Go to the documentation of this file.
   39 #define FLAC_SUBFRAME_CONSTANT  0 
   40 #define FLAC_SUBFRAME_VERBATIM  1 
   41 #define FLAC_SUBFRAME_FIXED     8 
   42 #define FLAC_SUBFRAME_LPC      32 
   44 #define MAX_FIXED_ORDER     4 
   45 #define MAX_PARTITION_ORDER 8 
   46 #define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER) 
   47 #define MAX_LPC_PRECISION  15 
   48 #define MIN_LPC_SHIFT       0 
   49 #define MAX_LPC_SHIFT      15 
  151     put_bits(&pb,  5, 
s->avctx->bits_per_raw_sample - 1);
 
  153     put_bits(&pb, 24, (
s->sample_count & 0xFFFFFF000LL) >> 12);
 
  154     put_bits(&pb, 12,  
s->sample_count & 0x000000FFFLL);
 
  156     memcpy(&
header[18], 
s->md5sum, 16);
 
  175     count += ch * ((7+
bps+7)/8); 
 
  178         count += (( 2*
bps+1) * blocksize + 7) / 8;
 
  180         count += ( ch*
bps    * blocksize + 7) / 8;
 
  200     target    = (samplerate * block_time_ms) / 1000;
 
  201     for (
i = 0; 
i < 16; 
i++) {
 
  226         av_log(avctx, 
AV_LOG_DEBUG, 
" lpc type: Levinson-Durbin recursion with Welch window\n");
 
  292                    "encoding as 24 bits-per-sample, more is considered " 
  293                    "experimental. Add -strict experimental if you want " 
  294                    "to encode more than 24 bits-per-sample\n");
 
  314     for (
i = 1; 
i < 12; 
i++) {
 
  324         if (freq % 1000 == 0 && freq < 255000) {
 
  326             s->sr_code[1] = freq / 1000;
 
  327         } 
else if (freq % 10 == 0 && freq < 655350) {
 
  329             s->sr_code[1] = freq / 10;
 
  330         } 
else if (freq < 65535) {
 
  332             s->sr_code[1] = freq;
 
  333         } 
else if (freq < 1048576) {
 
  340         s->samplerate = freq;
 
  345         s->options.compression_level = 5;
 
  349     level = 
s->options.compression_level;
 
  352                s->options.compression_level);
 
  356     s->options.block_time_ms = ((
int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[
level];
 
  365     if (
s->options.min_prediction_order < 0)
 
  366         s->options.min_prediction_order = ((
int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[
level];
 
  367     if (
s->options.max_prediction_order < 0)
 
  368         s->options.max_prediction_order = ((
int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[
level];
 
  370     if (
s->options.prediction_order_method < 0)
 
  377     if (
s->options.min_partition_order > 
s->options.max_partition_order) {
 
  379                s->options.min_partition_order, 
s->options.max_partition_order);
 
  382     if (
s->options.min_partition_order < 0)
 
  383         s->options.min_partition_order = ((
int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[
level];
 
  384     if (
s->options.max_partition_order < 0)
 
  385         s->options.max_partition_order = ((
int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[
level];
 
  388         s->options.min_prediction_order = 0;
 
  389         s->options.max_prediction_order = 0;
 
  393                    "invalid min prediction order %d, clamped to %d\n",
 
  399                    "invalid max prediction order %d, clamped to %d\n",
 
  405     if (
s->options.max_prediction_order < 
s->options.min_prediction_order) {
 
  407                s->options.min_prediction_order, 
s->options.max_prediction_order);
 
  421     s->max_blocksize = 
s->avctx->frame_size;
 
  426                                                s->avctx->bits_per_raw_sample);
 
  442     s->min_framesize = 
s->max_framesize;
 
  457                                              "output stream will have incorrect " 
  458                                              "channel layout.\n");
 
  461                                                "will use Flac channel layout for " 
  485     for (
i = 0; 
i < 16; 
i++) {
 
  489             frame->bs_code[1] = 0;
 
  494         frame->blocksize = nb_samples;
 
  495         if (
frame->blocksize <= 256) {
 
  496             frame->bs_code[0] = 6;
 
  499             frame->bs_code[0] = 7;
 
