Go to the documentation of this file.
   21 #define BITSTREAM_WRITER_LE 
   35 #define UPDATE_WEIGHT(weight, delta, source, result) \ 
   36     if ((source) && (result)) { \ 
   37         int32_t s = (int32_t) ((source) ^ (result)) >> 31; \ 
   38         weight = ((delta) ^ s) + ((weight) - s); \ 
   41 #define APPLY_WEIGHT_F(weight, sample) ((((((sample) & 0xffff) * (weight)) >> 9) + \ 
   42     ((((sample) & ~0xffff) >> 9) * (weight)) + 1) >> 1) 
   44 #define APPLY_WEIGHT_I(weight, sample) (((weight) * (sample) + 512) >> 10) 
   46 #define APPLY_WEIGHT(weight, sample) ((sample) != (short) (sample) ? \ 
   47     APPLY_WEIGHT_F(weight, sample) : APPLY_WEIGHT_I (weight, sample)) 
   49 #define CLEAR(destin) memset(&destin, 0, sizeof(destin)); 
   52 #define SHIFT_MASK      (0x1FU << SHIFT_LSB) 
   55 #define MAG_MASK        (0x1FU << MAG_LSB) 
   58 #define SRATE_MASK      (0xFU << SRATE_LSB) 
   60 #define EXTRA_TRY_DELTAS     1 
   61 #define EXTRA_ADJUST_DELTAS  2 
   62 #define EXTRA_SORT_FIRST     4 
   63 #define EXTRA_BRANCHES       8 
   64 #define EXTRA_SORT_LAST     16 
  160             s->decorr_filter = 3;
 
  179             s->decorr_filter = 2;
 
  182             s->decorr_filter = 1;
 
  185             s->decorr_filter = 0;
 
  193     s->delta_decay = 2.0;
 
  201     for (
i = 0; 
i < nb_samples; 
i++)
 
  206                          int nb_samples, 
int shift)
 
  209     for (
i = 0; 
i < nb_samples; 
i++) {
 
  215 #define FLOAT_SHIFT_ONES 1 
  216 #define FLOAT_SHIFT_SAME 2 
  217 #define FLOAT_SHIFT_SENT 4 
  218 #define FLOAT_ZEROS_SENT 8 
  219 #define FLOAT_NEG_ZEROS  0x10 
  220 #define FLOAT_EXCEPTIONS 0x20 
  222 #define get_mantissa(f)     ((f) & 0x7fffff) 
  223 #define get_exponent(f)     (((f) >> 23) & 0xff) 
  224 #define get_sign(f)         (((f) >> 31) & 0x1) 
  238         shift_count = 
s->max_exp ? 
s->max_exp - 1 : 0;
 
  242     if (shift_count < 25)
 
  243         value >>= shift_count;
 
  252     } 
else if (shift_count) {
 
  271     uint32_t crc = 0xffffffff
u;
 
  274     s->shifted_ones = 
s->shifted_zeros = 
s->shifted_both = 
s->ordata = 0;
 
  275     s->float_shift = 
s->float_flags = 0;
 
  276     s->false_zeros = 
s->neg_zeros = 0;
 
  280         for (
i = 0; 
i < nb_samples; 
i++) {
 
  288         for (
i = 0; 
i < nb_samples; 
i++) {
 
  307         for (
i = 0; 
i < nb_samples; 
i++)
 
  310         for (
i = 0; 
i < nb_samples; 
i++) {
 
  316     s->float_max_exp = 
s->max_exp;
 
  320     else if (
s->shifted_ones && !
s->shifted_zeros)
 
  322     else if (
s->shifted_ones && 
s->shifted_zeros)
 
  324     else if (
s->ordata && !(
s->ordata & 1)) {
 
  328         } 
while (!(
s->ordata & 1));
 
  333             shift_stereo(samples_l, samples_r, nb_samples, 
s->float_shift);
 
  343     if (
s->false_zeros || 
s->neg_zeros)
 
  357     uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0;
 
  358     int i, total_shift = 0;
 
  360     s->int32_sent_bits = 
s->int32_zeros = 
s->int32_ones = 
s->int32_dups = 0;
 
  363         for (
i = 0; 
i < nb_samples; 
i++) {
 
  366             magdata |= (
M < 0) ? ~
M : 
M;
 
  367             xordata |= 
M ^ -(
M & 1);
 
  371             if ((ordata & 1) && !(anddata & 1) && (xordata & 2))
 
  375         for (
i = 0; 
i < nb_samples; 
i++) {
 
  379             magdata |= (
L < 0) ? ~
L : 
L;
 
  380             magdata |= (
R < 0) ? ~
R : 
R;
 
  381             xordata |= 
L ^ -(
L & 1);
 
  382             xordata |= 
R ^ -(
R & 1);
 
  386             if ((ordata & 1) && !(anddata & 1) && (xordata & 2))
 
  407         } 
while (!(ordata & 1));
 
  408     } 
else if (anddata & 1) {
 
  414         } 
while (anddata & 1);
 
  415     } 
else if (!(xordata & 2)) {
 
  421         } 
while (!(xordata & 2));
 
  428             shift_mono(samples_l, nb_samples, total_shift);
 
  430             shift_stereo(samples_l, samples_r, nb_samples, total_shift);
 
  438     uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0;
 
  439     uint32_t crc = 0xffffffff
u;
 
  440     int i, total_shift = 0;
 
  442     s->int32_sent_bits = 
s->int32_zeros = 
s->int32_ones = 
s->int32_dups = 0;
 
  445         for (
i = 0; 
i < nb_samples; 
i++) {
 
  448             crc = crc * 9 + (
M & 0xffff) * 3 + ((
M >> 16) & 0xffff);
 
  449             magdata |= (
M < 0) ? ~
M : 
M;
 
  450             xordata |= 
M ^ -(
M & 1);
 
  455         for (
i = 0; 
i < nb_samples; 
i++) {
 
  459             crc = crc * 9 + (
L & 0xffff) * 3 + ((
L >> 16) & 0xffff);
 
  460             crc = crc * 9 + (
R & 0xffff) * 3 + ((
R >> 16) & 0xffff);
 
  461             magdata |= (
L < 0) ? ~
L : 
L;
 
  462             magdata |= (
R < 0) ? ~
R : 
R;
 
  463             xordata |= 
L ^ -(
L & 1);
 
  464             xordata |= 
R ^ -(
R & 1);
 
  489         } 
while (!(ordata & 1));
 
  490     else if (anddata & 1)
 
  496         } 
while (anddata & 1);
 
  497     else if (!(xordata & 2))
 
  503         } 
while (!(xordata & 2));
 
  507         total_shift += 
s->int32_sent_bits;
 
  516             shift_mono(samples_l, nb_samples, total_shift);
 
