctx->avctx;
1607  GetBitContext *gb = &ctx->gb;
1608  unsigned int div_blocks[32]; ///< block sizes.
1609  unsigned int c;
1610  unsigned int js_blocks[2];
1611  uint32_t bs_info = 0;
1612  int ret;
1613 
1614  // skip the size of the ra unit if present in the frame
1615  if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1616  skip_bits_long(gb, 32);
1617 
1618  if (sconf->mc_coding && sconf->joint_stereo) {
1619  ctx->js_switch = get_bits1(gb);
1620  align_get_bits(gb);
1621  }
1622 
1623  if (!sconf->mc_coding || ctx->js_switch) {
1624  int independent_bs = !sconf->joint_stereo;
1625 
1626  for (c = 0; c < avctx->channels; c++) {
1627  js_blocks[0] = 0;
1628  js_blocks[1] = 0;
1629 
1630  get_block_sizes(ctx, div_blocks, &bs_info);
1631 
1632  // if joint_stereo and block_switching is set, independent decoding
1633  // is signaled via the first bit of bs_info
1634  if (sconf->joint_stereo && sconf->block_switching)
1635  if (bs_info >> 31)
1636  independent_bs = 2;
1637 
1638  // if this is the last channel, it has to be decoded independently
1639  if (c == avctx->channels - 1 || (c & 1))
1640  independent_bs = 1;
1641 
1642  if (independent_bs) {
1643  ret = decode_blocks_ind(ctx, ra_frame, c,
1644  div_blocks, js_blocks);
1645  if (ret < 0)
1646  return ret;
1647  independent_bs--;
1648  } else {
1649  ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1650  if (ret < 0)
1651  return ret;
1652 
1653  c++;
1654  }
1655 
1656  // store carryover raw samples
1657  memmove(ctx->raw_samples[c] - sconf->max_order,
1658  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1659  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1660  }
1661  } else { // multi-channel coding
1662  ALSBlockData bd = { 0 };
1663  int b, ret;
1664  int *reverted_channels = ctx->reverted_channels;
1665  unsigned int offset = 0;
1666 
1667  for (c = 0; c < avctx->channels; c++)
1668  if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1669  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1670  return AVERROR_INVALIDDATA;
1671  }
1672 
1673  memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1674 
1675  bd.ra_block = ra_frame;
1677 
1678  get_block_sizes(ctx, div_blocks, &bs_info);
1679 
1680  for (b = 0; b < ctx->num_blocks; b++) {
1681  bd.block_length = div_blocks[b];
1682  if (bd.block_length <= 0) {
1683  av_log(ctx->avctx, AV_LOG_WARNING,
1684  "Invalid block length %u in channel data!\n",
1685  bd.block_length);
1686  continue;
1687  }
1688 
1689  for (c = 0; c < avctx->channels; c++) {
1690  bd.const_block = ctx->const_block + c;
1691  bd.shift_lsbs = ctx->shift_lsbs + c;
1692  bd.opt_order = ctx->opt_order + c;
1694  bd.use_ltp = ctx->use_ltp + c;
1695  bd.ltp_lag = ctx->ltp_lag + c;
1696  bd.ltp_gain = ctx->ltp_gain[c];
1697  bd.lpc_cof = ctx->lpc_cof[c];
1698  bd.quant_cof = ctx->quant_cof[c];
1699  bd.raw_samples = ctx->raw_samples[c] + offset;
1700  bd.raw_other = NULL;
1701 
1702  if ((ret = read_block(ctx, &bd)) < 0)
1703  return ret;
1704  if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1705  return ret;
1706  }
1707 
1708  for (c = 0; c < avctx->channels; c++) {
1709  ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1710  reverted_channels, offset, c);
1711  if (ret < 0)
1712  return ret;
1713  }
1714  for (c = 0; c < avctx->channels; c++) {
1715  bd.const_block = ctx->const_block + c;
1716  bd.shift_lsbs = ctx->shift_lsbs + c;
1717  bd.opt_order = ctx->opt_order + c;
1719  bd.use_ltp = ctx->use_ltp + c;
1720  bd.ltp_lag = ctx->ltp_lag + c;
1721  bd.ltp_gain = ctx->ltp_gain[c];
1722  bd.lpc_cof = ctx->lpc_cof[c];
1723  bd.quant_cof = ctx->quant_cof[c];
1724  bd.raw_samples = ctx->raw_samples[c] + offset;
1725 
1726  if ((ret = decode_block(ctx, &bd)) < 0)
1727  return ret;
1728  }
1729 
1730  memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1731  offset += div_blocks[b];
1732  bd.ra_block = 0;
1733  }
1734 
1735  // store carryover raw samples
1736  for (c = 0; c < avctx->channels; c++)
1737  memmove(ctx->raw_samples[c] - sconf->max_order,
1738  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1739  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1740  }
1741 
1742  if (sconf->floating) {
1743  read_diff_float_data(ctx, ra_frame);
1744  }
1745 
1746  if (get_bits_left(gb) < 0) {
1747  av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1748  return AVERROR_INVALIDDATA;
1749  }
1750 
1751  return 0;
1752 }
1753 
1754 
1755 /** Decode an ALS frame.