  504     for (ch = 0; ch < 
s->channels; ch++) {
 
  508         sub->
obits  = 
s->avctx->bits_per_raw_sample;
 
  516     frame->verbatim_only = 0;
 
  528                 s->avctx->bits_per_raw_sample;
 
  530 #define COPY_SAMPLES(bits) do {                                     \ 
  531     const int ## bits ## _t *samples0 = samples;                    \ 
  533     for (i = 0, j = 0; i < frame->blocksize; i++)                   \ 
  534         for (ch = 0; ch < s->channels; ch++, j++)                   \ 
  535             frame->subframes[ch].samples[i] = samples0[j] >> shift; \ 
  550     for (
i = 0; 
i < n; 
i++) {
 
  551         unsigned v = ((unsigned)(res[
i]) << 1) ^ (res[
i] >> 31);
 
  552         count += (v >> k) + 1 + k;
 
  561     int p, porder, psize;
 
  575         count += 
s->frame.blocksize * sub->
obits;
 
  578         count += pred_order * sub->
obits;
 
  582             count += 4 + 5 + pred_order * 
s->options.lpc_coeff_precision;
 
  589         psize  = 
s->frame.blocksize >> porder;
 
  595         for (p = 0; p < 1 << porder; p++) {
 
  600             part_end = 
FFMIN(
s->frame.blocksize, part_end + psize);
 
  608 #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k))) 
  620     sum2 = sum - (n >> 1);
 
  622     return FFMIN(k, max_param);
 
  631     for (k = 0; k <= max_param; k++) {
 
  633         if (
bits < bestbits) {
 
  644                                          int n, 
int pred_order, 
int max_param, 
int exact)
 
  650     part     = (1 << porder);
 
  653     cnt = (n >> porder) - pred_order;
 
  654     for (
i = 0; 
i < part; 
i++) {
 
  657             all_bits += sums[k][
i];
 
  677     const uint32_t *res, *res_end;
 
  682     for (k = 0; k <= kmax; k++) {
 
  683         res     = &
data[pred_order];
 
  684         res_end = &
data[n >> pmax];
 
  685         for (
i = 0; 
i < parts; 
i++) {
 
  687                 uint64_t sum = (1LL + k) * (res_end - res);
 
  688                 while (res < res_end)
 
  689                     sum += *(res++) >> k;
 
  693                 while (res < res_end)
 
  697             res_end += n >> pmax;
 
  705     int parts = (1 << 
level);
 
  706     for (
i = 0; 
i < parts; 
i++) {
 
  707         for (k=0; k<=kmax; k++)
 
  708             sums[k][
i] = sums[k][2*
i] + sums[k][2*
i+1];
 
  716                                  const int32_t *
data, 
int n, 
int pred_order, 
int exact)
 
  730     for (
i = pred_order; 
i < n; 
i++)
 
  731         udata[
i] = ((
unsigned)(
data[
i]) << 1) ^ (
data[
i] >> 31);
 
  733     calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums);
 
  736     bits[pmin] = UINT32_MAX;
 
  739         if (
bits[
i] < 
bits[opt_porder] || pmax == pmin) {
 
  748     return bits[opt_porder];
 
  765                                s->frame.blocksize, pred_order);
 
  767                                s->frame.blocksize, pred_order);
 
  771         bits += 4 + 5 + pred_order * 
s->options.lpc_coeff_precision;
 
  773                              s->frame.blocksize, pred_order, 
s->options.exact_rice_parameters);
 
  783     for (
i = 0; 
i < order; 
i++)
 
  787         for (
i = order; 
i < n; 
i++)
 
  789     } 
else if (order == 1) {
 
  790         for (
i = order; 
i < n; 
i++)
 
  791             res[
i] = smp[
i] - smp[
i-1];
 
  792     } 
else if (order == 2) {
 
  793         int a = smp[order-1] - smp[order-2];
 
  794         for (
i = order; 
i < n; 
i += 2) {
 
  795             int b    = smp[
i  ] - smp[
i-1];
 
  797             a        = smp[
i+1] - smp[
i  ];
 
  800     } 
else if (order == 3) {
 
  801         int a = smp[order-1] -   smp[order-2];
 
  802         int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
 
  803         for (
i = order; 
i < n; 
i += 2) {
 
  804             int b    = smp[
i  ] - smp[
i-1];
 