  518             shift_stereo(samples_l, samples_r, nb_samples, total_shift);
 
  521     return s->int32_sent_bits;
 
  549                         int nb_samples, 
struct Decorr *dpp, 
int dir)
 
  556         out_samples += (nb_samples - 1);
 
  557         in_samples  += (nb_samples - 1);
 
  566         while (nb_samples--) {
 
  577             out_samples[0] = 
left;
 
  581     } 
else if (dpp->
value > 0) {
 
  582         while (nb_samples--) {
 
  593             out_samples[0] = 
left;
 
  630     } 
else if (dpp->
value > 1) {
 
  633         for (
i = 0, j = dpp->
value - 1, k = 0; k < dpp->
value / 2; 
i++, j--, k++) {
 
  643 #define count_bits(av) ((av) ? 32 - ff_clz(av) : 0) 
  649     if ((v += v >> 9) < (1 << 8)) {
 
  664     while (nb_samples--) {
 
  672                            int nb_samples, 
int limit)
 
  675     while (nb_samples--) {
 
  684                                int nb_samples, 
struct Decorr *dpp,
 
  687     struct Decorr dp, *dppi = dpp + tindex;
 
  695         pre_delta = 
delta + 1;
 
  699     dp.
delta = pre_delta;
 
  723                          int depth, 
int delta, uint32_t input_bits)
 
  725     int term, branches = 
s->num_branches - depth;
 
  727     uint32_t term_bits[22], 
bits;
 
  729     if (branches < 1 || depth + 1 == info->nterms)
 
  734     outsamples = 
s->sampleptrs[depth + 1][0];
 
  736     for (term = 1; term <= 18; term++) {
 
  737         if (term == 17 && branches == 1 && depth + 1 < 
info->nterms)
 
  740         if (term > 8 && term < 17)
 
  743         if (!
s->extra_flags && (term > 4 && term < 17))
 
  746         info->dps[depth].value = term;
 
  751         if (bits < info->best_bits) {
 
  754             memcpy(
s->decorr_passes, 
info->dps, 
sizeof(
info->dps[0]) * (depth + 1));
 
  755             memcpy(
s->sampleptrs[
info->nterms + 1][0],
 
  756                    s->sampleptrs[depth + 1][0], 
s->block_samples * 4);
 
  759         term_bits[term + 3] = 
bits;
 
  762     while (depth + 1 < 
info->nterms && branches--) {
 
  763         uint32_t local_best_bits = input_bits;
 
  764         int best_term = 0, 
i;
 
  766         for (
i = 0; 
i < 22; 
i++)
 
  767             if (term_bits[
i] && term_bits[
i] < local_best_bits) {
 
  768                 local_best_bits = term_bits[
i];
 
  775         term_bits[best_term + 3] = 0;
 
  777         info->dps[depth].value = best_term;
 
  793         memcpy(
info->dps, 
s->decorr_passes, 
sizeof(
s->decorr_passes));
 
  796         for (ri = 0; ri < 
info->nterms && 
s->decorr_passes[ri].value; ri++) {
 
  798             if (ri + 1 >= 
info->nterms || !
s->decorr_passes[ri+1].value)
 
  801             if (
s->decorr_passes[ri].value == 
s->decorr_passes[ri+1].value) {
 
  803                                    s->block_samples, 
info->dps, ri);
 
  807             info->dps[ri  ] = 
s->decorr_passes[ri+1];
 
  808             info->dps[ri+1] = 
s->decorr_passes[ri  ];
 
  810             for (
i = ri; 
i < 
info->nterms && 
s->decorr_passes[
i].value; 
i++)
 
  812                                    s->block_samples, 
info->dps, 
i);
 
  815             if (bits < info->best_bits) {
 
  819                 memcpy(
s->decorr_passes, 
info->dps, 
sizeof(
info->dps[0]) * 
i);
 
  820                 memcpy(
s->sampleptrs[
info->nterms + 1][0], 
s->sampleptrs[
i][0],
 
  821                        s->block_samples * 4);
 
  823                 info->dps[ri  ] = 
s->decorr_passes[ri];
 
  824                 info->dps[ri+1] = 
s->decorr_passes[ri+1];
 
  826                                    s->block_samples, 
info->dps, ri);
 
  837     if (!
s->decorr_passes[0].value)
 
  839     delta = 
s->decorr_passes[0].delta;
 
  844         for (
i = 0; 
i < 
info->nterms && 
s->decorr_passes[
i].value; 
i++) {
 
  845             info->dps[
i].value = 
s->decorr_passes[
i].value;
 
  848                                s->block_samples, 
info->dps, 
i);
 
  858         memcpy(
s->decorr_passes, 
info->dps, 
sizeof(
info->dps[0]) * 
i);
 
  859         memcpy(
s->sampleptrs[
info->nterms + 1][0],  
s->sampleptrs[
i][0],
 
  860                s->block_samples * 4);
 
  863     for (
d = 
delta + 1; !lower && 
d <= 7; 
d++) {
 
  866         for (
i = 0; 
i < 
info->nterms && 
s->decorr_passes[
i].value; 
i++) {
 
  867             info->dps[
i].value = 
s->decorr_passes[
i].value;
 
  870                                s->block_samples, 
info->dps, 
i);
 
  879         memcpy(
s->decorr_passes, 
info->dps, 
sizeof(
info->dps[0]) * 
i);
 
  880         memcpy(
s->sampleptrs[
info->nterms + 1][0], 
s->sampleptrs[
i][0],
 
  881                s->block_samples * 4);
 
  889     for (
i = 0; 
i < nterms + 2; 
i++) {
 
  891                               s->block_samples * 4);
 
  892         if (!
s->sampleptrs[
i][0])
 
  896                                   s->block_samples * 4);
 
  897             if (!
s->sampleptrs[
i][1])
 
  909     for (
i = 0; 
i < 2; 
i++) {
 
  911                               s->block_samples * 4);
 
  912         if (!
s->best_buffer[0])
 
  916                               s->block_samples * 4);
 
  917         if (!
s->temp_buffer[
i][0])
 
  921                                   s->block_samples * 4);
 
  922             if (!
s->best_buffer[1])
 
  926                                   s->block_samples * 4);
 
  927             if (!
s->temp_buffer[
i][1])
 
  943     info.nterms = 
s->num_terms;
 
  948     memcpy(
info.dps, 
s->decorr_passes, 
sizeof(
info.dps));
 
  949     memcpy(
s->sampleptrs[0][0], 
samples, 
s->block_samples * 4);
 
  953                     s->block_samples, 
info.dps + 
i, 1);
 
  956     memcpy(
s->sampleptrs[
info.nterms + 1][0], 
s->sampleptrs[
i][0], 
s->block_samples * 4);
 
