Go to the documentation of this file.
   21 #include "config_components.h" 
   34 #define MAX_THREADS 16 
   76                        int w, 
int h, 
int n, 
int plane, 
float scale);
 
   82 #define OFFSET(x) offsetof(ConvolveContext, x) 
   83 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM 
   88     {   
"first", 
"process only first impulse, ignore rest", 0,                
AV_OPT_TYPE_CONST, {.i64=0}, 0,  0, 
FLAGS, .unit = 
"impulse" },
 
  123     s->planewidth[0] = 
s->planewidth[3] = 
w;
 
  125     s->planeheight[0] = 
s->planeheight[3] = 
h;
 
  127     s->nb_planes = 
desc->nb_components;
 
  128     s->depth = 
desc->comp[0].depth;
 
  130     for (
int i = 0; 
i < 
s->nb_planes; 
i++) {
 
  131         int w = 
s->planewidth[
i];
 
  132         int h = 
s->planeheight[
i];
 
  135         s->fft_len[
i] = 1 << (
av_log2(2 * n - 1));
 
  169     if (
ctx->inputs[0]->w != 
ctx->inputs[1]->w ||
 
  170         ctx->inputs[0]->h != 
ctx->inputs[1]->h) {
 
  190     const int plane = td->
plane;
 
  192     int start = (n * jobnr) / nb_jobs;
 
  193     int end = (n * (jobnr+1)) / nb_jobs;
 
  196     for (y = start; y < end; y++) {
 
  197         s->tx_fn[plane](
s->fft[plane][jobnr], hdata_out + y * n, hdata_in + y * n, 
sizeof(
AVComplexFloat));
 
  203 #define SQR(x) ((x) * (x)) 
  208                                  int n, 
int plane, 
float scale)
 
  215         for (y = 0; y < 
h; y++) {
 
  218             for (x = 0; x < 
w; x++)
 
  224         for (y = 0; y < 
h; y++) {
 
  227             for (x = 0; x < 
w; x++)
 
  233         for (y = 0; y < 
h; y++) {
 
  236             for (x = 0; x < 
w; x++) {
 
  238                 fft_hdata[y * n + x].
im = 0;
 
  241             for (x = 
w; x < n; x++) {
 
  242                 fft_hdata[y * n + x].
re = 0;
 
  243                 fft_hdata[y * n + x].
im = 0;
 
  247         for (y = 
h; y < n; y++) {
 
  248             for (x = 0; x < n; x++) {
 
  249                 fft_hdata[y * n + x].
re = 0;
 
  250                 fft_hdata[y * n + x].
im = 0;
 
  254         for (y = 0; y < 
h; y++) {
 
  255             const uint16_t *
src = (
const uint16_t *)(in->
data[plane] + in->
linesize[plane] * y);
 
  257             for (x = 0; x < 
w; x++)
 
  263         for (y = 0; y < 
h; y++) {
 
  264             const uint16_t *
src = (
const uint16_t *)(in->
data[plane] + in->
linesize[plane] * y);
 
  266             for (x = 0; x < 
w; x++)
 
  272         for (y = 0; y < 
h; y++) {
 
  273             const uint16_t *
src = (
const uint16_t *)(in->
data[plane] + in->
linesize[plane] * y);
 
  275             for (x = 0; x < 
w; x++) {
 
  277                 fft_hdata[y * n + x].
im = 0;
 
  280             for (x = 
w; x < n; x++) {
 
  281                 fft_hdata[y * n + x].
re = 0;
 
  282                 fft_hdata[y * n + x].
im = 0;
 
  286         for (y = 
h; y < n; y++) {
 
  287             for (x = 0; x < n; x++) {
 
  288                 fft_hdata[y * n + x].
re = 0;
 
  289                 fft_hdata[y * n + x].
im = 0;
 
  298     const int iw = (n - 
w) / 2, ih = (n - 
h) / 2;
 
  302         for (y = 0; y < 
h; y++) {
 
  305             for (x = 0; x < 
w; x++) {
 
  306                 fft_hdata[(y + ih) * n + iw + x].re = 
src[x] * 
scale;
 
  307                 fft_hdata[(y + ih) * n + iw + x].im = 0;
 
  310             for (x = 0; x < iw; x++) {
 
  311                 fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + iw].
re;
 
  312                 fft_hdata[(y + ih) * n + x].im = 0;
 