  807             a        = smp[
i+1] - smp[
i  ];
 
  812         int a = smp[order-1] -   smp[order-2];
 
  813         int c = smp[order-1] - 2*smp[order-2] +   smp[order-3];
 
  814         int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
 
  815         for (
i = order; 
i < n; 
i += 2) {
 
  816             int b    = smp[
i  ] - smp[
i-1];
 
  820             a        = smp[
i+1] - smp[
i  ];
 
  834 #define ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT()                   \ 
  836     for (int i = 0; i < order; i++)                                   \ 
  839         for (int i = order; i < n; i++) {                             \ 
  840             if (smp[i] == INT32_MIN)                                  \ 
  844     } else if (order == 1) {                                          \ 
  845         for (int i = order; i < n; i++) {                             \ 
  846             int64_t res64 = (int64_t)smp[i] - smp[i-1];               \ 
  847             if (res64 <= INT32_MIN || res64 > INT32_MAX)              \ 
  851     } else if (order == 2) {                                          \ 
  852         for (int i = order; i < n; i++) {                             \ 
  853             int64_t res64 = (int64_t)smp[i] - 2*(int64_t)smp[i-1] + smp[i-2]; \ 
  854             if (res64 <= INT32_MIN || res64 > INT32_MAX)              \ 
  858     } else if (order == 3) {                                          \ 
  859         for (int i = order; i < n; i++) {                             \ 
  860             int64_t res64 = (int64_t)smp[i] - 3*(int64_t)smp[i-1] + 3*(int64_t)smp[i-2] - smp[i-3];  \ 
  861             if (res64 <= INT32_MIN || res64 > INT32_MAX)              \ 
  866         for (int i = order; i < n; i++) {                             \ 
  867             int64_t res64 = (int64_t)smp[i] - 4*(int64_t)smp[i-1] + 6*(int64_t)smp[i-2] - 4*(int64_t)smp[i-3] + smp[i-4];   \ 
  868             if (res64 <= INT32_MIN || res64 > INT32_MAX)              \ 
  889 #define LPC_ENCODE_WITH_RESIDUAL_LIMIT()                 \ 
  891    for (int i = 0; i < order; i++)                       \ 
  893     for (int i = order; i < len; i++) {                  \ 
  894         int64_t p = 0, tmp;                              \ 
  895         for (int j = 0; j < order; j++)                  \ 
  896             p += (int64_t)coefs[j]*smp[(i-1)-j];         \ 
  899         if (tmp <= INT32_MIN || tmp > INT32_MAX)         \ 
  923     uint64_t max_residual_value = 0;
 
  927     for (
int i = 0; 
i < order; 
i++)
 
  928         max_residual_value += 
FFABS(max_sample_value * coefs[
i]);
 
  929     max_residual_value >>= 
shift;
 
  930     max_residual_value += max_sample_value;
 
  934     } 
else if (max_residual_value > INT32_MAX) {
 
  937     } 
else if (
bps + 
s->options.lpc_coeff_precision + 
av_log2(order) <= 32) {
 
  938         s->flac_dsp.lpc16_encode(res, smp, 
len, order, coefs, 
shift);
 
  940         s->flac_dsp.lpc32_encode(res, smp, 
len, order, coefs, 
shift);
 
  945 #define DEFAULT_TO_VERBATIM()                               \ 
  947     sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;    \ 
  948     if (sub->obits <= 32)                                   \ 
  949         memcpy(res, smp, n * sizeof(int32_t));              \ 
  950     return subframe_count_exact(s, sub, 0);                 \ 
  956     int min_order, max_order, opt_order, omethod;
 
  965     sub       = &
frame->subframes[ch];
 
  968     smp_33bps = 
frame->samples_33bps;
 
  969     n         = 
frame->blocksize;
 
  972     if (sub->
obits > 32) {
 
  973         for (
i = 1; 
i < n; 
i++)
 
  974             if(smp_33bps[
i] != smp_33bps[0])
 
  981         for (
i = 1; 
i < n; 
i++)
 
  992     if (
frame->verbatim_only || n < 5) {
 
  996     min_order  = 
s->options.min_prediction_order;
 
  997     max_order  = 
s->options.max_prediction_order;
 
  998     omethod    = 
s->options.prediction_order_method;
 