1756  */
1757 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1758  AVPacket *avpkt)
1759 {
1760  ALSDecContext *ctx = avctx->priv_data;
1761  AVFrame *frame = data;
1762  ALSSpecificConfig *sconf = &ctx->sconf;
1763  const uint8_t *buffer = avpkt->data;
1764  int buffer_size = avpkt->size;
1765  int invalid_frame, ret;
1766  unsigned int c, sample, ra_frame, bytes_read, shift;
1767 
1768  if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1769  return ret;
1770 
1771  // In the case that the distance between random access frames is set to zero
1772  // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1773  // For the first frame, if prediction is used, all samples used from the
1774  // previous frame are assumed to be zero.
1775  ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1776 
1777  // the last frame to decode might have a different length
1778  if (sconf->samples != 0xFFFFFFFF)
1779  ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1780  sconf->frame_length);
1781  else
1782  ctx->cur_frame_length = sconf->frame_length;
1783 
1784  // decode the frame data
1785  if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1786  av_log(ctx->avctx, AV_LOG_WARNING,
1787  "Reading frame data failed. Skipping RA unit.\n");
1788 
1789  ctx->frame_id++;
1790 
1791  /* get output buffer */
1792  frame->nb_samples = ctx->cur_frame_length;
1793  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1794  return ret;
1795 
1796  // transform decoded frame into output format
1797  #define INTERLEAVE_OUTPUT(bps) \
1798  { \
1799  int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1800  shift = bps - ctx->avctx->bits_per_raw_sample; \
1801  if (!ctx->cs_switch) { \
1802  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1803  for (c = 0; c < avctx->channels; c++) \
1804  *dest++ = ctx->raw_samples[c][sample] << shift; \
1805  } else { \
1806  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1807  for (c = 0; c < avctx->channels; c++) \
1808  *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
1809  } \
1810  }
1811 
1812  if (ctx->avctx->bits_per_raw_sample <= 16) {
1813  INTERLEAVE_OUTPUT(16)
1814  } else {
1815  INTERLEAVE_OUTPUT(32)
1816  }
1817 
1818  // update CRC
1819  if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1820  int swap = HAVE_BIGENDIAN != sconf->msb_first;
1821 
1822  if (ctx->avctx->bits_per_raw_sample == 24) {
1823  int32_t *src = (int32_t *)frame->data[0];
1824 
1825  for (sample = 0;
1826  sample < ctx->cur_frame_length * avctx->channels;
1827  sample++) {
1828  int32_t v;
1829 
1830  if (swap)
1831  v = av_bswap32(src[sample]);
1832  else
1833  v = src[sample];
1834  if (!HAVE_BIGENDIAN)
1835  v >>= 8;
1836 
1837  ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1838  }
1839  } else {
1840  uint8_t *crc_source;
1841 
1842  if (swap) {
1843  if (ctx->avctx->bits_per_raw_sample <= 16) {
1844  int16_t *src = (int16_t*) frame->data[0];
1845  int16_t *dest = (int16_t*) ctx->crc_buffer;
1846  for (sample = 0;
1847  sample < ctx->cur_frame_length * avctx->channels;
1848  sample++)
1849  *dest++ = av_bswap16(src[sample]);
1850  } else {
1851  ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1852  (uint32_t *) frame->data[0],
1853  ctx->cur_frame_length * avctx->channels);
1854  }
1855  crc_source = ctx->crc_buffer;
1856  } else {
1857  crc_source = frame->data[0];
1858  }
1859 
1860  ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1861  ctx->cur_frame_length * avctx->channels *
1863  }
1864 
1865 
1866  // check CRC sums if this is the last frame
1867  if (ctx->cur_frame_length != sconf->frame_length &&
1868  ctx->crc_org != ctx->crc) {
1869  av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1870  if (avctx->err_recognition & AV_EF_EXPLODE)
1871  return AVERROR_INVALIDDATA;
1872  }
1873  }
1874 
1875  *got_frame_ptr = 1;
1876 
1877  bytes_read = invalid_frame ? buffer_size :
1878  (get_bits_count(&ctx->gb) + 7) >> 3;
1879 
1880  return bytes_read;
1881 }
1882 
1883 
1884 /** Uninitialize the ALS decoder.