  315             for (x = n - iw; x < n; x++) {
 
  316                 fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + n - iw - 1].
re;
 
  317                 fft_hdata[(y + ih) * n + x].im = 0;
 
  321         for (y = 0; y < ih; y++) {
 
  322             for (x = 0; x < n; x++) {
 
  323                 fft_hdata[y * n + x].
re = fft_hdata[ih * n + x].
re;
 
  324                 fft_hdata[y * n + x].
im = 0;
 
  328         for (y = n - ih; y < n; y++) {
 
  329             for (x = 0; x < n; x++) {
 
  330                 fft_hdata[y * n + x].
re = fft_hdata[(n - ih - 1) * n + x].re;
 
  331                 fft_hdata[y * n + x].
im = 0;
 
  335         for (y = 0; y < 
h; y++) {
 
  336             const uint16_t *
src = (
const uint16_t *)(in->
data[plane] + in->
linesize[plane] * y);
 
  338             for (x = 0; x < 
w; x++) {
 
  339                 fft_hdata[(y + ih) * n + iw + x].re = 
src[x] * 
scale;
 
  340                 fft_hdata[(y + ih) * n + iw + x].im = 0;
 
  343             for (x = 0; x < iw; x++) {
 
  344                 fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + iw].
re;
 
  345                 fft_hdata[(y + ih) * n + x].im = 0;
 
  348             for (x = n - iw; x < n; x++) {
 
  349                 fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + n - iw - 1].
re;
 
  350                 fft_hdata[(y + ih) * n + x].im = 0;
 
  354         for (y = 0; y < ih; y++) {
 
  355             for (x = 0; x < n; x++) {
 
  356                 fft_hdata[y * n + x].
re = fft_hdata[ih * n + x].
re;
 
  357                 fft_hdata[y * n + x].
im = 0;
 
  361         for (y = n - ih; y < n; y++) {
 
  362             for (x = 0; x < n; x++) {
 
  363                 fft_hdata[y * n + x].
re = fft_hdata[(n - ih - 1) * n + x].re;
 
  364                 fft_hdata[y * n + x].
im = 0;
 
  377     const int plane = td->
plane;
 
  379     int start = (n * jobnr) / nb_jobs;
 
  380     int end = (n * (jobnr+1)) / nb_jobs;
 
  383     for (y = start; y < end; y++) {
 
  384         for (x = 0; x < n; x++) {
 
  385             vdata_in[y * n + x].
re = hdata[x * n + y].
re;
 
  386             vdata_in[y * n + x].
im = hdata[x * n + y].
im;
 
  389         s->tx_fn[plane](
s->fft[plane][jobnr], vdata_out + y * n, vdata_in + y * n, 
sizeof(
AVComplexFloat));
 
  402     const int plane = td->
plane;
 
  404     int start = (n * jobnr) / nb_jobs;
 
  405     int end = (n * (jobnr+1)) / nb_jobs;
 
  408     for (y = start; y < end; y++) {
 
  409         s->itx_fn[plane](
s->ifft[plane][jobnr], vdata_out + y * n, vdata_in + y * n, 
sizeof(
AVComplexFloat));
 
  411         for (x = 0; x < n; x++) {
 
  412             hdata[x * n + y].
re = vdata_out[y * n + x].
re;
 
  413             hdata[x * n + y].
im = vdata_out[y * n + x].
im;
 
  426     const int plane = td->
plane;
 
  428     int start = (n * jobnr) / nb_jobs;
 
  429     int end = (n * (jobnr+1)) / nb_jobs;
 
  432     for (y = start; y < end; y++) {
 
  433         s->itx_fn[plane](
s->ifft[plane][jobnr], hdata_out + y * n, hdata_in + y * n, 
sizeof(
AVComplexFloat));
 
  440                        int w, 
int h, 
int n, 
int plane, 
float scale)
 
  442     const int imax = (1 << 
s->depth) - 1;
 
  446         for (
int y = 0; y < 
h; y++) {
 
  447             uint8_t *
dst = 
out->data[plane] + y * 
out->linesize[plane];
 
  448             for (
int x = 0; x < 
w; x++)
 
  452         for (
int y = 0; y < 
h; y++) {
 
  453             uint16_t *
dst = (uint16_t *)(
out->data[plane] + y * 
out->linesize[plane]);
 
  454             for (
int x = 0; x < 
w; x++)
 
