Go to the documentation of this file.
   26 #define BITSTREAM_READER_LE 
   42 #define DSD_BYTE_READY(low,high) (!(((low) ^ (high)) & 0xff000000)) 
   45 #define PTABLE_BINS (1<<PTABLE_BITS) 
   46 #define PTABLE_MASK (PTABLE_BINS-1) 
   49 #define DOWN 0x00010000 
   53 #define VALUE_ONE (1 << PRECISION) 
   54 #define PRECISION_USE 12 
   58 #define MAX_HISTORY_BITS    5 
   59 #define MAX_HISTORY_BINS    (1 << MAX_HISTORY_BITS) 
   60 #define MAX_BIN_BYTES       1280    // for value_lookup, per bin (2k - 512 - 256) 
   99 #define WV_MAX_FRAME_DECODERS 14 
  120 #define LEVEL_DECAY(a)  (((a) + 0x80) >> 8) 
  129     e   = (1 << (p + 1)) - k - 1;
 
  140     for (
i = 0; 
i <= 
ctx->stereo_in; 
i++) {
 
  141         if (
ctx->ch[
i].bitrate_acc > UINT_MAX - 
ctx->ch[
i].bitrate_delta)
 
  143         ctx->ch[
i].bitrate_acc += 
ctx->ch[
i].bitrate_delta;
 
  144         br[
i]                   = 
ctx->ch[
i].bitrate_acc >> 16;
 
  147     if (
ctx->stereo_in && 
ctx->hybrid_bitrate) {
 
  148         int balance = (sl[1] - sl[0] + br[1] + 1) >> 1;
 
  149         if (balance > br[0]) {
 
  152         } 
else if (-balance > br[0]) {
 
  156             br[1] = br[0] + balance;
 
  157             br[0] = br[0] - balance;
 
  160     for (
i = 0; 
i <= 
ctx->stereo_in; 
i++) {
 
  161         if (
ctx->hybrid_bitrate) {
 
  162             if (sl[
i] - br[
i] > -0x100)
 
  165                 ctx->ch[
i].error_limit = 0;
 
  183     if ((
ctx->ch[0].median[0] < 2
U) && (
ctx->ch[1].median[0] < 2
U) &&
 
  184         !
ctx->zero && !
ctx->one) {
 
  203                 memset(
ctx->ch[0].median, 0, 
sizeof(
ctx->ch[0].median));
 
  204                 memset(
ctx->ch[1].median, 0, 
sizeof(
ctx->ch[1].median));
 
  268     if (!
c->error_limit) {
 
  269         if (
add >= 0x2000000U) {
 
  277         int mid = (
base * 2
U + 
add + 1) >> 1;
 
  278         while (
add > 
c->error_limit) {
 
  285                 add = mid - (unsigned)
base - 1;
 
  291     if (
ctx->hybrid_bitrate)
 
  310         S *= 1 << 
s->extra_bits;
 
  312         if (
s->got_extra_bits &&
 
  315             *crc = *crc * 9 + (
S & 0xffff) * 3 + ((
unsigned)
S >> 16);
 
  319     bit = (
S & 
s->and) | 
s->or;
 
  325     return bit << 
s->post_shift;
 
  336     int exp = 
s->float_max_exp;
 
  338     if (
s->got_extra_bits) {
 
  339         const int max_bits  = 1 + 23 + 8 + 1;
 
  347         S  *= 1
U << 
s->float_shift;
 
  351         if (
S >= 0x1000000U) {
 
  352             if (
s->got_extra_bits && 
get_bits1(&
s->gb_extra_bits))
 
  359             exp = 
s->float_max_exp;
 
  367                     (
s->got_extra_bits &&
 
  371                 } 
else if (
s->got_extra_bits &&
 
  377             exp = 
s->float_max_exp;
 
  386                 if (
s->float_max_exp >= 25)
 
  396     *crc = *crc * 27 + 
S * 9 + 
exp * 3 + sign;
 
  398     value.u = (sign << 31) | (
exp << 23) | 
S;
 
  403                                uint32_t crc_extra_bits)
 
  409     if (
s->got_extra_bits && crc_extra_bits != 
s->crc_extra_bits) {
 
  419     int value = 0x808000, rate = rate_i << 8;
 
  421     for (
int c = (rate + 128) >> 8; 
c--;)
 
  428         if (
value > 0x010000) {
 
  429             rate += (rate * rate_s + 128) >> 8;
 
  431             for (
int c = (rate + 64) >> 7; 
c--;)
 
  444     uint32_t checksum = 0xFFFFFFFF;
 
  445     uint8_t *dst_l = dst_left, *dst_r = dst_right;
 
  446     int total_samples = 
s->samples, stereo = dst_r ? 1 : 0;
 
  449     uint32_t low, high, 
value;
 
  454     rate_i = bytestream2_get_byte(&
s->gbyte);
 