1885  */
1887 {
1888  ALSDecContext *ctx = avctx->priv_data;
1889  int i;
1890 
1891  av_freep(&ctx->sconf.chan_pos);
1892 
1893  ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1894 
1895  av_freep(&ctx->const_block);
1896  av_freep(&ctx->shift_lsbs);
1897  av_freep(&ctx->opt_order);
1899  av_freep(&ctx->use_ltp);
1900  av_freep(&ctx->ltp_lag);
1901  av_freep(&ctx->ltp_gain);
1902  av_freep(&ctx->ltp_gain_buffer);
1903  av_freep(&ctx->quant_cof);
1904  av_freep(&ctx->lpc_cof);
1905  av_freep(&ctx->quant_cof_buffer);
1906  av_freep(&ctx->lpc_cof_buffer);
1908  av_freep(&ctx->prev_raw_samples);
1909  av_freep(&ctx->raw_samples);
1910  av_freep(&ctx->raw_buffer);
1911  av_freep(&ctx->chan_data);
1912  av_freep(&ctx->chan_data_buffer);
1913  av_freep(&ctx->reverted_channels);
1914  av_freep(&ctx->crc_buffer);
1915  if (ctx->mlz) {
1916  av_freep(&ctx->mlz->dict);
1917  av_freep(&ctx->mlz);
1918  }
1919  av_freep(&ctx->acf);
1920  av_freep(&ctx->last_acf_mantissa);
1921  av_freep(&ctx->shift_value);
1922  av_freep(&ctx->last_shift_value);
1923  if (ctx->raw_mantissa) {
1924  for (i = 0; i < avctx->channels; i++) {
1925  av_freep(&ctx->raw_mantissa[i]);
1926  }
1927  av_freep(&ctx->raw_mantissa);
1928  }
1929  av_freep(&ctx->larray);
1930  av_freep(&ctx->nbits);
1931 
1932  return 0;
1933 }
1934 
1935 
1936 /** Initialize the ALS decoder.
1937  */
1939 {
1940  unsigned int c;
1941  unsigned int channel_size;
1942  int num_buffers, ret;
1943  ALSDecContext *ctx = avctx->priv_data;
1944  ALSSpecificConfig *sconf = &ctx->sconf;
1945  ctx->avctx = avctx;
1946 
1947  if (!avctx->extradata) {
1948  av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1949  return AVERROR_INVALIDDATA;
1950  }
1951 
1952  if ((ret = read_specific_config(ctx)) < 0) {
1953  av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1954  goto fail;
1955  }
1956 
1957  if ((ret = check_specific_config(ctx)) < 0) {
1958  goto fail;
1959  }
1960 
1961  if (sconf->bgmc) {
1962  ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1963  if (ret < 0)
1964  goto fail;
1965  }
1966  if (sconf->floating) {
1967  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1968  avctx->bits_per_raw_sample = 32;
1969  } else {
1970  avctx->sample_fmt = sconf->resolution > 1
1972  avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1973  if (avctx->bits_per_raw_sample > 32) {
1974  av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
1975  avctx->bits_per_raw_sample);
1976  ret = AVERROR_INVALIDDATA;
1977  goto fail;
1978  }
1979  }
1980 
1981  // set maximum Rice parameter for progressive decoding based on resolution
1982  // This is not specified in 14496-3 but actually done by the reference
1983  // codec RM22 revision 2.