  461                        int w, 
int h, 
int n, 
int plane, 
float scale)
 
  463     const int max = (1 << 
s->depth) - 1;
 
  464     const int hh = 
h / 2;
 
  465     const int hw = 
w / 2;
 
  469         for (y = 0; y < hh; y++) {
 
  470             uint8_t *
dst = 
out->data[plane] + (y + hh) * 
out->linesize[plane] + hw;
 
  471             for (x = 0; x < hw; x++)
 
  474         for (y = 0; y < hh; y++) {
 
  475             uint8_t *
dst = 
out->data[plane] + (y + hh) * 
out->linesize[plane];
 
  476             for (x = 0; x < hw; x++)
 
  479         for (y = 0; y < hh; y++) {
 
  480             uint8_t *
dst = 
out->data[plane] + y * 
out->linesize[plane] + hw;
 
  481             for (x = 0; x < hw; x++)
 
  484         for (y = 0; y < hh; y++) {
 
  485             uint8_t *
dst = 
out->data[plane] + y * 
out->linesize[plane];
 
  486             for (x = 0; x < hw; x++)
 
  490         for (y = 0; y < hh; y++) {
 
  491             uint16_t *
dst = (uint16_t *)(
out->data[plane] + (y + hh) * 
out->linesize[plane] + hw * 2);
 
  492             for (x = 0; x < hw; x++)
 
  495         for (y = 0; y < hh; y++) {
 
  496             uint16_t *
dst = (uint16_t *)(
out->data[plane] + (y + hh) * 
out->linesize[plane]);
 
  497             for (x = 0; x < hw; x++)
 
  500         for (y = 0; y < hh; y++) {
 
  501             uint16_t *
dst = (uint16_t *)(
out->data[plane] + y * 
out->linesize[plane] + hw * 2);
 
  502             for (x = 0; x < hw; x++)
 
  505         for (y = 0; y < hh; y++) {
 
  506             uint16_t *
dst = (uint16_t *)(
out->data[plane] + y * 
out->linesize[plane]);
 
  507             for (x = 0; x < hw; x++)
 
  519     const float noise = 
s->noise;
 
  521     int start = (n * jobnr) / nb_jobs;
 
  522     int end = (n * (jobnr+1)) / nb_jobs;
 
  525     for (y = start; y < end; y++) {
 
  528         for (x = 0; x < n; x++) {
 
  529             float re, im, ire, iim;
 
  531             re = 
input[yn + x].re;
 
  532             im = 
input[yn + x].im;
 
  536             input[yn + x].re = ire * re - iim * im;
 
  537             input[yn + x].im = iim * re + ire * im;
 
  550     const float scale = 1.f / (n * n);
 
  551     int start = (n * jobnr) / nb_jobs;
 
  552     int end = (n * (jobnr+1)) / nb_jobs;
 
  554     for (
int y = start; y < end; y++) {
 
  557         for (
int x = 0; x < n; x++) {
 
  558             float re, im, ire, iim;
 
  560             re = 
input[yn + x].re;
 
  561             im = 
input[yn + x].im;
 
  565             input[yn + x].re = ire * re - iim * im;
 
  566             input[yn + x].im = iim * re + ire * im;
 
  579     const float noise = 
s->noise;
 
  581     int start = (n * jobnr) / nb_jobs;
 
  582     int end = (n * (jobnr+1)) / nb_jobs;
 
  585     for (y = start; y < end; y++) {
 
  588         for (x = 0; x < n; x++) {
 
  589             float re, im, ire, iim, div;
 
  591             re = 
input[yn + x].re;
 
  592             im = 
input[yn + x].im;
 
  595             div = ire * ire + iim * iim + 
noise;
 
  597             input[yn + x].re = (ire * re + iim * im) / div;
 
  598             input[yn + x].im = (ire * im - iim * re) / div;
 
  608     const int n = 
s->fft_len[plane];
 
  609     const int w = 
s->secondarywidth[plane];
 
  610     const int h = 
s->secondaryheight[plane];
 
  615         for (
int y = 0; y < 
h; y++) {
 
  616             const uint8_t *
src = (
const uint8_t *)(impulsepic->
data[plane] + y * impulsepic->
linesize[plane]) ;
 
  617             for (
int x = 0; x < 
w; x++) {
 
  622         for (
int y = 0; y < 
h; y++) {
 
  623             const uint16_t *
src = (
const uint16_t *)(impulsepic->
data[plane] + y * impulsepic->
linesize[plane]) ;
 