  960                      log2mono(
s->sampleptrs[0][0], 
s->block_samples, 0));
 
  969             s->delta_decay = (
float)((
s->delta_decay * 2.0 + 
s->decorr_passes[0].delta) / 3.0);
 
  971             s->delta_decay = 2.0;
 
  978         memcpy(
samples, 
s->sampleptrs[
info.nterms + 1][0], 
s->block_samples * 4);
 
  980     for (
i = 0; 
i < 
info.nterms; 
i++)
 
  981         if (!
s->decorr_passes[
i].value)
 
  993     while (nb_samples--) {
 
 1020                    int no_history, 
int do_samples)
 
 1022     struct Decorr temp_decorr_pass, save_decorr_passes[
MAX_TERMS] = {{0}};
 
 1023     int nb_samples = 
s->block_samples;
 
 1024     int buf_size = 
sizeof(
int32_t) * nb_samples;
 
 1025     uint32_t best_size = UINT32_MAX, 
size;
 
 1026     int log_limit, pi, 
i, 
ret;
 
 1028     for (
i = 0; 
i < nb_samples; 
i++)
 
 1032     if (
i == nb_samples) {
 
 1040     log_limit = 
FFMIN(6912, log_limit);
 
 1045     if (no_history || 
s->num_passes >= 7)
 
 1046         s->best_decorr = 
s->mask_decorr = 0;
 
 1048     for (pi = 0; pi < 
s->num_passes;) {
 
 1055             if (
s->mask_decorr == 0)
 
 1058                 c = (
s->best_decorr & (
s->mask_decorr - 1)) | 
s->mask_decorr;
 
 1060             if (
c == 
s->best_decorr) {
 
 1061                 s->mask_decorr = 
s->mask_decorr ? ((
s->mask_decorr << 1) & (
s->num_decorrs - 1)) : 1;
 
 1066         wpds = &
s->decorr_specs[
c];
 
 1070         memcpy(
s->temp_buffer[0][0], 
samples, buf_size);
 
 1071         CLEAR(save_decorr_passes);
 
 1073         for (j = 0; j < nterms; j++) {
 
 1074             CLEAR(temp_decorr_pass);
 
 1078             if (temp_decorr_pass.
value < 0)
 
 1079                 temp_decorr_pass.
value = 1;
 
 1081             decorr_mono(
s->temp_buffer[j&1][0], 
s->temp_buffer[~j&1][0],
 
 1082                         FFMIN(nb_samples, 2048), &temp_decorr_pass, -1);
 
 1090             memcpy(save_decorr_passes + j, &temp_decorr_pass, 
sizeof(
struct Decorr));
 
 1091             decorr_mono(
s->temp_buffer[j&1][0], 
s->temp_buffer[~j&1][0],
 
 1092                         nb_samples, &temp_decorr_pass, 1);
 
 1095         size = 
log2mono(
s->temp_buffer[j&1][0], nb_samples, log_limit);
 
 1096         if (
size != UINT32_MAX || !nterms)
 
 1101         if (
size < best_size) {
 
 1102             memcpy(
s->best_buffer[0], 
s->temp_buffer[j&1][0], buf_size);
 
 1103             memcpy(
s->decorr_passes, save_decorr_passes, 
sizeof(
struct Decorr) * 
MAX_TERMS);
 
 1104             s->num_terms = nterms;
 
 1110             s->mask_decorr = 
s->mask_decorr ? ((
s->mask_decorr << 1) & (
s->num_decorrs - 1)) : 1;
 
 1115     else if (do_samples)
 
 1116         memcpy(
samples, 
s->best_buffer[0], buf_size);
 
 1118     if (no_history || 
s->extra_flags) {
 
 1120         scan_word(
s, &
s->w.c[0], 
s->best_buffer[0], nb_samples, -1);
 
 1127                           int nb_samples, 
struct Decorr *dpp, 
int dir)
 
 1134         out_left  += nb_samples - 1;
 
 1135         out_right += nb_samples - 1;
 
 1136         in_left   += nb_samples - 1;
 
 1137         in_right  += nb_samples - 1;
 
 1148     switch (dpp->
value) {
 
 1150         while (nb_samples--) {
 
 1172         while (nb_samples--) {
 
 1194         while (nb_samples--) {
 
 1218         while (nb_samples--) {
 
 1255         while (nb_samples--) {
 
 1274         while (nb_samples--) {
 
 1293         while (nb_samples--) {
 
 1323         if (dpp->
value & 1) {
 
 1336         if (dpp->
value & 1) {
 
 1346     } 
else if (dpp->
value > 1) {
 
 1349         for (
i = 0, j = dpp->
value - 1, k = 0; k < dpp->
value / 2; 
i++, j--, k++) {
 
 1364                                 int nb_samples, 
struct Decorr *dpp)
 
 1376     switch (dpp->
value) {
 
 1378         for (
i = 0; 
i < nb_samples; 
i++) {
 
 1393         for (
i = 0; 
i < nb_samples; 
i++) {
 
 1408         for (
i = 0; 
i < nb_samples; 
i++) {
 
 1425         for (
i = 0; 
i < nb_samples; 
i++) {
 
 1456         for (
i = 0; 
i < nb_samples; 
i++) {
 
 1468         for (
i = 0; 
i < nb_samples; 
i++) {
 
 1480         for (
i = 0; 
i < nb_samples; 
i++) {
 
 1501                                  int nb_samples, 
int tindex)
 
 1503     struct Decorr dp = {0}, *dppi = 
info->dps + tindex;
 
 1504     int delta = dppi->delta, pre_delta;
 
 1505     int term = dppi->value;
 
 1512         pre_delta = 
delta + 1;
 
 1515     dp.
delta = pre_delta;
 
 1517                   FFMIN(2048, nb_samples), &dp, -1);
 
 1534         decorr_stereo(in_left, in_right, out_left, out_right, nb_samples, &dp, 1);
 
 1538         dppi->weightA = dp.
weightA = dp.
sumA / nb_samples;
 
 1539         dppi->weightB = dp.
weightB = dp.
sumB / nb_samples;
 
 1544                            nb_samples, &dp, 1);
 
 1558         memcpy(
info->dps, 
s->decorr_passes, 
sizeof(
s->decorr_passes));
 
 1561         for (ri = 0; ri < 
info->nterms && 
s->decorr_passes[ri].value; ri++) {
 
 1563             if (ri + 1 >= 
info->nterms || !
s->decorr_passes[ri+1].value)
 
 1566             if (
s->decorr_passes[ri].value == 
s->decorr_passes[ri+1].value) {
 
 1568                                      s->sampleptrs[ri  ][0], 
s->sampleptrs[ri  ][1],
 
 1569                                      s->sampleptrs[ri+1][0], 
s->sampleptrs[ri+1][1],
 