1984  ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1985 
1986  // set lag value for long-term prediction
1987  ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
1988  (avctx->sample_rate >= 192000);
1989 
1990  // allocate quantized parcor coefficient buffer
1991  num_buffers = sconf->mc_coding ? avctx->channels : 1;
1992 
1993  ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
1994  ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
1995  ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1996  sizeof(*ctx->quant_cof_buffer));
1997  ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1998  sizeof(*ctx->lpc_cof_buffer));
2000  sizeof(*ctx->lpc_cof_buffer));
2001 
2002  if (!ctx->quant_cof || !ctx->lpc_cof ||
2003  !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
2004  !ctx->lpc_cof_reversed_buffer) {
2005  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2006  ret = AVERROR(ENOMEM);
2007  goto fail;
2008  }
2009 
2010  // assign quantized parcor coefficient buffers
2011  for (c = 0; c < num_buffers; c++) {
2012  ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2013  ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
2014  }
2015 
2016  // allocate and assign lag and gain data buffer for ltp mode
2017  ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2018  ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2019  ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2020  ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2021  ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2022  ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2023  ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2024  ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2025 
2026  if (!ctx->const_block || !ctx->shift_lsbs ||
2027  !ctx->opt_order || !ctx->store_prev_samples ||
2028  !ctx->use_ltp || !ctx->ltp_lag ||
2029  !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2030  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2031  ret = AVERROR(ENOMEM);
2032  goto fail;
2033  }
2034 
2035  for (c = 0; c < num_buffers; c++)
2036  ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2037 
2038  // allocate and assign channel data buffer for mcc mode
2039  if (sconf->mc_coding) {
2040  ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
2041  sizeof(*ctx->chan_data_buffer));
2042  ctx->chan_data = av_mallocz_array(num_buffers,
2043  sizeof(*ctx->chan_data));
2044  ctx->reverted_channels = av_malloc_array(num_buffers,
2045  sizeof(*ctx->reverted_channels));
2046 
2047  if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2048  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2049  ret = AVERROR(ENOMEM);
2050  goto fail;
2051  }
2052 
2053  for (c = 0; c < num_buffers; c++)
2054  ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2055  } else {
2056  ctx->chan_data = NULL;
2057  ctx->chan_data_buffer = NULL;
2058  ctx->reverted_channels = NULL;
2059  }
2060 
2061  channel_size = sconf->frame_length + sconf->max_order;
2062 
2063  ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2064  ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2065  ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2066 
2067  if (sconf->floating) {
2068  ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2069  ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2070  ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2071  ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2072  ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2073 
2074  ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2075  ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2076  ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
2077 
2078  if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2079  || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2080  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2081  ret = AVERROR(ENOMEM);
2082  goto fail;
2083  }
2084 
2085  ff_mlz_init_dict(avctx, ctx->mlz);
2086  ff_mlz_flush_dict(ctx->mlz);
2087 
2088  for (c = 0; c < avctx->channels; ++c) {
2089  ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2090  }
2091  }
2092 
2093  // allocate previous raw sample buffer
2094  if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2095  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2096  ret = AVERROR(ENOMEM);
2097  goto fail;
2098  }
2099 
2100  // assign raw samples buffers
2101  ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2102  for (c = 1; c < avctx->channels; c++)
2103  ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2104 
2105  // allocate crc buffer
2106  if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2109  avctx->channels *
2111  sizeof(*ctx->crc_buffer));
2112  if (!ctx->crc_buffer) {
2113  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2114  ret = AVERROR(ENOMEM);
2115  goto fail;
2116  }
2117  }
2118 
2119  ff_bswapdsp_init(&ctx->bdsp);
2120 
2121  return 0;
2122 
2123 fail:
2124  decode_end(avctx);
2125  return ret;
2126 }
2127 
2128 
2129 /** Flush (reset) the frame ID after seeking.
2130  */
2131 static av_cold void flush(AVCodecContext *avctx)
2132 {
2133  ALSDecContext *ctx = avctx->priv_data;
2134 
2135  ctx->frame_id = 0;
2136 }
2137 
2138 
2140  .name = "als",
2141  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2142  .type = AVMEDIA_TYPE_AUDIO,
2143  .id = AV_CODEC_ID_MP4ALS,
2144  .priv_data_size = sizeof(ALSDecContext),
2145  .init = decode_init,
2146  .close = decode_end,
2147  .decode = decode_frame,
2148  .flush = flush,
2149  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
2150 };
#define MUL64(a, b)
Definition: mathops.h:54
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
AVCodec ff_als_decoder
Definition: alsdec.c:2139
static int als_weighting(GetBitContext *gb, int k, int off)
Definition: alsdec.c:1202
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a non-constant block.