  455     rate_s = bytestream2_get_byte(&
s->gbyte);
 
  465         sp->fltr1 = bytestream2_get_byte(&
s->gbyte) << (
PRECISION - 8);
 
  466         sp->fltr2 = bytestream2_get_byte(&
s->gbyte) << (
PRECISION - 8);
 
  467         sp->fltr3 = bytestream2_get_byte(&
s->gbyte) << (
PRECISION - 8);
 
  468         sp->fltr4 = bytestream2_get_byte(&
s->gbyte) << (
PRECISION - 8);
 
  469         sp->fltr5 = bytestream2_get_byte(&
s->gbyte) << (
PRECISION - 8);
 
  471         sp->factor = bytestream2_get_byte(&
s->gbyte) & 0xff;
 
  472         sp->factor |= (bytestream2_get_byte(&
s->gbyte) << 8) & 0xff00;
 
  473         sp->factor = (
int32_t)((uint32_t)
sp->factor << 16) >> 16;
 
  476     value = bytestream2_get_be32(&
s->gbyte);
 
  480     while (total_samples--) {
 
  483         sp[0].value = 
sp[0].fltr1 - 
sp[0].fltr5 + ((
sp[0].fltr6 * 
sp[0].factor) >> 2);
 
  486             sp[1].value = 
sp[1].fltr1 - 
sp[1].fltr5 + ((
sp[1].fltr6 * 
sp[1].factor) >> 2);
 
  490             uint32_t 
split = low + ((high - low) >> 8) * (*pp >> 16);
 
  503                 value = (
value << 8) | bytestream2_get_byte(&
s->gbyte);
 
  504                 high = (high << 8) | 0xff;
 
  508             sp[0].value += 
sp[0].fltr6 * 8;
 
  509             sp[0].byte = (
sp[0].byte << 1) | (
sp[0].fltr0 & 1);
 
  510             sp[0].factor += (((
sp[0].value ^ 
sp[0].fltr0) >> 31) | 1) &
 
  514             sp[0].fltr3 += (
sp[0].fltr2 - 
sp[0].fltr3) >> 4;
 
  515             sp[0].fltr4 += (
sp[0].fltr3 - 
sp[0].fltr4) >> 4;
 
  516             sp[0].value = (
sp[0].fltr4 - 
sp[0].fltr5) >> 4;
 
  517             sp[0].fltr5 += 
sp[0].value;
 
  518             sp[0].fltr6 += (
sp[0].value - 
sp[0].fltr6) >> 3;
 
  519             sp[0].value = 
sp[0].fltr1 - 
sp[0].fltr5 + ((
sp[0].fltr6 * 
sp[0].factor) >> 2);
 
  525             split = low + ((high - low) >> 8) * (*pp >> 16);
 
  538                 value = (
value << 8) | bytestream2_get_byte(&
s->gbyte);
 
  539                 high = (high << 8) | 0xff;
 
  543             sp[1].value += 
sp[1].fltr6 * 8;
 
  544             sp[1].byte = (
sp[1].byte << 1) | (
sp[1].fltr0 & 1);
 
  545             sp[1].factor += (((
sp[1].value ^ 
sp[1].fltr0) >> 31) | 1) &
 
  549             sp[1].fltr3 += (
sp[1].fltr2 - 
sp[1].fltr3) >> 4;
 
  550             sp[1].fltr4 += (
sp[1].fltr3 - 
sp[1].fltr4) >> 4;
 
  551             sp[1].value = (
sp[1].fltr4 - 
sp[1].fltr5) >> 4;
 
  552             sp[1].fltr5 += 
sp[1].value;
 
  553             sp[1].fltr6 += (
sp[1].value - 
sp[1].fltr6) >> 3;
 
  554             sp[1].value = 
sp[1].fltr1 - 
sp[1].fltr5 + ((
sp[1].fltr6 * 
sp[1].factor) >> 2);
 
  557         checksum += (checksum << 1) + (*dst_l = 
sp[0].
byte & 0xff);
 
  558         sp[0].factor -= (
sp[0].factor + 512) >> 10;
 
  562             checksum += (checksum << 1) + (*dst_r = 
filters[1].
byte & 0xff);
 
  572         memset(dst_left, 0x69, 
s->samples * 4);
 
  575             memset(dst_right, 0x69, 
s->samples * 4);
 
  583     uint8_t *dst_l = dst_left, *dst_r = dst_right;
 
  584     uint8_t history_bits, max_probability;
 
  585     int total_summed_probabilities  = 0;
 
  586     int total_samples               = 
s->samples;
 
  587     uint8_t *vlb                    = 
s->value_lookup_buffer;
 
  588     int history_bins, p0, p1, chan;
 
  589     uint32_t checksum               = 0xFFFFFFFF;
 
  590     uint32_t low, high, 
value;
 