 1570                                      s->block_samples, ri);
 
 1574             info->dps[ri  ] = 
s->decorr_passes[ri+1];
 
 1575             info->dps[ri+1] = 
s->decorr_passes[ri  ];
 
 1577             for (
i = ri; 
i < 
info->nterms && 
s->decorr_passes[
i].value; 
i++)
 
 1579                                      s->sampleptrs[
i  ][0], 
s->sampleptrs[
i  ][1],
 
 1580                                      s->sampleptrs[
i+1][0], 
s->sampleptrs[
i+1][1],
 
 1581                                      s->block_samples, 
i);
 
 1584                               s->block_samples, 
info->log_limit);
 
 1586             if (bits < info->best_bits) {
 
 1590                 memcpy(
s->decorr_passes, 
info->dps, 
sizeof(
info->dps[0]) * 
i);
 
 1591                 memcpy(
s->sampleptrs[
info->nterms + 1][0],
 
 1592                        s->sampleptrs[
i][0], 
s->block_samples * 4);
 
 1593                 memcpy(
s->sampleptrs[
info->nterms + 1][1],
 
 1594                        s->sampleptrs[
i][1], 
s->block_samples * 4);
 
 1596                 info->dps[ri  ] = 
s->decorr_passes[ri  ];
 
 1597                 info->dps[ri+1] = 
s->decorr_passes[ri+1];
 
 1599                                      s->sampleptrs[ri  ][0], 
s->sampleptrs[ri  ][1],
 
 1600                                      s->sampleptrs[ri+1][0], 
s->sampleptrs[ri+1][1],
 
 1601                                      s->block_samples, ri);
 
 1612     if (!
s->decorr_passes[0].value)
 
 1614     delta = 
s->decorr_passes[0].delta;
 
 1617         for (
i = 0; 
i < 
info->nterms && 
s->decorr_passes[
i].value; 
i++) {
 
 1618             info->dps[
i].value = 
s->decorr_passes[
i].value;
 
 1621                                  s->sampleptrs[
i  ][0], 
s->sampleptrs[
i  ][1],
 
 1622                                  s->sampleptrs[
i+1][0], 
s->sampleptrs[
i+1][1],
 
 1623                                  s->block_samples, 
i);
 
 1627                           s->block_samples, 
info->log_limit);
 
 1633         memcpy(
s->decorr_passes, 
info->dps, 
sizeof(
info->dps[0]) * 
i);
 
 1634         memcpy(
s->sampleptrs[
info->nterms + 1][0], 
s->sampleptrs[
i][0],
 
 1635                s->block_samples * 4);
 
 1636         memcpy(
s->sampleptrs[
info->nterms + 1][1], 
s->sampleptrs[
i][1],
 
 1637                s->block_samples * 4);
 
 1640     for (
d = 
delta + 1; !lower && 
d <= 7; 
d++) {
 
 1641         for (
i = 0; 
i < 
info->nterms && 
s->decorr_passes[
i].value; 
i++) {
 
 1642             info->dps[
i].value = 
s->decorr_passes[
i].value;
 
 1645                                  s->sampleptrs[
i  ][0], 
s->sampleptrs[
i  ][1],
 
 1646                                  s->sampleptrs[
i+1][0], 
s->sampleptrs[
i+1][1],
 
 1647                                  s->block_samples, 
i);
 
 1651                           s->block_samples, 
info->log_limit);
 
 1653         if (bits < info->best_bits) {
 
 1656             memcpy(
s->decorr_passes, 
info->dps, 
sizeof(
info->dps[0]) * 
i);
 
 1657             memcpy(
s->sampleptrs[
info->nterms + 1][0],
 
 1658                    s->sampleptrs[
i][0], 
s->block_samples * 4);
 
 1659             memcpy(
s->sampleptrs[
info->nterms + 1][1],
 
 1660                    s->sampleptrs[
i][1], 
s->block_samples * 4);
 
 1668                            int depth, 
int delta, uint32_t input_bits)
 
 1670     int term, branches = 
s->num_branches - depth;
 
 1671     int32_t *in_left, *in_right, *out_left, *out_right;
 
 1672     uint32_t term_bits[22], 
bits;
 
 1674     if (branches < 1 || depth + 1 == info->nterms)
 
 1678     in_left   = 
s->sampleptrs[depth    ][0];
 
 1679     in_right  = 
s->sampleptrs[depth    ][1];
 
 1680     out_left  = 
s->sampleptrs[depth + 1][0];
 
 1681     out_right = 
s->sampleptrs[depth + 1][1];
 
 1683     for (term = -3; term <= 18; term++) {
 
 1684         if (!term || (term > 8 && term < 17))
 
 1687         if (term == 17 && branches == 1 && depth + 1 < 
info->nterms)
 
 1690         if (term == -1 || term == -2)
 
 1694         if (!
s->extra_flags && (term > 4 && term < 17))
 
 1697         info->dps[depth].value = term;
 
 1700                              s->block_samples, depth);
 
 1703         if (bits < info->best_bits) {
 
 1706             memcpy(
s->decorr_passes, 
info->dps, 
sizeof(
info->dps[0]) * (depth + 1));
 
 1707             memcpy(
s->sampleptrs[
info->nterms + 1][0], 
s->sampleptrs[depth + 1][0],
 
 1708                    s->block_samples * 4);
 
 1709             memcpy(
s->sampleptrs[
info->nterms + 1][1], 
s->sampleptrs[depth + 1][1],
 
 1710                    s->block_samples * 4);
 
 1713         term_bits[term + 3] = 
bits;
 
 1716     while (depth + 1 < 
info->nterms && branches--) {
 
 1717         uint32_t local_best_bits = input_bits;
 
 1718         int best_term = 0, 
i;
 
 1720         for (
i = 0; 
i < 22; 
i++)
 
 1721             if (term_bits[
i] && term_bits[
i] < local_best_bits) {
 
 1722                 local_best_bits = term_bits[
i];
 
 1729         term_bits[best_term + 3] = 0;
 
 1731         info->dps[depth].value = best_term;
 
 1734                              s->block_samples, depth);
 
 1752     info.nterms = 
s->num_terms;
 
 1757     memcpy(
info.dps, 
s->decorr_passes, 
sizeof(
info.dps));
 
 1758     memcpy(
s->sampleptrs[0][0], in_left,  
s->block_samples * 4);
 
 1759     memcpy(
s->sampleptrs[0][1], in_right, 
s->block_samples * 4);
 
 1764                           s->sampleptrs[
i + 1][0], 
s->sampleptrs[
i + 1][1],
 
 1765                           s->block_samples, 
info.dps + 
i, 1);
 
 1768                                 s->sampleptrs[
i + 1][0], 
s->sampleptrs[
i + 1][1],
 