 1008         bits[0]   = UINT32_MAX;
 
 1009         for (
i = min_order; 
i <= max_order; 
i++) {
 
 1010             if (sub->
obits == 33) {
 
 1013             } 
else if (sub->
obits + 
i >= 32) {
 
 1022         if (opt_order == 0 && 
bits[0] == UINT32_MAX) {
 
 1027         sub->
order     = opt_order;
 
 1029         if (sub->
order != max_order) {
 
 1030             if (sub->
obits == 33)
 
 1032             else if (sub->
obits + 
i >= 32)
 
 1043     if (sub->
obits == 33)
 
 1048         for (
i = 0; 
i < n; 
i++)
 
 1049             smp[
i] = smp_33bps[
i] >> 1;
 
 1052                                   s->options.lpc_coeff_precision, coefs, 
shift, 
s->options.lpc_type,
 
 1053                                   s->options.lpc_passes, omethod,
 
 1059         int levels = 1 << omethod;
 
 1062         int opt_index   = levels-1;
 
 1063         opt_order       = max_order-1;
 
 1064         bits[opt_index] = UINT32_MAX;
 
 1065         for (
i = levels-1; 
i >= 0; 
i--) {
 
 1066             int last_order = order;
 
 1067             order = min_order + (((max_order-min_order+1) * (
i+1)) / levels)-1;
 
 1068             order = 
av_clip(order, min_order - 1, max_order - 1);
 
 1069             if (order == last_order)
 
 1084         bits[0]   = UINT32_MAX;
 
 1085         for (
i = min_order-1; 
i < max_order; 
i++) {
 
 1097         opt_order = min_order - 1 + (max_order-min_order)/3;
 
 1101             int last = opt_order;
 
 1103                 if (i < min_order-1 || i >= max_order || 
bits[
i] < UINT32_MAX)
 
 1115     if (
s->options.multi_dim_quant) {
 
 1117         int i, 
step, improved;
 
 1118         int64_t best_score = INT64_MAX;
 
 1121         qmax = (1 << (
s->options.lpc_coeff_precision - 1)) - 1;
 
 1123         for (
i=0; 
i<opt_order; 
i++)
 
 1134                 for (
i=0; 
i<opt_order; 
i++) {
 
 1135                     int diff = ((
tmp + 1) % 3) - 1;
 
 1136                     lpc_try[
i] = 
av_clip(coefs[opt_order - 1][
i] + 
diff, -qmax, qmax);
 
 1146                 if (score < best_score) {
 
 1148                     memcpy(coefs[opt_order-1], lpc_try, 
sizeof(*coefs));
 
 1155     sub->
order     = opt_order;
 
 1194     if (
s->frame.bs_code[0] == 6)
 
 1196     else if (
s->frame.bs_code[0] == 7)
 
 1200     count += ((
s->sr_code[0] == 12) + (
s->sr_code[0] > 12) * 2) * 8;
 
 1216     for (ch = 0; ch < 
s->channels; ch++)
 
 1219     count += (8 - (count & 7)) & 7; 
 
 1223     if (count > INT_MAX)
 
 1231     int ch, 
i, wasted_bits;
 
 1233     for (ch = 0; ch < 
s->channels; ch++) {
 
 1236         if (sub->
obits > 32) {
 
 1238             for (
i = 0; 
i < 
s->frame.blocksize; 
i++) {
 
 1239                 v |= 
s->frame.samples_33bps[
i];
 
 1251             for (
i = 0; 
i < 
s->frame.blocksize; 
i++)
 
 1252                 sub->
samples[
i] = 
s->frame.samples_33bps[
i] >> v;
 
 1256             for (
i = 0; 
i < 
s->frame.blocksize; 
i++) {
 
 1267             for (
i = 0; 
i < 
s->frame.blocksize; 
i++)
 
 1272         sub->
wasted = wasted_bits;
 
 1273         sub->
obits -= wasted_bits;
 
 1277         if (sub->
obits <= 17)
 
 1284                                 int max_rice_param, 
int bps)
 
 1292     sum[0] = sum[1] = sum[2] = sum[3] = 0;
 
 1295         for (
int i = 2; 
i < n; 
i++) {
 
 1296             lt = left_ch[
i]  - 2*left_ch[
i-1]  + left_ch[
i-2];
 