  595     history_bits = bytestream2_get_byte(&
s->gbyte);
 
  600     history_bins = 1 << history_bits;
 
  601     max_probability = bytestream2_get_byte(&
s->gbyte);
 
  603     if (max_probability < 0xff) {
 
  604         uint8_t *outptr = (uint8_t *)
s->probabilities;
 
  605         uint8_t *outend = outptr + 
sizeof(*
s->probabilities) * history_bins;
 
  608             int code = bytestream2_get_byte(&
s->gbyte);
 
  610             if (
code > max_probability) {
 
  611                 int zcount = 
code - max_probability;
 
  613                 while (outptr < outend && zcount--)
 
  623         if (outptr < outend ||
 
  628             sizeof(*
s->probabilities) * history_bins);
 
  633     for (p0 = 0; p0 < history_bins; p0++) {
 
  636         for (
int i = 0; 
i < 256; 
i++)
 
  637             s->summed_probabilities[p0][
i] = sum_values += 
s->probabilities[p0][
i];
 
  640             total_summed_probabilities += sum_values;
 
  642             if (total_summed_probabilities > history_bins * 
MAX_BIN_BYTES)
 
  645             s->value_lookup[p0] = vlb;
 
  647             for (
int i = 0; 
i < 256; 
i++) {
 
  648                 int c = 
s->probabilities[p0][
i];
 
  660     low = 0; high = 0xffffffff;
 
  661     value = bytestream2_get_be32(&
s->gbyte);
 
  666     while (total_samples--) {
 
  669         if (!
s->summed_probabilities[p0][255])
 
  672         mult = (high - low) / 
s->summed_probabilities[p0][255];
 
  676                 value = bytestream2_get_be32(&
s->gbyte);
 
  680             mult = high / 
s->summed_probabilities[p0][255];
 
  688         if (
index >= 
s->summed_probabilities[p0][255])
 
  692             if ((*dst_l = 
code = 
s->value_lookup[p0][
index]))
 
  693                 low += 
s->summed_probabilities[p0][
code-1] * 
mult;
 
  698                 low += 
s->summed_probabilities[p0][
code-1] * 
mult;
 
  712         high = low + 
s->probabilities[p0][
code] * 
mult - 1;
 
  713         checksum += (checksum << 1) + 
code;
 
  716             p0 = 
code & (history_bins-1);
 
  719             p1 = 
code & (history_bins-1);
 
  723             value = (
value << 8) | bytestream2_get_byte(&
s->gbyte);
 
  724             high = (high << 8) | 0xff;
 
  733         memset(dst_left, 0x69, 
s->samples * 4);
 
  736             memset(dst_right, 0x69, 
s->samples * 4);
 
  744     uint8_t *dst_l = dst_left, *dst_r = dst_right;
 
  745     int total_samples           = 
s->samples;
 
  746     uint32_t checksum           = 0xFFFFFFFF;
 
  751     while (total_samples--) {
 
  752         checksum += (checksum << 1) + (*dst_l = bytestream2_get_byte(&
s->gbyte));
 
  756             checksum += (checksum << 1) + (*dst_r = bytestream2_get_byte(&
s->gbyte));
 
  765         memset(dst_left, 0x69, 
s->samples * 4);
 
  768             memset(dst_right, 0x69, 
s->samples * 4);
 
  775                                    void *dst_l, 
void *dst_r, 
const int type)
 
  781     uint32_t crc            = 0xFFFFFFFF;
 
  782     uint32_t crc_extra_bits = 0xFFFFFFFF;
 
  783     int16_t *dst16_l        = dst_l;
 
  784     int16_t *dst16_r        = dst_r;
 
  787     float *dstfl_l          = dst_l;
 
  788     float *dstfl_r          = dst_r;
 
  790     s->one = 
s->zero = 
s->zeroes = 0;
 
  798         for (
i = 0; 
i < 
s->terms; 
i++) {
 
  799             t = 
s->decorr[
i].value;
 
  803                         A = 2
U * 
s->decorr[
i].samplesA[0] - 
s->decorr[
i].samplesA[1];
 
  804                         B = 2
U * 
s->decorr[
i].samplesB[0] - 
s->decorr[
i].samplesB[1];
 
  806                         A = (
int)(3
U * 
s->decorr[
i].samplesA[0] - 
s->decorr[
i].samplesA[1]) >> 1;
 
  807                         B = (
int)(3
U * 
s->decorr[
i].samplesB[0] - 
s->decorr[
i].samplesB[1]) >> 1;
 
  809                     s->decorr[
i].samplesA[1] = 
s->decorr[
i].samplesA[0];
 
  810                     s->decorr[
i].samplesB[1] = 
s->decorr[
i].samplesB[0];
 