 1769                                 s->block_samples, 
info.dps + 
i);
 
 1772                                 s->block_samples, 0);
 
 1774     memcpy(
s->sampleptrs[
info.nterms + 1][0], 
s->sampleptrs[
i][0], 
s->block_samples * 4);
 
 1775     memcpy(
s->sampleptrs[
info.nterms + 1][1], 
s->sampleptrs[
i][1], 
s->block_samples * 4);
 
 1780                                   s->block_samples, 0));
 
 1789             s->delta_decay = (
float)((
s->delta_decay * 2.0 + 
s->decorr_passes[0].delta) / 3.0);
 
 1791             s->delta_decay = 2.0;
 
 1798         memcpy(in_left,  
s->sampleptrs[
info.nterms + 1][0], 
s->block_samples * 4);
 
 1799         memcpy(in_right, 
s->sampleptrs[
info.nterms + 1][1], 
s->block_samples * 4);
 
 1802     for (
i = 0; 
i < 
info.nterms; 
i++)
 
 1803         if (!
s->decorr_passes[
i].value)
 
 1811                      int no_history, 
int do_samples)
 
 1813     struct Decorr temp_decorr_pass, save_decorr_passes[
MAX_TERMS] = {{0}};
 
 1814     int nb_samples = 
s->block_samples, 
ret;
 
 1815     int buf_size = 
sizeof(
int32_t) * nb_samples;
 
 1816     int log_limit, force_js = 0, force_ts = 0, got_js = 0, pi, 
i;
 
 1817     uint32_t best_size = UINT32_MAX, 
size;
 
 1819     for (
i = 0; 
i < nb_samples; 
i++)
 
 1820         if (samples_l[
i] || samples_r[
i])
 
 1823     if (
i == nb_samples) {
 
 1832     log_limit = 
FFMIN(6912, log_limit);
 
 1834     if (
s->joint != -1) {
 
 1835         force_js =  
s->joint;
 
 1836         force_ts = !
s->joint;
 
 1842     if (no_history || 
s->num_passes >= 7)
 
 1843         s->best_decorr = 
s->mask_decorr = 0;
 
 1845     for (pi = 0; pi < 
s->num_passes;) {
 
 1852             if (
s->mask_decorr == 0)
 
 1855                 c = (
s->best_decorr & (
s->mask_decorr - 1)) | 
s->mask_decorr;
 
 1857             if (
c == 
s->best_decorr) {
 
 1858                 s->mask_decorr = 
s->mask_decorr ? ((
s->mask_decorr << 1) & (
s->num_decorrs - 1)) : 1;
 
 1863         wpds = &
s->decorr_specs[
c];
 
 1871                     memcpy(
s->js_left,  samples_l, buf_size);
 
 1872                     memcpy(
s->js_right, samples_r, buf_size);
 
 1874                     for (
i = 0; 
i < nb_samples; 
i++)
 
 1875                         s->js_right[
i] += ((
s->js_left[
i] -= 
s->js_right[
i]) >> 1);
 
 1879                 memcpy(
s->temp_buffer[0][0], 
s->js_left,  buf_size);
 
 1880                 memcpy(
s->temp_buffer[0][1], 
s->js_right, buf_size);
 
 1882                 memcpy(
s->temp_buffer[0][0], samples_l, buf_size);
 
 1883                 memcpy(
s->temp_buffer[0][1], samples_r, buf_size);
 
 1886             CLEAR(save_decorr_passes);
 
 1888             for (j = 0; j < nterms; j++) {
 
 1889                 CLEAR(temp_decorr_pass);
 
 1894                     temp_decorr_pass.
value = -3;
 
 1897                               s->temp_buffer[~j&1][0], 
s->temp_buffer[~j&1][1],
 
 1898                               FFMIN(2048, nb_samples), &temp_decorr_pass, -1);
 
 1907                 memcpy(save_decorr_passes + j, &temp_decorr_pass, 
sizeof(
struct Decorr));
 
 1911                                   s->temp_buffer[~j&1][0], 
s->temp_buffer[~j&1][1],
 
 1912                                   nb_samples, &temp_decorr_pass, 1);
 
 1915                                         s->temp_buffer[~j&1][0], 
s->temp_buffer[~j&1][1],
 
 1916                                         nb_samples, &temp_decorr_pass);
 
 1920                               nb_samples, log_limit);
 
 1921             if (
size != UINT32_MAX || !nterms)
 
 1926         if (
size < best_size) {
 
 1927             memcpy(
s->best_buffer[0], 
s->temp_buffer[j&1][0], buf_size);
 
 1928             memcpy(
s->best_buffer[1], 
s->temp_buffer[j&1][1], buf_size);
 
 1929             memcpy(
s->decorr_passes, save_decorr_passes, 
sizeof(
struct Decorr) * 
MAX_TERMS);
 
 1930             s->num_terms = nterms;
 
 1936             s->mask_decorr = 
s->mask_decorr ? ((
s->mask_decorr << 1) & (
s->num_decorrs - 1)) : 1;
 
 1939     if (force_js || (
s->decorr_specs[
s->best_decorr].joint_stereo && !force_ts))
 
 1944     if (
s->extra_flags) {
 
 1949                 memcpy(samples_l, 
s->js_left,  buf_size);
 
 1950                 memcpy(samples_r, 
s->js_right, buf_size);
 
 1954     } 
else if (do_samples) {
 
 1955         memcpy(samples_l, 
s->best_buffer[0], buf_size);
 
 1956         memcpy(samples_r, 
s->best_buffer[1], buf_size);
 
 1959     if (
s->extra_flags || no_history ||
 
 1960         s->joint_stereo != 
s->decorr_specs[
s->best_decorr].joint_stereo) {
 
 1961         s->joint_stereo = 
s->decorr_specs[
s->best_decorr].joint_stereo;
 
 1963         scan_word(
s, &
s->w.c[0], 
s->best_buffer[0], nb_samples, -1);
 
 1964         scan_word(
s, &
s->w.c[1], 
s->best_buffer[1], nb_samples, -1);
 
 1982                 put_bits(pb, cbits, (1 << cbits) - 1);
 
 1989         while (
w->zeros_acc > 1) {
 
 1997     if (
w->holding_one) {
 
 1998         if (
w->holding_one >= 16) {
 
 2003             w->holding_one -= 16;
 
 2011                     put_bits(pb, cbits, (1 << cbits) - 1);
 
 2018             while (
w->holding_one > 1) {
 
 2020                 w->holding_one >>= 1;
 
 2023             w->holding_zero = 0;
 
 2025             put_bits(pb, 
w->holding_one, (1 << 
w->holding_one) - 1);
 