Definition: alsdec.c:891
int msb_first
1 = original CRC calculated on big-endian system, 0 = little-endian
Definition: alsdec.c:162
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:771
unsigned char * larray
buffer to store the output of masked lz decompression
Definition: alsdec.c:237
const char * s
Definition: avisynth_c.h:768
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:201
int * use_ltp
contains use_ltp flags for all channels
Definition: alsdec.c:215
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
av_cold void ff_bgmc_end(uint8_t **cf_lut, int **cf_lut_status)
Release the lookup table arrays.
Definition: bgmc.c:480
MLZ * mlz
masked lz decompression structure
Definition: alsdec.c:231
int32_t ** raw_samples
decoded raw samples for each channel
Definition: alsdec.c:228
uint8_t * crc_buffer
buffer of byte order corrected samples used for CRC check
Definition: alsdec.c:230
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:261
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static const int16_t mcc_weightings[]
Inter-channel weighting factors for multi-channel correlation.
Definition: alsdec.c:121
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:204
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int acc
Definition: yuv2rgb.c:546
int block_switching
number of block switching levels
Definition: alsdec.c:170
int rlslms
use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
Definition: alsdec.c:177
int size
Definition: avcodec.h:1680
const char * b
Definition: vf_curves.c:113
static int check_specific_config(ALSDecContext *ctx)
Check the ALSSpecificConfig for unsupported features.
Definition: alsdec.c:440
#define av_bswap16
Definition: bswap.h:31
int av_log2(unsigned v)
Definition: intmath.c:26
int adapt_order
adaptive order: 1 = on, 0 = off
Definition: alsdec.c:166
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
Read the frame data.
Definition: alsdec.c:1603
int32_t * lpc_cof_reversed_buffer
temporary buffer to set up a reversed versio of lpc_cof_buffer
Definition: alsdec.c:223
GetBitContext gb
Definition: alsdec.c:197
Block Gilbert-Moore decoder header.
int * nbits
contains the number of bits to read for masked lz decompression for all samples
Definition: alsdec.c:238
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:222
const char * master
Definition: vf_curves.c:114
unsigned int js_switch
if true, joint-stereo decoding is enforced
Definition: alsdec.c:204
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:3164
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Read and decode block data successively.
Definition: alsdec.c:1049
#define INTERLEAVE_OUTPUT(bps)
#define src
Definition: vp8dsp.c:254
#define sample
AVCodec.
Definition: avcodec.h:3739
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
Read and decode a Rice codeword.
Definition: alsdec.c:487
static int get_sbits_long(GetBitContext *s, int n)
Read 0-32 bits as a signed integer.
Definition: get_bits.h:385
int * ltp_lag
contains ltp lag values for all channels
Definition: alsdec.c:216
int * const_block
contains const_block flags for all channels
Definition: alsdec.c:211
static const uint8_t ltp_gain_values[4][4]
Gain values of p(0) for long-term prediction.
Definition: alsdec.c:110
static av_cold int decode_init(AVCodecContext *avctx)
Initialize the ALS decoder.
Definition: alsdec.c:1938
BswapDSPContext bdsp
Definition: alsdec.c:198
int32_t * lpc_cof
coefficients of the direct form prediction
Definition: alsdec.c:254
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2531
uint8_t
#define av_cold
Definition: attributes.h:82
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a constant block.
Definition: alsdec.c:608
float delta
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(constuint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(constint16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(constint32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(constint64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(constfloat *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(constdouble *) pi *(INT64_C(1)<< 63)))#defineFMT_PAIR_FUNC(out, in) staticconv_func_type *constfmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};staticvoidcpy1(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, len);}staticvoidcpy2(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 2 *len);}staticvoidcpy4(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 4 *len);}staticvoidcpy8(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, constint *ch_map, intflags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) returnNULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) returnNULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case1:ctx->simd_f=cpy1;break;case2:ctx->simd_f=cpy2;break;case4:ctx->simd_f=cpy4;break;case8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);returnctx;}voidswri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}intswri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, intlen){intch;intoff=0;constintos=(out->planar?1:out->ch_count)*out->bps;unsignedmisaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){intplanes=in->planar?in->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){intplanes=out->planar?out->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){intplanes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
int ** ltp_gain
gain values for ltp 5-tap filter for a channel
Definition: alsdec.c:217
static SoftFloat_IEEE754 av_bits2sf_ieee754(uint32_t n)
Make a softfloat out of the bitstream.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1876
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
Definition: bytestream.h:87
int chan_sort
channel rearrangement: 1 = on, 0 = off
Definition: alsdec.c:176
static AVFrame * frame
int joint_stereo
joint stereo: 1 = on, 0 = off
Definition: alsdec.c:173
Public header for CRC hash function implementation.