 1297             rt = right_ch[
i] - 2*right_ch[
i-1] + right_ch[
i-2];
 
 1298             sum[2] += 
FFABS((lt + rt) >> 1);
 
 1299             sum[3] += 
FFABS(lt - rt);
 
 1300             sum[0] += 
FFABS(lt);
 
 1301             sum[1] += 
FFABS(rt);
 
 1305         for (
int i = 2; 
i < n; 
i++) {
 
 1308             sum[2] += 
FFABS((lt + rt) >> 1);
 
 1309             sum[3] += 
FFABS(lt - rt);
 
 1310             sum[0] += 
FFABS(lt);
 
 1311             sum[1] += 
FFABS(rt);
 
 1315     for (
int i = 0; 
i < 4; 
i++) {
 
 1321     score[0] = sum[0] + sum[1];
 
 1322     score[1] = sum[0] + sum[3];
 
 1323     score[2] = sum[1] + sum[3];
 
 1324     score[3] = sum[2] + sum[3];
 
 1328     for (
int i = 1; 
i < 4; 
i++)
 
 1329         if (score[
i] < score[best])
 
 1347     n          = 
frame->blocksize;
 
 1349     right      = 
frame->subframes[1].samples;
 
 1350     side_33bps = 
frame->samples_33bps;
 
 1352     if (
s->channels != 2) {
 
 1357     if (
s->options.ch_mode < 0) {
 
 1358         int max_rice_param = (1 << 
frame->subframes[0].rc.coding_mode) - 2;
 
 1361         frame->ch_mode = 
s->options.ch_mode;
 
 1366     if(
s->avctx->bits_per_raw_sample == 32) {
 
 1369             for (
int i = 0; 
i < n; 
i++) {
 
 1372                 side_33bps[
i] =  
tmp - right[
i];
 
 1374             frame->subframes[1].obits++;
 
 1376             for (
int i = 0; 
i < n; 
i++)
 
 1378             frame->subframes[1].obits++;
 
 1380             for (
int i = 0; 
i < n; 
i++)
 
 1382             frame->subframes[0].obits++;
 
 1387             for (
int i = 0; 
i < n; 
i++) {
 
 1390                 right[
i] =  
tmp - right[
i];
 
 1392             frame->subframes[1].obits++;
 
 1394             for (
int i = 0; 
i < n; 
i++)
 
 1395                 right[
i] = 
left[
i] - right[
i];
 
 1396             frame->subframes[1].obits++;
 
 1398             for (
int i = 0; 
i < n; 
i++)
 
 1400             frame->subframes[0].obits++;
 
 1433     if (
frame->bs_code[0] == 6)
 
 1435     else if (
frame->bs_code[0] == 7)
 
 1438     if (
s->sr_code[0] == 12)
 
 1440     else if (
s->sr_code[0] > 12)
 
 1454     v = ((unsigned)(
i) << 1) ^ (
i >> 31);
 
 1463         unsigned mask = UINT32_MAX >> (32-k);
 
 1473     for (ch = 0; ch < 
s->channels; ch++) {
 
 1475         int p, porder, psize;
 
 1489             if(sub->
obits == 33)
 
 1491             else if(sub->
obits == 32)
 
 1496             if (sub->
obits == 33) {
 
 1497                 int64_t *res64 = 
s->frame.samples_33bps;
 
 1498                 int64_t *frame_end64 = &
s->frame.samples_33bps[
s->frame.blocksize];
 
 1499                 while (res64 < frame_end64)
 
 1501             } 
else if (sub->
obits == 32) {
 
 1510             if (sub->
obits == 33) {
 
 1511                 for (
int i = 0; 
i < sub->
order; 
i++)
 
 1514             } 
else if (sub->
obits == 32) {
 
 1515                 for (
int i = 0; 
i < sub->
order; 
i++)
 
 1518                 for (
int i = 0; 
i < sub->
order; 
i++)
 
 1524                 int cbits = 
s->options.lpc_coeff_precision;
 
 1527                 for (
int i = 0; 
i < sub->
order; 
i++)
 
 1536             psize   = 
s->frame.blocksize >> porder;
 
 1541             for (p = 0; p < 1 << porder; p++) {
 
 1544                 while (res < part_end)
 