  624             for (
int x = 0; x < 
w; x++) {
 
  629     total = 
FFMAX(1, total);
 
  631     s->get_input(
s, 
s->fft_hdata_impulse_in[plane], impulsepic, 
w, 
h, n, plane, 1.f / total);
 
  635     td.
hdata_in  = 
s->fft_hdata_impulse_in[plane];
 
  636     td.
vdata_in  = 
s->fft_vdata_impulse_in[plane];
 
  637     td.
hdata_out = 
s->fft_hdata_impulse_out[plane];
 
  638     td.
vdata_out = 
s->fft_vdata_impulse_out[plane];
 
  645     s->got_impulse[plane] = 1;
 
  651     const int n = 
s->fft_len[plane];
 
  654     s->get_input(
s, 
s->fft_hdata_impulse_in[plane], secondary,
 
  655                  s->secondarywidth[plane],
 
  656                  s->secondaryheight[plane],
 
  661     td.
hdata_in  = 
s->fft_hdata_impulse_in[plane];
 
  662     td.
vdata_in  = 
s->fft_vdata_impulse_in[plane];
 
  663     td.
hdata_out = 
s->fft_hdata_impulse_out[plane];
 
  664     td.
vdata_out = 
s->fft_vdata_impulse_out[plane];
 
  671     s->got_impulse[plane] = 1;
 
  688     for (plane = 0; plane < 
s->nb_planes; plane++) {
 
  691         const int n = 
s->fft_len[plane];
 
  692         const int w = 
s->primarywidth[plane];
 
  693         const int h = 
s->primaryheight[plane];
 
  694         const int ow = 
s->planewidth[plane];
 
  695         const int oh = 
s->planeheight[plane];
 
  698         if (!(
s->planes & (1 << plane))) {
 
  702         td.
plane = plane, td.
n = n;
 
  703         s->get_input(
s, 
s->fft_hdata_in[plane], mainpic, 
w, 
h, n, plane, 1.f);
 
  715         if ((!
s->impulse && !
s->got_impulse[plane]) || 
s->impulse) {
 
  716             s->prepare_impulse(
ctx, impulsepic, plane);
 
  739         s->get_output(
s, 
s->fft_hdata_out[plane], mainpic, ow, oh, n, plane, 1.f / (n * n));
 
  757     s->primarywidth[0]  = 
s->primarywidth[3]  = mainlink->
w;
 
  759     s->primaryheight[0] = 
s->primaryheight[3] = mainlink->
h;
 
  762     s->secondarywidth[0]  = 
s->secondarywidth[3]  = secondlink->
w;
 
  764     s->secondaryheight[0] = 
s->secondaryheight[3] = secondlink->
h;
 
  770     outlink->
w = mainlink->
w;
 
  771     outlink->
h = mainlink->
h;
 
  779     for (
i = 0; 
i < 
s->nb_planes; 
i++) {
 
  805     if (!strcmp(
ctx->filter->name, 
"convolve")) {
 
  810     } 
else if (!strcmp(
ctx->filter->name, 
"xcorrelate")) {
 
  815     } 
else if (!strcmp(
ctx->filter->name, 
"deconvolve")) {
 
  832     for (
i = 0; 
i < 4; 
i++) {
 
  873 #if CONFIG_CONVOLVE_FILTER 
  880     .preinit       = convolve_framesync_preinit,
 
  885     .priv_class    = &convolve_class,
 
  894 #if CONFIG_DECONVOLVE_FILTER 
  896 static const AVOption deconvolve_options[] = {
 
  899     {   
"first", 
"process only first impulse, ignore rest", 0,                
AV_OPT_TYPE_CONST, {.i64=0}, 0,  0, 
FLAGS, .unit = 
"impulse" },
 
  908     .
name          = 
"deconvolve",
 
  910     .preinit       = convolve_framesync_preinit,
 
  915     .priv_class    = &deconvolve_class,
 
  924 #if CONFIG_XCORRELATE_FILTER 
  926 static const AVOption xcorrelate_options[] = {
 
  928     { 
"secondary", 
"when to process secondary frame", 
OFFSET(impulse),  
AV_OPT_TYPE_INT,   {.i64=1}, 0,  1, 
FLAGS, .unit = 
"impulse" },
 