static SoftFloat_IEEE754 av_int2sf_ieee754(int64_t n, int e)
Convert integer to softfloat.
uint8_t * data
Definition: avcodec.h:1679
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:199
#define ff_dlog(a,...)
bitstream reader API header.
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks independently.
Definition: alsdec.c:1078
void ff_bgmc_decode_init(GetBitContext *gb, unsigned int *h, unsigned int *l, unsigned int *v)
Initialize decoding and reads the first value.
Definition: bgmc.c:488
unsigned int block_length
number of samples within the block
Definition: alsdec.c:243
static void zero_remaining(unsigned int b, unsigned int b_max, const unsigned int *div_blocks, int32_t *buf)
Compute the number of samples left to decode for the current frame and sets these samples to zero...
Definition: alsdec.c:1063
int ra_distance
distance between RA frames (in frames, 0...255)
Definition: alsdec.c:164
int weighting[6]
Definition: alsdec.c:190
int32_t * quant_cof_buffer
contains all quantized parcor coefficients
Definition: alsdec.c:220
signed 32 bits
Definition: samplefmt.h:62
ALSChannelData * chan_data_buffer
contains channel data for all channels
Definition: alsdec.c:225
#define av_log(a,...)
int bgmc
"Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
Definition: alsdec.c:171
#define U(x)
Definition: vp56_arith.h:37
MLZDict * dict
Definition: mlz.h:54
unsigned int cs_switch
if true, channel rearrangement is done
Definition: alsdec.c:205
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:587
int * use_ltp
if true, long-term prediction is used
Definition: alsdec.c:250
enum RA_Flag ra_flag
indicates where the size of ra units is stored
Definition: alsdec.c:165
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ltp_lag_length
number of bits used for ltp lag value
Definition: alsdec.c:210
#define PTRDIFF_SPECIFIER
Definition: internal.h:254
#define AVERROR(e)
Definition: error.h:43
static av_cold void dprint_specific_config(ALSDecContext *ctx)
Definition: alsdec.c:261
unsigned int * opt_order
prediction order of this block
Definition: alsdec.c:248
int * chan_pos
original channel positions
Definition: alsdec.c:179
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:179
AVCodecContext * avctx
Definition: alsdec.c:195
static const int16_t parcor_scaled_values[]
Scaled PARCOR values used for the first two PARCOR coefficients.
Definition: alsdec.c:71
static const SoftFloat FLOAT_1
1.0
Definition: softfloat.h:41
const char * r
Definition: vf_curves.c:111
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
multiply two softfloats and handle the rounding off
Definition: alsdec.c:1371
int32_t ** lpc_cof
coefficients of the direct form prediction filter for a channel
Definition: alsdec.c:221
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame)
Read and decode the floating point sample data.
Definition: alsdec.c:1423
int chan_config_info
mapping of channels to loudspeaker locations. Unused until setting channel configuration is implement...
Definition: alsdec.c:178
unsigned int num_blocks
number of blocks used in the current frame
Definition: alsdec.c:206
const char * name
Name of the codec implementation.
Definition: avcodec.h:3746
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:227
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks dependently.
Definition: alsdec.c:1118
void ff_bgmc_decode_end(GetBitContext *gb)
Finish decoding.
Definition: bgmc.c:498
const AVCRC * crc_table
Definition: alsdec.c:199
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
GLsizei count
Definition: opengl_enc.c:109
#define FFMAX(a, b)
Definition: common.h:94
int * bgmc_lut_status
pointer at lookup table status flags used for BGMC
Definition: alsdec.c:209
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:229
#define fail()
Definition: checkasm.h:109
ALSSpecificConfig sconf
Definition: alsdec.c:196
int * store_prev_samples
if true, carryover samples have to be stored
Definition: alsdec.c:249
unsigned int * shift_lsbs
contains shift_lsbs flags for all channels
Definition: alsdec.c:212
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:3050
#define FFMIN(a, b)
Definition: common.h:96
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a non-constant block.