 1577     int buf_size = 
s->frame.blocksize * 
s->channels *
 
 1578                    ((
s->avctx->bits_per_raw_sample + 7) / 8);
 
 1580     if (
s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) {
 
 1586     if (
s->avctx->bits_per_raw_sample <= 16) {
 
 1587         buf = (
const uint8_t *)
samples;
 
 1589         s->bdsp.bswap16_buf((uint16_t *) 
s->md5_buffer,
 
 1590                             (
const uint16_t *) 
samples, buf_size / 2);
 
 1591         buf = 
s->md5_buffer;
 
 1593     } 
else if (
s->avctx->bits_per_raw_sample <= 24) {
 
 1596         uint8_t *
tmp            = 
s->md5_buffer;
 
 1598         for (
i = 0; 
i < 
s->frame.blocksize * 
s->channels; 
i++) {
 
 1602         buf = 
s->md5_buffer;
 
 1607         uint8_t *
tmp            = 
s->md5_buffer;
 
 1609         for (
i = 0; 
i < 
s->frame.blocksize * 
s->channels; 
i++)
 
 1611         buf = 
s->md5_buffer;
 
 1623     int frame_bytes, out_bytes, 
ret;
 
 1629         s->max_framesize = 
s->max_encoded_framesize;
 
 1640             avpkt->
pts = 
s->next_pts;
 
 1642             *got_packet_ptr = 1;
 
 1668     if (frame_bytes < 0 || frame_bytes > 
s->max_framesize) {
 
 1669         s->frame.verbatim_only = 1;
 
 1671         if (frame_bytes < 0) {
 
 1688     if (out_bytes > 
s->max_encoded_framesize)
 
 1689         s->max_encoded_framesize = out_bytes;
 
 1690     if (out_bytes < s->min_framesize)
 
 1691         s->min_framesize = out_bytes;
 
 1697     *got_packet_ptr = 1;
 
 1712 #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM 
 1715 { 
"lpc_type", 
"LPC algorithm", offsetof(
FlacEncodeContext, 
options.lpc_type), 
AV_OPT_TYPE_INT, {.i64 = 
FF_LPC_TYPE_DEFAULT }, 
FF_LPC_TYPE_DEFAULT, 
FF_LPC_TYPE_NB-1, 
FLAGS, .unit = 
"lpc_type" },
 
 1723 { 
"prediction_order_method", 
"Search method for selecting prediction order", offsetof(
FlacEncodeContext, 
options.prediction_order_method), 
AV_OPT_TYPE_INT, {.i64 = -1 }, -1, 
ORDER_METHOD_LOG, 
FLAGS, .unit = 
"predm" },
 
 1730 { 
"ch_mode", 
"Stereo decorrelation mode", offsetof(
FlacEncodeContext, 
options.ch_mode), 
AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 
FLAC_CHMODE_MID_SIDE, 
FLAGS, .unit = 
"ch_mode" },
 