 2031     if (
w->holding_zero) {
 
 2033         w->holding_zero = 0;
 
 2036     if (
w->pend_count) {
 
 2038         w->pend_data = 
w->pend_count = 0;
 
 2045     uint32_t ones_count, low, high;
 
 2048     if (
s->w.c[0].median[0] < 2 && !
s->w.holding_zero && 
s->w.c[1].median[0] < 2) {
 
 2070         ones_count = low = 0;
 
 2091                 low += (ones_count - 2) * 
GET_MED(2);
 
 2098     if (
w->holding_zero) {
 
 2105             w->holding_zero = 1;
 
 2108             w->holding_zero = 0;
 
 2110         w->holding_zero = 1;
 
 2112     w->holding_one = ones_count * 2;
 
 2115         uint32_t maxcode = high - low, 
code = 
sample - low;
 
 2117         uint32_t extras = (1 << bitcount) - maxcode - 1;
 
 2119         if (
code < extras) {
 
 2120             w->pend_data |= 
code << 
w->pend_count;
 
 2121             w->pend_count += bitcount - 1;
 
 2123             w->pend_data |= ((
code + extras) >> 1) << 
w->pend_count;
 
 2124             w->pend_count += bitcount - 1;
 
 2125             w->pend_data |= ((
code + extras) & 1) << 
w->pend_count++;
 
 2129     w->pend_data |= ((
int32_t) sign << 
w->pend_count++);
 
 2131     if (!
w->holding_zero)
 
 2139     const int sent_bits = 
s->int32_sent_bits;
 
 2143     pre_shift = 
s->int32_zeros + 
s->int32_ones + 
s->int32_dups;
 
 2149         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2150             put_sbits(pb, sent_bits, samples_l[
i] >> pre_shift);
 
 2153         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2154             put_sbits(pb, sent_bits, samples_l[
i] >> pre_shift);
 
 2155             put_sbits(pb, sent_bits, samples_r[
i] >> pre_shift);
 
 2162     const int max_exp = 
s->float_max_exp;
 
 2180         shift_count = max_exp ? max_exp - 1 : 0;
 
 2184     if (shift_count < 25)
 
 2185         value >>= shift_count;
 
 2206     } 
else if (shift_count) {
 
 2222         for (
i = 0; 
i < nb_samples; 
i++)
 
 2225         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2238     switch (dpp->
value) {
 
 2240         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2255         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2298         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2310         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2322         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2340 #define update_weight_d2(weight, delta, source, result) \ 
 2341     if (source && result) \ 
 2342         weight -= (((source ^ result) >> 29) & 4) - 2; 
 2344 #define update_weight_clip_d2(weight, delta, source, result) \ 
 2345     if (source && result) { \ 
 2346         const int32_t s = (source ^ result) >> 31; \ 
 2347         if ((weight = (weight ^ s) + (2 - s)) > 1024) weight = 1024; \ 
 2348         weight = (weight ^ s) - s; \ 
 2357     switch (dpp->
value) {
 
 2359         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2374         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2418         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2430         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2442         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2465     bytestream2_put_byte(pb, 
flags);
 
 2466     bytestream2_put_byte(pb, (
size + 1) >> 1);
 
 2473     int block_size, start, end, data_size, tcount, 
temp, m = 0;
 
 2474     int i, j, 
ret = 0, got_extra = 0, nb_samples = 
s->block_samples;
 
 2475     uint32_t crc = 0xffffffff
u;
 
 2482     if (!(
s->flags & 
WV_MONO) && 
s->optimize_mono) {
 
 2485         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2486             lor  |= samples_l[
i] | samples_r[
i];
 
 2487             diff |= samples_l[
i] - samples_r[
i];
 
 2493         if (
i == nb_samples && lor && !
diff) {
 
 2497             if (!
s->false_stereo) {
 
 2498                 s->false_stereo = 1;
 
 2502         } 
else if (
s->false_stereo) {
 
 2503             s->false_stereo = 0;
 
 2518         if ((mag -= 
shift) < 0)
 
 2526         memcpy(
s->orig_l, samples_l, 
sizeof(
int32_t) * nb_samples);
 
 2529             memcpy(
s->orig_r, samples_r, 
sizeof(
int32_t) * nb_samples);
 
 2533             got_extra = 
scan_float(
s, samples_l, samples_r, nb_samples);
 
 2535             got_extra = 
scan_int32(
s, samples_l, samples_r, nb_samples);
 
 2539         if (
s->shift != 
s->int32_zeros + 
s->int32_ones + 
s->int32_dups) {
 
 2540             s->shift = 
s->int32_zeros + 
s->int32_ones + 
s->int32_dups;
 
 2545     if (!
s->num_passes && !
s->num_terms) {
 
 2556         for (
i = 0; 
i < nb_samples; 
i++)
 
 2557             crc += (crc << 1) + samples_l[
i];
 
 2562         for (
i = 0; 
i < nb_samples; 
i++)
 
 2563             crc += (crc << 3) + ((uint32_t)samples_l[
i] << 1) + samples_l[
i] + samples_r[
i];
 
 2574     s->ch_offset += 1 + !(
s->flags & 
WV_MONO);
 
 2576     if (
s->ch_offset == 
s->avctx->ch_layout.nb_channels)
 
 2580     bytestream2_put_le32(&pb, 
MKTAG(
'w', 
'v', 
'p', 
'k'));
 
 2581     bytestream2_put_le32(&pb, 0);
 
 2582     bytestream2_put_le16(&pb, 0x410);
 
 2583     bytestream2_put_le16(&pb, 0);
 
 2584     bytestream2_put_le32(&pb, 0);
 
 2585     bytestream2_put_le32(&pb, 
s->sample_index);
 
 2586     bytestream2_put_le32(&pb, nb_samples);
 
 2587     bytestream2_put_le32(&pb, 
s->flags);
 
 2588     bytestream2_put_le32(&pb, crc);
 
 2595         bytestream2_put_byte(&pb, 
s->avctx->ch_layout.nb_channels);
 
 2596         bytestream2_put_le32(&pb, 
s->avctx->ch_layout.u.mask);
 
 2597         bytestream2_put_byte(&pb, 0);
 
 2602         bytestream2_put_le24(&pb, 
s->avctx->sample_rate);
 
 2603         bytestream2_put_byte(&pb, 0);
 
 2607     for (
i = 0; 
i < 
s->num_terms; 
i++) {
 
 2608         struct Decorr *dpp = &
s->decorr_passes[
i];
 
 2609         bytestream2_put_byte(&pb, ((dpp->
value + 5) & 0x1f) | ((dpp->
delta << 5) & 0xe0));
 
 2611     if (
s->num_terms & 1)
 
 2612         bytestream2_put_byte(&pb, 0);
 