  813                     A = 
s->decorr[
i].samplesA[
pos];
 
  814                     B = 
s->decorr[
i].samplesB[
pos];
 
  818                     L2 = 
L + ((
s->decorr[
i].weightA * (int64_t)
A + 512) >> 10);
 
  819                     R2 = 
R + ((
s->decorr[
i].weightB * (int64_t)
B + 512) >> 10);
 
  821                     L2 = 
L + (unsigned)((
int)(
s->decorr[
i].weightA * (unsigned)
A + 512) >> 10);
 
  822                     R2 = 
R + (unsigned)((
int)(
s->decorr[
i].weightB * (unsigned)
B + 512) >> 10);
 
  825                     s->decorr[
i].weightA -= ((((
L ^ 
A) >> 30) & 2) - 1) * 
s->decorr[
i].delta;
 
  827                     s->decorr[
i].weightB -= ((((
R ^ 
B) >> 30) & 2) - 1) * 
s->decorr[
i].delta;
 
  828                 s->decorr[
i].samplesA[j] = 
L = 
L2;
 
  829                 s->decorr[
i].samplesB[j] = 
R = 
R2;
 
  830             } 
else if (t == -1) {
 
  832                     L2 = 
L + ((
s->decorr[
i].weightA * (int64_t)
s->decorr[
i].samplesA[0] + 512) >> 10);
 
  834                     L2 = 
L + (unsigned)((
int)(
s->decorr[
i].weightA * (unsigned)
s->decorr[
i].samplesA[0] + 512) >> 10);
 
  838                     R2 = 
R + ((
s->decorr[
i].weightB * (int64_t)
L2 + 512) >> 10);
 
  840                     R2 = 
R + (unsigned)((
int)(
s->decorr[
i].weightB * (unsigned)
L2 + 512) >> 10);
 
  843                 s->decorr[
i].samplesA[0] = 
R;
 
  846                     R2 = 
R + ((
s->decorr[
i].weightB * (int64_t)
s->decorr[
i].samplesB[0] + 512) >> 10);
 
  848                     R2 = 
R + (unsigned)((
int)(
s->decorr[
i].weightB * (unsigned)
s->decorr[
i].samplesB[0] + 512) >> 10);
 
  853                     R2                       = 
s->decorr[
i].samplesA[0];
 
  854                     s->decorr[
i].samplesA[0] = 
R;
 
  858                     L2 = 
L + ((
s->decorr[
i].weightA * (int64_t)
R2 + 512) >> 10);
 
  860                     L2 = 
L + (unsigned)((
int)(
s->decorr[
i].weightA * (unsigned)
R2 + 512) >> 10);
 
  863                 s->decorr[
i].samplesB[0] = 
L;
 
  876             L += (unsigned)(
R -= (
unsigned)(
L >> 1));
 
  877         crc = (crc * 3 + 
L) * 3 + 
R;
 
  890     } 
while (!last && count < s->
samples);
 
  892     if (last && count < s->
samples) {
 
  894         memset((uint8_t*)dst_l + count*
size, 0, (
s->samples-count)*
size);
 
  895         memset((uint8_t*)dst_r + count*
size, 0, (
s->samples-count)*
size);
 
  906                                  void *dst, 
const int type)
 
  912     uint32_t crc             = 0xFFFFFFFF;
 
  913     uint32_t crc_extra_bits  = 0xFFFFFFFF;
 
  914     int16_t *dst16           = dst;
 
  918     s->one = 
s->zero = 
s->zeroes = 0;
 
  924         for (
i = 0; 
i < 
s->terms; 
i++) {
 
  925             t = 
s->decorr[
i].value;
 
  928                     A =  2
U * 
s->decorr[
i].samplesA[0] - 
s->decorr[
i].samplesA[1];
 
  930                     A = (
int)(3
U * 
s->decorr[
i].samplesA[0] - 
s->decorr[
i].samplesA[1]) >> 1;
 
  931                 s->decorr[
i].samplesA[1] = 
s->decorr[
i].samplesA[0];
 
  934                 A = 
s->decorr[
i].samplesA[
pos];
 
  938                 S = 
T + ((
s->decorr[
i].weightA * (int64_t)
A + 512) >> 10);
 
  940                 S = 
T + (unsigned)((
int)(
s->decorr[
i].weightA * (unsigned)
A + 512) >> 10);
 
  942                 s->decorr[
i].weightA -= ((((
T ^ 
A) >> 30) & 2) - 1) * 
s->decorr[
i].delta;
 
  943             s->decorr[
i].samplesA[j] = 
T = 
S;
 
  956     } 
while (!last && count < s->
samples);
 
  958     if (last && count < s->
samples) {
 
  960         memset((uint8_t*)dst + count*
size, 0, (
s->samples-count)*
size);
 
  978     if (!
c->fdec[
c->fdec_num])
 
  981     c->fdec[
c->fdec_num - 1]->avctx = 
c->avctx;
 