  929     {   
"first", 
"process only first secondary frame, ignore rest", 0,  
AV_OPT_TYPE_CONST, {.i64=0}, 0,  0, 
FLAGS, .unit = 
"impulse" },
 
  930     {   
"all",   
"process all secondary frames",                    0,  
AV_OPT_TYPE_CONST, {.i64=1}, 0,  0, 
FLAGS, .unit = 
"impulse" },
 
  940     if (
ctx->inputs[0]->w <= 
ctx->inputs[1]->w ||
 
  941         ctx->inputs[0]->h <= 
ctx->inputs[1]->h) {
 
  942         av_log(
ctx, 
AV_LOG_ERROR, 
"Width and height of second input videos must be less than first input.\n");
 
  957         .config_props  = config_input_secondary,
 
  961 #define xcorrelate_outputs convolve_outputs 
  964     .
name          = 
"xcorrelate",
 
  965     .description   = 
NULL_IF_CONFIG_SMALL(
"Cross-correlate first video stream with second video stream."),
 
  966     .preinit       = convolve_framesync_preinit,
 
  971     .priv_class    = &xcorrelate_class,
 
  
#define AV_PIX_FMT_YUVA422P16
 
#define AV_PIX_FMT_GBRAP16
 
AVComplexFloat * vdata_out
 
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
 
AVPixelFormat
Pixel format.
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
#define FRAMESYNC_AUXILIARY_FUNCS(func_prefix, context, field)
 
int(* filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
#define FILTER_PIXFMTS_ARRAY(array)
 
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
 
const AVFilter ff_vf_deconvolve
 
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
 
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
 
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
 
static int complex_divide(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
#define AV_PIX_FMT_YUVA422P9
 
#define FILTER_INPUTS(array)
 
This structure describes decoded (raw) audio or video data.
 
#define AV_PIX_FMT_YUVA420P16
 
#define AV_PIX_FMT_YUVA420P10
 
#define AV_PIX_FMT_YUV420P10
 
void(* filter)(uint8_t *src, int stride, int qscale)
 
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
 
const char * name
Filter name.
 
A link between two filters.
 
#define AV_PIX_FMT_YUVA422P10
 
AVComplexFloat * hdata_in
 
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags)
Initialize a transform context with the given configuration (i)MDCTs with an odd length are currently...
 
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
 
Link properties exposed to filter code, but not external callers.
 
AVComplexFloat * vdata_in
 
AVComplexFloat * fft_hdata_out[4]
 
#define AV_PIX_FMT_YUVA420P9
 
#define AV_PIX_FMT_GBRP14
 
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
 
#define AV_PIX_FMT_GBRP10
 
#define AV_PIX_FMT_YUVA444P16
 
static enum AVPixelFormat pixel_fmts_fftfilt[]
 
#define AV_PIX_FMT_YUV422P9
 
static int noise(AVBSFContext *ctx, AVPacket *pkt)
 
static int ifft_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
#define AV_PIX_FMT_GRAY16
 
A filter pad used for either input or output.
 
void(* get_input)(struct ConvolveContext *s, AVComplexFloat *fft_hdata, AVFrame *in, int w, int h, int n, int plane, float scale)
 
#define AV_PIX_FMT_YUV444P10
 
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
 
#define AV_PIX_FMT_YUV422P16
 
void(* av_tx_fn)(AVTXContext *s, void *out, void *in, ptrdiff_t stride)
Function pointer to a function to perform the transform.
 
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
 
#define AV_PIX_FMT_GBRAP10
 
AVComplexFloat * fft_hdata_in[4]
 
#define AV_PIX_FMT_GBRAP12
 
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
 
#define AV_PIX_FMT_YUV444P16
 
#define AV_CEIL_RSHIFT(a, b)
 
static const AVFilterPad convolve_inputs[]
 
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
 
static void get_output(ConvolveContext *s, AVComplexFloat *input, AVFrame *out, int w, int h, int n, int plane, float scale)
 
@ AV_TX_FLOAT_FFT
Standard complex to complex FFT with sample data type of AVComplexFloat, AVComplexDouble or AVComplex...
 