Definition: alsdec.c:622
int ff_mlz_decompression(MLZ *mlz, GetBitContext *gb, int size, unsigned char *buff)
Run mlz decompression on the next size bits and the output will be stored in buff.
Definition: mlz.c:123
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
int chan_config
indicates that a chan_config_info field is present
Definition: alsdec.c:175
int32_t
AVFormatContext * ctx
Definition: movenc.c:48
#define EXP_BIAS
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:357
int * last_shift_value
contains last shift value for all channels
Definition: alsdec.c:235
static int av_cmp_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Compare a with b strictly.
void ff_bgmc_decode(GetBitContext *gb, unsigned int num, int32_t *dst, int delta, unsigned int sx, unsigned int *h, unsigned int *l, unsigned int *v, uint8_t *cf_lut, int *cf_lut_status)
Read and decode a block Gilbert-Moore coded symbol.
Definition: bgmc.c:505
static av_cold int decode_end(AVCodecContext *avctx)
Uninitialize the ALS decoder.
Definition: alsdec.c:1886
int * const_block
if true, this is a constant value block
Definition: alsdec.c:245
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:3061
int n
Definition: avisynth_c.h:684
int floating
1 = IEEE 32-bit floating-point, 0 = integer
Definition: alsdec.c:161
int time_diff_flag
Definition: alsdec.c:187
SoftFloat_IEEE754 * acf
contains common multiplier for all channels
Definition: alsdec.c:232
int master_channel
Definition: alsdec.c:186
uint32_t crc
CRC value calculated from decoded data.
Definition: alsdec.c:201
int coef_table
table index of Rice code parameters
Definition: alsdec.c:167
static void error(const char *err)
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a constant block.
Definition: alsdec.c:578
#define FF_ARRAY_ELEMS(a)
int sb_part
sub-block partition
Definition: alsdec.c:172
MLZ data strucure.
Definition: mlz.h:47
int32_t * raw_other
decoded raw samples of the other channel of a channel pair
Definition: alsdec.c:257
uint8_t * bgmc_lut
pointer at lookup tables used for BGMC
Definition: alsdec.c:208
av_cold void ff_mlz_init_dict(void *context, MLZ *mlz)
Initialize the dictionary.
Definition: mlz.c:23
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int * ltp_gain
gain values for ltp 5-tap filter
Definition: alsdec.c:252
int js_blocks
true if this block contains a difference signal
Definition: alsdec.c:246
#define av_bswap32
Definition: bswap.h:33
unsigned int ra_block
if true, this is a random access block
Definition: alsdec.c:244
Libavcodec external API header.
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
Convert PARCOR coefficient k to direct filter coefficient.
Definition: alsdec.c:505
int * shift_value
value by which the binary point is to be shifted for all channels
Definition: alsdec.c:234
int sample_rate
samples per second
Definition: avcodec.h:2523
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:456
main external API structure.
Definition: avcodec.h:1761
ALSChannelData ** chan_data
channel data for multi-channel correlation
Definition: alsdec.c:224
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Decode an ALS frame.
Definition: alsdec.c:1757
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1669
#define MISSING_ERR(cond, str, errval)
void * buf
Definition: avisynth_c.h:690
int extradata_size
Definition: avcodec.h:1877
#define AV_EF_CAREFUL
consider things that violate the spec, are fast to calculate and have not been seen in the wild as er...
Definition: avcodec.h:3064
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:313
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:338
unsigned int s_max
maximum Rice parameter allowed in entropy coding
Definition: alsdec.c:207
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:306
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:1052
int * ltp_lag
lag value for long-term prediction
Definition: alsdec.c:251
int32_t * lpc_cof_buffer
contains all coefficients of the direct form prediction filter
Definition: alsdec.c:222
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
Definition: avcodec.h:3058
static const int8_t parcor_rice_table[3][20][2]
Rice parameters and corresponding index offsets for decoding the indices of scaled PARCOR values...
Definition: alsdec.c:50
RA_Flag
Definition: alsdec.c:151
static av_cold int read_specific_config(ALSDecContext *ctx)
Read an ALSSpecificConfig from a buffer into the output struct.