  997     if (
channels > INT_MAX / 
sizeof(*
s->dsdctx))
 
 1007         memset(
s->dsdctx[
i].buf, 0x69, 
sizeof(
s->dsdctx[
i].buf));
 
 1053     if (!
s->curr_frame.f || !
s->prev_frame.f)
 
 1065     for (
int i = 0; 
i < 
s->fdec_num; 
i++)
 
 1081                                 const uint8_t *buf, 
int buf_size)
 
 1087     void *samples_l = 
NULL, *samples_r = 
NULL;
 
 1089     int got_terms   = 0, got_weights = 0, got_samples = 0,
 
 1090         got_entropy = 0, got_pcm     = 0, got_float   = 0, got_hybrid = 0;
 
 1093     int bpp, chan = 0, orig_bpp, 
sample_rate = 0, rate_x = 1, dsd_mode = 0;
 
 1095     uint64_t chmask = 0;
 
 1102     s = wc->
fdec[block_no];
 
 1110     memset(
s->ch, 0, 
sizeof(
s->ch));
 
 1112     s->and            = 
s->or = 
s->shift = 0;
 
 1113     s->got_extra_bits = 0;
 
 1117     s->samples = bytestream2_get_le32(&gb);
 
 1120                "a sequence: %d and %d\n", wc->
samples, 
s->samples);
 
 1123     s->frame_flags = bytestream2_get_le32(&gb);
 
 1127     else if ((
s->frame_flags & 0x03) <= 1)
 
 1136     orig_bpp       = ((
s->frame_flags & 0x03) + 1) << 3;
 
 1139     s->stereo         = !(
s->frame_flags & 
WV_MONO);
 
 1144     s->post_shift     = bpp * 8 - orig_bpp + ((
s->frame_flags >> 13) & 0x1f);
 
 1145     if (
s->post_shift < 0 || 
s->post_shift > 31) {
 
 1148     s->hybrid_maxclip =  ((1LL << (orig_bpp - 1)) - 1);
 
 1149     s->hybrid_minclip = ((-1UL << (orig_bpp - 1)));
 
 1150     s->CRC            = bytestream2_get_le32(&gb);
 
 1154         id   = bytestream2_get_byte(&gb);
 
 1155         size = bytestream2_get_byte(&gb);
 
 1157             size |= (bytestream2_get_le16u(&gb)) << 8;
 
 1164                    "Got incorrect block %02X with size %i\n", 
id, 
size);
 
 1169                    "Block size %i is out of bounds\n", 
size);
 
 1181             for (
i = 0; 
i < 
s->terms; 
i++) {
 
 1182                 uint8_t 
val = bytestream2_get_byte(&gb);
 
 1183                 s->decorr[
s->terms - 
i - 1].value = (
val & 0x1F) - 5;
 
 1184                 s->decorr[
s->terms - 
i - 1].delta =  
val >> 5;
 
 1200                 t = (int8_t)bytestream2_get_byte(&gb);
 
 1201                 s->decorr[
s->terms - 
i - 1].weightA = t * (1 << 3);
 
 1202                 if (
s->decorr[
s->terms - 
i - 1].weightA > 0)
 
 1203                     s->decorr[
s->terms - 
i - 1].weightA +=
 
 1204                         (
s->decorr[
s->terms - 
i - 1].weightA + 64) >> 7;
 
 1206                     t = (int8_t)bytestream2_get_byte(&gb);
 
 1207                     s->decorr[
s->terms - 
i - 1].weightB = t * (1 << 3);
 
 1208                     if (
s->decorr[
s->terms - 
i - 1].weightB > 0)
 
 1209                         s->decorr[
s->terms - 
i - 1].weightB +=
 
 1210                             (
s->decorr[
s->terms - 
i - 1].weightB + 64) >> 7;
 
 1221             for (
i = 
s->terms - 1; (
i >= 0) && (t < 
size); 
i--) {
 
 1222                 if (
s->decorr[
i].value > 8) {
 
 1223                     s->decorr[
i].samplesA[0] =
 
 1224                         wp_exp2(bytestream2_get_le16(&gb));
 
 1225                     s->decorr[
i].samplesA[1] =
 
 1226                         wp_exp2(bytestream2_get_le16(&gb));
 
 1229                         s->decorr[
i].samplesB[0] =
 
 1230                             wp_exp2(bytestream2_get_le16(&gb));
 
 1231                         s->decorr[
i].samplesB[1] =
 
 1232                             wp_exp2(bytestream2_get_le16(&gb));
 
 1236                 } 
else if (
s->decorr[
i].value < 0) {
 
 1237                     s->decorr[
i].samplesA[0] =
 
 1238                         wp_exp2(bytestream2_get_le16(&gb));
 
 1239                     s->decorr[
i].samplesB[0] =
 
 1240                         wp_exp2(bytestream2_get_le16(&gb));
 