  
int frame_size
Number of samples per channel in an audio frame.
#define AV_LOG_WARNING
Something somehow does not look correct.
#define LPC_ENCODE_WITH_RESIDUAL_LIMIT()
#define PUT_UTF8(val, tmp, PUT_BYTE)
FFLPCType
LPC analysis type.
int32_t samples[FLAC_MAX_BLOCKSIZE]
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void av_unused put_bits32(PutBitContext *s, uint32_t value)
Write exactly 32 bits into a bitstream.
static av_cold int flac_encode_init(AVCodecContext *avctx)
static int put_bytes_output(const PutBitContext *s)
int sample_rate
samples per second
int exact_rice_parameters
#define MAX_PARTITION_ORDER
@ AV_PKT_DATA_NEW_EXTRADATA
The AV_PKT_DATA_NEW_EXTRADATA is used to notify the codec or the format that the extradata buffer was...
static int encode_residual_fixed_with_residual_limit_33bps(int32_t *res, const int64_t *smp, int n, int order)
#define FF_CODEC_CAP_EOF_FLUSH
The encoder has AV_CODEC_CAP_DELAY set, but does not actually have delay - it only wants to be flushe...
int ff_lpc_calc_coefs(LPCContext *s, const int32_t *samples, int blocksize, int min_order, int max_order, int precision, int32_t coefs[][MAX_LPC_ORDER], int *shift, enum FFLPCType lpc_type, int lpc_passes, int omethod, int min_shift, int max_shift, int zero_shift)
Calculate LPC coefficients for multiple orders.
static void put_sbits(PutBitContext *pb, int n, int32_t value)
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, enum FFLPCType lpc_type)
Initialize LPCContext.
#define AV_CHANNEL_LAYOUT_2_2
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
@ FF_LPC_TYPE_CHOLESKY
Cholesky factorization.
int prediction_order_method
static int select_blocksize(int samplerate, int block_time_ms)
Set blocksize based on samplerate.
#define FF_COMPLIANCE_EXPERIMENTAL
Allow nonstandardized experimental things.
enum AVChannelOrder order
Channel order used in this layout.
int nb_channels
Number of channels in this layout.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static uint64_t find_subframe_rice_params(FlacEncodeContext *s, FlacSubframe *sub, int pred_order)
#define ORDER_METHOD_4LEVEL
AVCodec p
The public AVCodec.
AVChannelLayout ch_layout
Audio channel layout.
void av_shrink_packet(AVPacket *pkt, int size)
Reduce packet size, correctly zeroing padding.
#define DEFAULT_TO_VERBATIM()
static double val(void *priv, double ch)
FLACEncDSPContext flac_dsp
#define FF_CODEC_ENCODE_CB(func)
static int64_t frame_end(const SyncQueue *sq, SyncQueueFrame frame, int nb_samples)
Compute the end timestamp of a frame.
#define AV_CHANNEL_LAYOUT_SURROUND
@ FF_LPC_TYPE_DEFAULT
use the codec default LPC type
const int32_t ff_flac_blocksize_table[16]
static int lpc_encode_choose_datapath(FlacEncodeContext *s, int32_t bps, int32_t *res, const int32_t *smp, const int64_t *smp_33bps, int len, int order, int32_t *coefs, int shift)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static void write_subframes(FlacEncodeContext *s)
static const uint16_t mask[17]
@ AV_CHANNEL_ORDER_UNSPEC
Only the channel count is specified, without any further information about the channel order.
#define AV_CHANNEL_LAYOUT_5POINT0_BACK
static int flac_get_max_frame_size(int blocksize, int ch, int bps)
Calculate an estimate for the maximum frame size based on verbatim mode.
#define AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
This encoder can reorder user opaque values from input AVFrames and return them with corresponding ou...
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static void remove_wasted_bits(FlacEncodeContext *s)
#define FLAC_SUBFRAME_LPC
#define COPY_SAMPLES(bits)
static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder, uint64_t sums[32][MAX_PARTITIONS], int n, int pred_order, int max_param, int exact)
#define FLAC_SUBFRAME_VERBATIM
#define CODEC_LONG_NAME(str)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
#define FLAC_SUBFRAME_CONSTANT
const int ff_flac_sample_rate_table[16]
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
FlacSubframe subframes[FLAC_MAX_CHANNELS]
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
int64_t samples_33bps[FLAC_MAX_BLOCKSIZE]
#define FLAC_SUBFRAME_FIXED
static av_always_inline int64_t ff_samples_to_time_base(const AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
const char * av_default_item_name(void *ptr)
Return the context name.
av_cold void ff_lpc_end(LPCContext *s)
Uninitialize LPCContext.
#define FLAC_STREAMINFO_SIZE
#define ORDER_METHOD_SEARCH
static void put_sbits63(PutBitContext *pb, int n, int64_t value)
static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n, int max_rice_param, int bps)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static uint64_t rice_count_exact(const int32_t *res, int n, int k)
int max_encoded_framesize
static int encode_residual_ch(FlacEncodeContext *s, int ch)
static int get_max_p_order(int max_porder, int n, int order)
#define ORDER_METHOD_8LEVEL