 2614 #define WRITE_DECWEIGHT(type) do {            \ 
 2615         temp = store_weight(type);    \ 
 2616         bytestream2_put_byte(&pb, temp);      \ 
 2617         type = restore_weight(temp);  \ 
 2621     bytestream2_put_byte(&pb, 0);
 
 2623     for (
i = 
s->num_terms - 1; 
i >= 0; --
i) {
 
 2624         struct Decorr *dpp = &
s->decorr_passes[
i];
 
 2631     for (
i = 0; 
i < 
s->num_terms; 
i++) {
 
 2632         struct Decorr *dpp = &
s->decorr_passes[
i];
 
 2643     out[start - 1] = (end - start + 1) >> 1;
 
 2644     if ((end - start) & 1)
 
 2645         bytestream2_put_byte(&pb, 0);
 
 2647 #define WRITE_DECSAMPLE(type) do {        \ 
 2648         temp = log2s(type);               \ 
 2649         type = wp_exp2(temp);             \ 
 2650         bytestream2_put_le16(&pb, temp);  \ 
 2654     bytestream2_put_byte(&pb, 0);
 
 2656     for (
i = 0; 
i < 
s->num_terms; 
i++) {
 
 2657         struct Decorr *dpp = &
s->decorr_passes[
i];
 
 2666             } 
else if (dpp->
value < 0) {
 
 2670                 for (j = 0; j < dpp->
value; j++) {
 
 2682     out[start - 1] = (end - start) >> 1;
 
 2684 #define WRITE_CHAN_ENTROPY(chan) do {               \ 
 2685         for (i = 0; i < 3; i++) {                   \ 
 2686             temp = wp_log2(s->w.c[chan].median[i]); \ 
 2687             bytestream2_put_le16(&pb, temp);        \ 
 2688             s->w.c[chan].median[i] = wp_exp2(temp); \ 
 2699         bytestream2_put_byte(&pb, 
s->float_flags);
 
 2700         bytestream2_put_byte(&pb, 
s->float_shift);
 
 2701         bytestream2_put_byte(&pb, 
s->float_max_exp);
 
 2702         bytestream2_put_byte(&pb, 127);
 
 2707         bytestream2_put_byte(&pb, 
s->int32_sent_bits);
 
 2708         bytestream2_put_byte(&pb, 
s->int32_zeros);
 
 2709         bytestream2_put_byte(&pb, 
s->int32_ones);
 
 2710         bytestream2_put_byte(&pb, 
s->int32_dups);
 
 2714         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2717             for (tcount = 
s->num_terms, dpp = 
s->decorr_passes; tcount--; dpp++) {
 
 2738             samples_l[
i] = 
code;
 
 2741             for (tcount = 
s->num_terms, dpp = 
s->decorr_passes; tcount--; dpp++)
 
 2756     } 
else if (!
s->num_passes) {
 
 2758             for (
i = 0; 
i < nb_samples; 
i++)
 
 2759                 samples_r[
i] += ((samples_l[
i] -= samples_r[
i]) >> 1);
 
 2762         for (
i = 0; 
i < 
s->num_terms; 
i++) {
 
 2763             struct Decorr *dpp = &
s->decorr_passes[
i];
 
 2774         for (
i = 0; 
i < nb_samples; 
i++)
 
 2777         for (
i = 0; 
i < nb_samples; 
i++) {
 
 2785     bytestream2_put_le24(&pb, (data_size + 1) >> 1);
 
 2788         bytestream2_put_byte(&pb, 0);
 
 2799         bytestream2_put_le24(&pb, (data_size + 5) >> 1);
 
 2800         bytestream2_put_le32(&pb, 
s->crc_x);
 
 2803             bytestream2_put_byte(&pb, 0);
 
 2820 #define COPY_SAMPLES(type, offset, shift) do {            \ 
 2821         const type *sptr = (const type *)src;             \ 
 2822         for (i = 0; i < nb_samples; i++)                  \ 
 2823             dst[i] = (sptr[i] - offset) >> shift;         \ 
 2826     switch (
s->avctx->sample_fmt) {
 
 2834         if (
s->avctx->bits_per_raw_sample <= 24) {
 
 2839         memcpy(dst, 
src, nb_samples * 4);
 
 2847     for (
i = 0; 
i < 15; 
i++) {
 
 2862     s->block_samples = 
frame->nb_samples;
 
 2864                           sizeof(
int32_t) * 
s->block_samples);
 
 2869                               sizeof(
int32_t) * 
s->block_samples);
 
 2883         switch (
s->avctx->sample_fmt) {
 
 2897         s->flags += (1 << 
MAG_LSB) * ((
s->flags & 3) * 8 + 7);
 
 2900                                         buf, buf_size)) < 0)
 
 2906     s->sample_index += 
frame->nb_samples;
 
 2911     *got_packet_ptr = 1;
 
 2923         s->sampleptrs_size[
i][0] = 
s->sampleptrs_size[
i][1] = 0;
 
 2926     for (
i = 0; 
i < 2; 
i++) {
 
 2928         s->samples_size[
i] = 0;
 
 2931         s->best_buffer_size[
i] = 0;
 
 2935         s->temp_buffer_size[
i][0] = 
s->temp_buffer_size[
i][1] = 0;
 
 2940     s->js_left_size = 
s->js_right_size = 0;
 
 2944     s->orig_l_size = 
s->orig_r_size = 0;
 
 2949 #define OFFSET(x) offsetof(WavPackEncodeContext, x) 
 2950 #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM 
 2965     .
p.
name         = 
"wavpack",
 
  
int frame_size
Number of samples per channel in an audio frame.
 
int32_t * temp_buffer[2][2]
 
@ AV_SAMPLE_FMT_FLTP
float, planar
 
static const WavPackDecorrSpec *const decorr_filters[]
 
const FFCodec ff_wavpack_encoder
 
static void shift_mono(int32_t *samples, int nb_samples, int shift)
 
static av_always_inline unsigned int bytestream2_get_eof(PutByteContext *p)
 
struct Decorr decorr_passes[MAX_TERMS]
 
#define update_weight_clip_d2(weight, delta, source, result)
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
static int restore_weight(int8_t weight)
 
static uint32_t log2sample(uint32_t v, int limit, uint32_t *result)
 
static void encode_flush(WavPackEncodeContext *s)
 
static int put_bytes_output(const PutBitContext *s)
 
int sample_rate
samples per second
 
#define u(width, name, range_min, range_max)
 
#define WRITE_DECWEIGHT(type)
 
static void scan_int23(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples)
 
#define AV_CH_LAYOUT_MONO
 
static void put_sbits(PutBitContext *pb, int n, int32_t value)
 
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
 
static int scan_float(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples)
 
This structure describes decoded (raw) audio or video data.
 