 1243                     for (j = 0; j < 
s->decorr[
i].value; j++) {
 
 1244                         s->decorr[
i].samplesA[j] =
 
 1245                             wp_exp2(bytestream2_get_le16(&gb));
 
 1247                             s->decorr[
i].samplesB[j] =
 
 1248                                 wp_exp2(bytestream2_get_le16(&gb));
 
 1251                     t += 
s->decorr[
i].value * 2 * (
s->stereo_in + 1);
 
 1257             if (
size != 6 * (
s->stereo_in + 1)) {
 
 1259                        "Entropy vars size should be %i, got %i.\n",
 
 1260                        6 * (
s->stereo_in + 1), 
size);
 
 1264             for (j = 0; j <= 
s->stereo_in; j++)
 
 1265                 for (
i = 0; 
i < 3; 
i++) {
 
 1266                     s->ch[j].median[
i] = 
wp_exp2(bytestream2_get_le16(&gb));
 
 1271             if (
s->hybrid_bitrate) {
 
 1272                 for (
i = 0; 
i <= 
s->stereo_in; 
i++) {
 
 1273                     s->ch[
i].slow_level = 
wp_exp2(bytestream2_get_le16(&gb));
 
 1277             for (
i = 0; 
i < (
s->stereo_in + 1); 
i++) {
 
 1278                 s->ch[
i].bitrate_acc = bytestream2_get_le16(&gb) << 16;
 
 1282                 for (
i = 0; 
i < (
s->stereo_in + 1); 
i++) {
 
 1283                     s->ch[
i].bitrate_delta =
 
 1284                         wp_exp2((int16_t)bytestream2_get_le16(&gb));
 
 1287                 for (
i = 0; 
i < (
s->stereo_in + 1); 
i++)
 
 1288                     s->ch[
i].bitrate_delta = 0;
 
 1296                        "Invalid INT32INFO, size = %i\n",
 
 1304                        "Invalid INT32INFO, extra_bits = %d (> 30)\n", 
val[0]);
 
 1307                 s->extra_bits = 
val[0];
 
 1319             if (
s->shift > 31) {
 
 1321                        "Invalid INT32INFO, shift = %d (> 31)\n", 
s->shift);
 
 1322                 s->and = 
s->or = 
s->shift = 0;
 
 1327             if (
s->hybrid && bpp == 4 && 
s->post_shift < 8 && 
s->shift > 8) {
 
 1330                 s->hybrid_maxclip >>= 8;
 
 1331                 s->hybrid_minclip >>= 8;
 
 1338                        "Invalid FLOATINFO, size = %i\n", 
size);
 
 1342             s->float_flag    = bytestream2_get_byte(&gb);
 
 1343             s->float_shift   = bytestream2_get_byte(&gb);
 
 1344             s->float_max_exp = bytestream2_get_byte(&gb);
 
 1345             if (
s->float_shift > 31) {
 
 1347                        "Invalid FLOATINFO, shift = %d (> 31)\n", 
s->float_shift);
 
 1367             rate_x = bytestream2_get_byte(&gb);
 
 1370             rate_x = 1 << rate_x;
 
 1371             dsd_mode = bytestream2_get_byte(&gb);
 
 1372             if (dsd_mode && dsd_mode != 1 && dsd_mode != 3) {
 
 1392             s->got_extra_bits  = 1;
 
 1397                        "Insufficient channel information\n");
 
 1400             chan = bytestream2_get_byte(&gb);
 
 1403                 chmask = bytestream2_get_byte(&gb);
 
 1406                 chmask = bytestream2_get_le16(&gb);
 
 1409                 chmask = bytestream2_get_le24(&gb);
 
 1412                 chmask = bytestream2_get_le32(&gb);
 
 1415                 size = bytestream2_get_byte(&gb);
 
 1416                 chan  |= (bytestream2_get_byte(&gb) & 0xF) << 8;
 
 1421                 chmask = bytestream2_get_le24(&gb);
 
 1424                 size = bytestream2_get_byte(&gb);
 
 1425                 chan  |= (bytestream2_get_byte(&gb) & 0xF) << 8;
 
 1430                 chmask = bytestream2_get_le32(&gb);
 
 1468         if (
s->hybrid && !got_hybrid) {
 
 1478             const int wanted = 
s->samples * 
s->extra_bits << 
s->stereo_in;
 
 1479             if (
size < wanted) {
 
 1481                 s->got_extra_bits = 0;
 
 1486     if (!got_pcm && !got_dsd) {
 
 1500         int sr = (
s->frame_flags >> 23) & 0
xf;
 
 1510         if (new_samplerate * (uint64_t)rate_x > INT_MAX)
 
 1512         new_samplerate *= rate_x;
 