static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param)
int(* init)(AVBSFContext *ctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
unsigned int md5_buffer_size
static int encode_residual_fixed_with_residual_limit(int32_t *res, const int32_t *smp, int n, int order)
An AVChannelLayout holds information about the channel layout of audio data.
static int shift(int a, int b)
static void channel_decorrelation(FlacEncodeContext *s)
Perform stereo channel decorrelation.
@ FF_LPC_TYPE_NB
Not part of ABI.
enum AVSampleFormat sample_fmt
audio sample format
static int encode_frame(FlacEncodeContext *s)
static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order, uint64_t sums[32][MAX_PARTITIONS])
int32_t residual[FLAC_MAX_BLOCKSIZE+11]
CompressionOptions options
static const uint8_t header[24]
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
static int write_frame(FlacEncodeContext *s, AVPacket *avpkt)
static const AVOption options[]
int av_channel_layout_compare(const AVChannelLayout *chl, const AVChannelLayout *chl1)
Check whether two channel layouts are semantically the same, i.e.
int32_t coefs[MAX_LPC_ORDER]
static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax)
void av_md5_init(AVMD5 *ctx)
Initialize MD5 hashing.
int nb_samples
number of audio samples (per channel) described by this frame
#define i(width, name, range_min, range_max)
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static void write_utf8(PutBitContext *pb, uint32_t val)
#define AV_CHANNEL_LAYOUT_QUAD
static int count_frame_header(FlacEncodeContext *s)
const FFCodec ff_flac_encoder
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
AVSampleFormat
Audio sample formats.
static void write_frame_header(FlacEncodeContext *s)
av_cold void ff_flacencdsp_init(FLACEncDSPContext *c)
static void write_frame_footer(FlacEncodeContext *s)
@ AV_SAMPLE_FMT_S16
signed 16 bits
const char * name
Name of the codec implementation.
static void copy_samples(FlacEncodeContext *s, const void *samples)
Copy channel-interleaved input samples into separate subframes.
void av_md5_final(AVMD5 *ctx, uint8_t *dst)
Finish hashing and output digest value.
static int lpc_encode_with_residual_limit_33bps(int32_t *res, const int64_t *smp, int len, int order, int32_t *coefs, int shift)
static uint64_t calc_rice_params(RiceContext *rc, uint32_t udata[FLAC_MAX_BLOCKSIZE], uint64_t sums[32][MAX_PARTITIONS], int pmin, int pmax, const int32_t *data, int n, int pred_order, int exact)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, int order)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
#define FLAC_MAX_CHANNELS
#define MAX_LPC_PRECISION
main external API structure.
#define ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT()
uint64_t rc_sums[32][MAX_PARTITIONS]
uint32_t rc_udata[FLAC_MAX_BLOCKSIZE]
uint8_t * av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type, size_t size)
Allocate new information of a packet.
int ff_get_encode_buffer(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int flags)
Get a buffer for a packet.
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
struct AVMD5 * av_md5_alloc(void)
Allocate an AVMD5 context.
static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub, int pred_order)
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Filter the word “frame” indicates either a video frame or a group of audio samples
static int lpc_encode_with_residual_limit(int32_t *res, const int32_t *smp, int len, int order, int32_t *coefs, int shift)
void av_md5_update(AVMD5 *ctx, const uint8_t *src, size_t len)
Update hash value.
static void init_frame(FlacEncodeContext *s, int nb_samples)
int params[MAX_PARTITIONS]
#define FLAC_MAX_BLOCKSIZE
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
This structure stores compressed data.
enum CodingMode coding_mode
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
static int find_optimal_param(uint64_t sum, int n, int max_param)
Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
static av_cold void dprint_compression_options(FlacEncodeContext *s)
static int update_md5_sum(FlacEncodeContext *s, const void *samples)
static av_cold int flac_encode_close(AVCodecContext *avctx)
#define AV_CHANNEL_LAYOUT_5POINT1_BACK
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
static const AVClass flac_encoder_class
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
Write streaminfo metadata block to byte array.
#define AV_CHANNEL_LAYOUT_5POINT0
#define ORDER_METHOD_2LEVEL
#define FLAC_MIN_BLOCKSIZE
static void set_sr_golomb_flac(PutBitContext *pb, int i, int k)
@ FF_LPC_TYPE_NONE
do not use LPC prediction or use all zero coefficients
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
#define AV_CHANNEL_LAYOUT_5POINT1
@ AV_SAMPLE_FMT_S32
signed 32 bits
@ FF_LPC_TYPE_LEVINSON
Levinson-Durbin recursion.
#define rice_encode_count(sum, n, k)
@ FLAC_CHMODE_INDEPENDENT
@ FF_LPC_TYPE_FIXED
fixed LPC coefficients