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
 
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
 
static av_always_inline int bytestream2_tell_p(PutByteContext *p)
 
static const AVClass wavpack_encoder_class
 
#define WRITE_CHAN_ENTROPY(chan)
 
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
 
static int wavpack_encode_block(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, uint8_t *out, int out_size)
 
#define COPY_SAMPLES(type, offset, shift)
 
int nb_channels
Number of channels in this layout.
 
#define FF_COMPRESSION_DEFAULT
 
#define update_weight_d2(weight, delta, source, result)
 
static void set_samplerate(WavPackEncodeContext *s)
 
static void decorr_stereo_buffer(WavPackExtraInfo *info, int32_t *in_left, int32_t *in_right, int32_t *out_left, int32_t *out_right, int nb_samples, int tindex)
 
int8_t terms[MAX_TERMS+1]
 
static void decorr_mono_buffer(int32_t *samples, int32_t *outsamples, int nb_samples, struct Decorr *dpp, int tindex)
 
AVCodec p
The public AVCodec.
 
static void recurse_mono(WavPackEncodeContext *s, WavPackExtraInfo *info, int depth, int delta, uint32_t input_bits)
 
AVChannelLayout ch_layout
Audio channel layout.
 
static av_cold int wavpack_encode_close(AVCodecContext *avctx)
 
#define FF_CODEC_ENCODE_CB(func)
 
int temp_buffer_size[2][2]
 
#define AV_CH_LAYOUT_STEREO
 
static av_always_inline int wp_log2(uint32_t val)
 
static av_always_inline int64_t ff_samples_to_time_base(AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
 
static av_always_inline int bytestream2_get_bytes_left_p(PutByteContext *p)
 
int sampleptrs_size[MAX_TERMS+2][2]
 
@ AV_CHANNEL_ORDER_NATIVE
The native channel order, i.e.
 
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
 
static const uint16_t mask[17]
 
static const uint8_t decorr_filter_nterms[]
 
static int wv_stereo(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int no_history, int do_samples)
 
static __device__ float floor(float a)
 
static const int wv_rates[16]
 
#define av_assert0(cond)
assert() equivalent, that is always enabled.
 
static av_always_inline int wp_exp2(int16_t val)
 
static int8_t store_weight(int weight)
 
static int log2s(int32_t value)
 
static void delta_mono(WavPackEncodeContext *s, WavPackExtraInfo *info)
 
const WavPackDecorrSpec * decorr_specs
 
#define LIBAVUTIL_VERSION_INT
 
Describe the class of an AVClass context structure.
 
and forward the result(frame or status change) to the corresponding input. If nothing is possible
 
static void sort_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info)
 
const char * av_default_item_name(void *ptr)
Return the context name.
 
static void decorr_stereo_pass_id2(struct Decorr *dpp, int32_t *samples_l, int32_t *samples_r, int nb_samples)
 
static void reverse_mono_decorr(struct Decorr *dpp)
 
static int scan_int32(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples)
 
static void analyze_stereo(WavPackEncodeContext *s, int32_t *in_left, int32_t *in_right, int do_samples)
 
static void pack_int32(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples)
 
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
 
static av_cold int wavpack_encode_init(AVCodecContext *avctx)
 
static int weight(int i, int blen, int offset)
 
static int wavpack_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
@ AV_SAMPLE_FMT_U8P
unsigned 8 bits, planar
 
int32_t * sampleptrs[MAX_TERMS+2][2]
 
static void process_float(WavPackEncodeContext *s, int32_t *sample)
 
static const uint16_t decorr_filter_sizes[]
 
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
 
static void pack_float_sample(WavPackEncodeContext *s, int32_t *sample)
 
static void decorr_stereo(int32_t *in_left, int32_t *in_right, int32_t *out_left, int32_t *out_right, int nb_samples, struct Decorr *dpp, int dir)
 
#define i(width, name, range_min, range_max)
 
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
 
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
 
static av_always_inline void bytestream2_skip_p(PutByteContext *p, unsigned int size)
 
AVSampleFormat
Audio sample formats.
 
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
 
static void put_metadata_block(PutByteContext *pb, int flags, int size)
 
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
 
const char * name
Name of the codec implementation.
 
#define EXTRA_ADJUST_DELTAS
 
static double limit(double x)
 
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
 
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
 
#define APPLY_WEIGHT(weight, sample)
 
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
 
main external API structure.
 
#define APPLY_WEIGHT_I(weight, sample)
 
static int allocate_buffers(WavPackEncodeContext *s)
 
#define UPDATE_WEIGHT_CLIP(weight, delta, samples, in)
 
static uint32_t log2mono(int32_t *samples, int nb_samples, int limit)
 
static void sort_mono(WavPackEncodeContext *s, WavPackExtraInfo *info)
 
static void reverse_decorr(struct Decorr *dpp)
 
static void decorr_stereo_quick(int32_t *in_left, int32_t *in_right, int32_t *out_left, int32_t *out_right, int nb_samples, struct Decorr *dpp)
 
Filter the word “frame” indicates either a video frame or a group of audio samples
 
#define UPDATE_WEIGHT(weight, delta, source, result)
 
#define WRITE_DECSAMPLE(type)
 
static void decorr_mono(int32_t *in_samples, int32_t *out_samples, int nb_samples, struct Decorr *dpp, int dir)
 
static void recurse_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info, int depth, int delta, uint32_t input_bits)
 
static int shift(int a, int b)
 
static void scan_word(WavPackEncodeContext *s, WvChannel *c, int32_t *samples, int nb_samples, int dir)
 
static uint32_t log2stereo(int32_t *samples_l, int32_t *samples_r, int nb_samples, int limit)
 
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
 
static void fill_buffer(WavPackEncodeContext *s, const int8_t *src, int32_t *dst, int nb_samples)
 
static av_always_inline int diff(const uint32_t a, const uint32_t b)
 
This structure stores compressed data.
 
static void analyze_mono(WavPackEncodeContext *s, int32_t *samples, int do_samples)
 
static void delta_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info)
 
static void shift_stereo(int32_t *left, int32_t *right, int nb_samples, int shift)
 
const uint8_t ff_wp_log2_table[256]
 
#define flags(name, subs,...)
 
static void wavpack_encode_sample(WavPackEncodeContext *s, WvChannel *c, int32_t sample)
 
#define MKTAG(a, b, c, d)
 
static void decorr_stereo_pass2(struct Decorr *dpp, int32_t *samples_l, int32_t *samples_r, int nb_samples)
 
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
 
static int allocate_buffers2(WavPackEncodeContext *s, int nterms)
 
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
 
static void pack_float(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples)
 
static int wv_mono(WavPackEncodeContext *s, int32_t *samples, int no_history, int do_samples)
 
static const AVOption options[]