 1536             !!got_dsd      != !!wc->
dsdctx) {
 
 1576             if (dsd_mode == 3) {
 
 1578             } 
else if (dsd_mode == 1) {
 
 1590             if (dsd_mode == 3) {
 
 1592             } 
else if (dsd_mode == 1) {
 
 1604             memcpy(samples_r, samples_l, bpp * 
s->samples);
 
 1623         (uint8_t *)
frame->extended_data[jobnr], 4,
 
 1624         (
float *)
frame->extended_data[jobnr], 1);
 
 1630                                 int *got_frame_ptr, 
AVPacket *avpkt)
 
 1633     const uint8_t *buf = avpkt->
data;
 
 1634     int buf_size       = avpkt->
size;
 
 1646     frame_flags = 
AV_RL32(buf + 24);
 
 1659         if (frame_size <= 0 || frame_size > buf_size) {
 
 1661                    "Block %d has invalid size (size %d vs. %d bytes left)\n",
 
 1705     .
p.
name         = 
"wavpack",
 
  
static void error(const char *err)
 
#define WV_HYBRID_BITRATE
 
@ AV_SAMPLE_FMT_FLTP
float, planar
 
#define AV_LOG_WARNING
Something somehow does not look correct.
 
F H1 F F H1 F F F F H1<-F-------F-------F v v v H2 H3 H2 ^ ^ ^ F-------F-------F-> H1<-F-------F-------F|||||||||F H1 F|||||||||F H1 Funavailable fullpel samples(outside the picture for example) shall be equalto the closest available fullpel sampleSmaller pel interpolation:--------------------------if diag_mc is set then points which lie on a line between 2 vertically, horizontally or diagonally adjacent halfpel points shall be interpolatedlinearly with rounding to nearest and halfway values rounded up.points which lie on 2 diagonals at the same time should only use the onediagonal not containing the fullpel point F--> O q O<--h1-> O q O<--F v \/v \/v O O O O O O O|/|\|q q q q q|/|\|O O O O O O O ^/\ ^/\ ^ h2--> O q O<--h3-> O q O<--h2 v \/v \/v O O O O O O O|\|/|q q q q q|\|/|O O O O O O O ^/\ ^/\ ^ F--> O q O<--h1-> O q O<--Fthe remaining points shall be bilinearly interpolated from theup to 4 surrounding halfpel and fullpel points, again rounding should be tonearest and halfway values rounded upcompliant Snow decoders MUST support 1-1/8 pel luma and 1/2-1/16 pel chromainterpolation at leastOverlapped block motion compensation:-------------------------------------FIXMELL band prediction:===================Each sample in the LL0 subband is predicted by the median of the left, top andleft+top-topleft samples, samples outside the subband shall be considered tobe 0. To reverse this prediction in the decoder apply the following.for(y=0;y< height;y++){ for(x=0;x< width;x++){ sample[y][x]+=median(sample[y-1][x], sample[y][x-1], sample[y-1][x]+sample[y][x-1]-sample[y-1][x-1]);}}sample[-1][ *]=sample[ *][-1]=0;width, height here are the width and height of the LL0 subband not of the finalvideoDequantization:===============FIXMEWavelet Transform:==================Snow supports 2 wavelet transforms, the symmetric biorthogonal 5/3 integertransform and an integer approximation of the symmetric biorthogonal 9/7daubechies wavelet.2D IDWT(inverse discrete wavelet transform) --------------------------------------------The 2D IDWT applies a 2D filter recursively, each time combining the4 lowest frequency subbands into a single subband until only 1 subbandremains.The 2D filter is done by first applying a 1D filter in the vertical directionand then applying it in the horizontal one. --------------- --------------- --------------- ---------------|LL0|HL0|||||||||||||---+---|HL1||L0|H0|HL1||LL1|HL1|||||LH0|HH0|||||||||||||-------+-------|-> L1 H1 LH1 HH1 LH1 HH1 LH1 HH1 L2
 
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
 
static int get_bits_left(GetBitContext *gb)
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
void ff_thread_release_ext_buffer(AVCodecContext *avctx, ThreadFrame *f)
Unref a ThreadFrame.
 
int sample_rate
samples per second
 
#define u(width, name, range_min, range_max)
 
uint8_t * data
The data buffer.
 
static int wv_unpack_dsd_high(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right)
 
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
 
static void wavpack_decode_flush(AVCodecContext *avctx)
 
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
 
#define WV_FLT_SHIFT_ONES
 
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
 
This structure describes decoded (raw) audio or video data.
 
static const uint16_t table[]
 
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
 
int nb_channels
Number of channels in this layout.
 
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_thread_report_progress() has been called on them. This includes draw_edges(). Porting codecs to frame threading
 
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
 
int av_channel_layout_copy(AVChannelLayout *dst, const AVChannelLayout *src)
Make a copy of a channel layout.
 