Definition: alsdec.c:291
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:346
int long_term_prediction
long term prediction (LTP): 1 = on, 0 = off
Definition: alsdec.c:168
int32_t * raw_samples
decoded raw samples / residuals for this block
Definition: alsdec.c:255
int * reverted_channels
stores a flag for each reverted channel
Definition: alsdec.c:226
int * last_acf_mantissa
contains the last acf mantissa data of common multiplier for all channels
Definition: alsdec.c:233
unsigned int * opt_order
contains opt_order flags for all channels
Definition: alsdec.c:213
int32_t * raw_buffer
contains all decoded raw samples including carryover samples
Definition: alsdec.c:229
int max_order
maximum prediction order (0..1023)
Definition: alsdec.c:169
uint32_t samples
number of samples, 0xFFFFFFFF if unknown
Definition: alsdec.c:159
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:215
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:343
int mc_coding
extended inter-channel coding (multi channel coding): 1 = on, 0 = off
Definition: alsdec.c:174
int
static const uint8_t tail_code[16][6]
Tail codes used in arithmetic coding using block Gilbert-Moore codes.
Definition: alsdec.c:131
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:279
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:256
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:33
av_cold void ff_mlz_flush_dict(MLZ *mlz)
Flush the dictionary.
Definition: mlz.c:35
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:2131
signed 16 bits
Definition: samplefmt.h:61
static double c[64]
int time_diff_index
Definition: alsdec.c:189
int * ltp_gain_buffer
contains all gain values for ltp 5-tap filter
Definition: alsdec.c:218
int32_t * quant_cof
quantized parcor coefficients
Definition: alsdec.c:253
int avpriv_mpeg4audio_get_config(MPEG4AudioConfig *c, const uint8_t *buf, int bit_size, int sync_extension)
Parse MPEG-4 systems extradata from a raw buffer to retrieve audio configuration. ...
Definition: mpeg4audio.c:155
#define MKBETAG(a, b, c, d)
Definition: common.h:343
static void parse_bs_info(const uint32_t bs_info, unsigned int n, unsigned int div, unsigned int **div_blocks, unsigned int *num_blocks)
Parse the bs_info field to extract the block partitioning used in block switching mode...
Definition: alsdec.c:464
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1803
int32_t ** quant_cof
quantized parcor coefficients for a channel
Definition: alsdec.c:219
int channels
number of audio channels
Definition: avcodec.h:2524
int crc_enabled
enable Cyclic Redundancy Checksum
Definition: alsdec.c:180
int ** raw_mantissa
decoded mantissa bits of the difference signal
Definition: alsdec.c:236
uint32_t crc_org
CRC value of the original input data.
Definition: alsdec.c:200
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data.
Definition: alsdec.c:1023
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data.
Definition: alsdec.c:1000
int frame_length
frame length for each frame (last frame may differ)
Definition: alsdec.c:163
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:464
int stop_flag
Definition: alsdec.c:185
static const struct twinvq_data tab
unsigned int * shift_lsbs
shift of values for this block
Definition: alsdec.c:247
#define av_freep(p)
void INT64 start
Definition: avisynth_c.h:690
av_cold int ff_bgmc_init(AVCodecContext *avctx, uint8_t **cf_lut, int **cf_lut_status)
Initialize the lookup table arrays.
Definition: bgmc.c:460
#define av_malloc_array(a, b)
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
Read the channel data.
Definition: alsdec.c:1211
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, uint32_t *bs_info)
Read block switching field if necessary and set actual block sizes.
Definition: alsdec.c:525
int * store_prev_samples
contains store_prev_samples flags for all channels
Definition: alsdec.c:214
static SoftFloat_IEEE754 av_div_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Divide a by b.
unsigned int frame_id
the frame ID / number of the current frame
Definition: alsdec.c:203
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, ALSChannelData **cd, int *reverted, unsigned int offset, int c)
Recursively reverts the inter-channel correlation for a block.
Definition: alsdec.c:1258
This structure stores compressed data.
Definition: avcodec.h:1656
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:267
uint32_t AVCRC
Definition: crc.h:47
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:1002
for(j=16;j >0;--j)
unsigned int cur_frame_length
length of the current frame to decode
Definition: alsdec.c:202
static av_always_inline int get_bitsz(GetBitContext *s, int n)
Read 0-25 bits.
Definition: get_bits.h:276
GLuint buffer
Definition: opengl_enc.c:102
int resolution
000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
Definition: alsdec.c:160
int time_diff_sign
Definition: alsdec.c:188