#define AV_PIX_FMT_YUV420P9
 
#define AV_PIX_FMT_YUV420P16
 
static void get_zeropadded_input(ConvolveContext *s, AVComplexFloat *fft_hdata, AVFrame *in, int w, int h, int n, int plane, float scale)
 
#define AV_PIX_FMT_GRAY14
 
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
 
static int fft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
#define FILTER_OUTPUTS(array)
 
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
 
#define AV_PIX_FMT_GRAY10
 
static int config_input(AVFilterLink *inlink)
 
#define AV_PIX_FMT_GBRP16
 
Describe the class of an AVClass context structure.
 
#define fs(width, name, subs,...)
 
AVTXContext * ifft[4][MAX_THREADS]
 
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
 
void(* prepare_impulse)(AVFilterContext *ctx, AVFrame *impulsepic, int plane)
 
static int config_input_impulse(AVFilterLink *inlink)
 
static void prepare_secondary(AVFilterContext *ctx, AVFrame *secondary, int plane)
 
static __device__ float sqrtf(float a)
 
#define AV_PIX_FMT_YUV422P10
 
AVComplexFloat * fft_hdata_impulse_out[4]
 
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
 
AVComplexFloat * fft_vdata_impulse_in[4]
 
static FilterLink * ff_filter_link(AVFilterLink *link)
 
AVTXContext * fft[4][MAX_THREADS]
 
AVComplexFloat * fft_vdata_out[4]
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
 
void(* get_output)(struct ConvolveContext *s, AVComplexFloat *input, AVFrame *out, int w, int h, int n, int plane, float scale)
 
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
 
int format
agreed upon media format
 
#define AV_PIX_FMT_YUV422P12
 
#define FRAMESYNC_DEFINE_PURE_CLASS(name, desc, func_prefix, options)
 
#define AV_PIX_FMT_YUV444P12
 
static const AVFilterPad convolve_outputs[]
 
static int complex_multiply(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
AVFilterContext * src
source filter
 
static void convolve(float *tgt, const float *src, int len, int n)
 
static int activate(AVFilterContext *ctx)
 
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
 
#define AV_PIX_FMT_YUVA444P10
 
AVComplexFloat * fft_hdata_impulse_in[4]
 
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
 
av_cold void av_tx_uninit(AVTXContext **ctx)
Frees a context and sets *ctx to NULL, does nothing when *ctx == NULL.
 
@ AV_OPT_TYPE_FLOAT
Underlying C type is float.
 
AVComplexFloat * hdata_out
 
static av_cold void uninit(AVFilterContext *ctx)
 
static int do_convolve(FFFrameSync *fs)
 
static int fft_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
#define i(width, name, range_min, range_max)
 
static int ifft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
int w
agreed upon image width
 
#define AV_PIX_FMT_GBRP12
 
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
 
Used for passing data between threads.
 
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
 
const char * name
Pad name.
 
void * av_calloc(size_t nmemb, size_t size)
 
#define AV_PIX_FMT_YUV444P9
 
static const AVOption convolve_options[]
 
static void prepare_impulse(AVFilterContext *ctx, AVFrame *impulsepic, int plane)
 
#define AV_PIX_FMT_YUVA444P9
 
static void get_input(ConvolveContext *s, AVComplexFloat *fft_hdata, AVFrame *in, int w, int h, int n, int plane, float scale)
 
const AVFilter ff_vf_convolve
 
#define AV_PIX_FMT_YUV420P12
 
AVComplexFloat * fft_vdata_in[4]
 
static int complex_xcorrelate(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
#define AV_PIX_FMT_YUV422P14
 
AVComplexFloat * fft_vdata_impulse_out[4]
 
static const struct @455 planes[]
 
int h
agreed upon image height
 
int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
 
@ AV_OPT_TYPE_INT
Underlying C type is int.
 
static void get_xoutput(ConvolveContext *s, AVComplexFloat *input, AVFrame *out, int w, int h, int n, int plane, float scale)
 
static float mean(const float *input, int size)
 
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
 
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
 
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
 
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
 
const AVFilter ff_vf_xcorrelate
 
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
 
static av_cold int init(AVFilterContext *ctx)
 
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
 
static void scale(int *out, const int *in, const int w, const int h, const int shift)
 
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
 
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
 
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
 
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
 
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
 
#define AV_PIX_FMT_YUV440P12
 
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable.
 
#define AV_PIX_FMT_YUV444P14
 
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
 
static int config_output(AVFilterLink *outlink)
 
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
 
#define AV_PIX_FMT_GRAY12
 
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
 
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
 
#define AV_PIX_FMT_YUV420P14