#define bit(string, value)
 
static int wv_unpack_dsd_copy(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right)
 
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
 
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
 
static int update_error_limit(WavpackFrameContext *ctx)
 
AVCodec p
The public AVCodec.
 
AVChannelLayout ch_layout
Audio channel layout.
 
const FFCodec ff_wavpack_decoder
 
static double val(void *priv, double ch)
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
 
static int wavpack_decode_block(AVCodecContext *avctx, int block_no, const uint8_t *buf, int buf_size)
 
static av_always_inline int wp_log2(uint32_t val)
 
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
 
static int16_t mult(Float11 *f1, Float11 *f2)
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
 
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
 
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
 
#define FF_CODEC_DECODE_CB(func)
 
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
 
static const int wv_rates[16]
 
#define filters(fmt, type, inverse, clp, inverset, clip, one, clip_fn, packed)
 
static av_always_inline int wp_exp2(int16_t val)
 
uint16_t summed_probabilities[MAX_HISTORY_BINS][256]
 
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
 
int ff_thread_ref_frame(ThreadFrame *dst, const ThreadFrame *src)
 
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
 
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
 
static int wavpack_decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_frame_ptr, AVPacket *avpkt)
 
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it.
 
#define DSD_BYTE_READY(low, high)
 
static unsigned int get_bits1(GetBitContext *s)
 
int av_channel_layout_compare(const AVChannelLayout *chl, const AVChannelLayout *chl1)
Check whether two channel layouts are semantically the same, i.e.
 
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
 
void av_channel_layout_default(AVChannelLayout *ch_layout, int nb_channels)
Get the default channel layout for a given number of channels.
 
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
 
#define AV_EF_EXPLODE
abort decoding on minor error detection
 
static int get_unary_0_33(GetBitContext *gb)
Get unary code terminated by a 0 with a maximum length of 33.
 
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
 
static int wv_get_value_integer(WavpackFrameContext *s, uint32_t *crc, unsigned S)
 
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
 
#define AV_CODEC_CAP_CHANNEL_CONF
Codec should fill in channel configuration and samplerate instead of container.
 
av_cold void ff_init_dsd_data(void)
 
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
 
An AVChannelLayout holds information about the channel layout of audio data.
 
static int wv_check_crc(WavpackFrameContext *s, uint32_t crc, uint32_t crc_extra_bits)
 
enum AVSampleFormat sample_fmt
audio sample format
 
#define FF_CODEC_CAP_ALLOCATE_PROGRESS
 
static char * split(char *message, char delim)
 
static void init_ptable(int *table, int rate_i, int rate_s)
 
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
 
#define WV_FLT_SHIFT_SENT
 
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
 
WavpackFrameContext * fdec[WV_MAX_FRAME_DECODERS]
 
static int wv_unpack_stereo(WavpackFrameContext *s, GetBitContext *gb, void *dst_l, void *dst_r, const int type)
 
static int wv_unpack_mono(WavpackFrameContext *s, GetBitContext *gb, void *dst, const int type)
 
int nb_samples
number of audio samples (per channel) described by this frame
 
#define i(width, name, range_min, range_max)
 
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
 
static av_cold int wavpack_decode_end(AVCodecContext *avctx)
 
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
 
uint8_t ** extended_data
pointers to the data planes/channels.
 
static const int weights[]
 
AVSampleFormat
Audio sample formats.
 
#define xf(width, name, var, range_min, range_max, subs,...)
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
 
#define WV_FLT_SHIFT_SAME
 
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
 
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
 
static av_always_inline unsigned get_tail(GetBitContext *gb, int k)
 
const char * name
Name of the codec implementation.
 
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have update_thread_context() run it in the next thread. Add AV_CODEC_CAP_FRAME_THREADS to the codec capabilities. There will be very little speed gain at this point but it should work. If there are inter-frame dependencies
 
int av_buffer_replace(AVBufferRef **pdst, const AVBufferRef *src)
Ensure dst refers to the same data as src.
 
int ff_thread_get_ext_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around ff_get_buffer() for frame-multithreaded codecs.
 
void ff_dsd2pcm_translate(DSDContext *s, size_t samples, int lsbf, const uint8_t *src, ptrdiff_t src_stride, float *dst, ptrdiff_t dst_stride)
 
FF_ENABLE_DEPRECATION_WARNINGS int av_channel_layout_from_mask(AVChannelLayout *channel_layout, uint64_t mask)
Initialize a native channel layout from a bitmask indicating which channels are present.
 
uint8_t value_lookup_buffer[MAX_HISTORY_BINS *MAX_BIN_BYTES]
 
AVBufferRef * av_buffer_allocz(size_t size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
 
static int wv_unpack_dsd_fast(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right)
 
#define FFSWAP(type, a, b)
 
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
 
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data,...
 
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
 
#define WV_MAX_FRAME_DECODERS
 
#define AV_INPUT_BUFFER_PADDING_SIZE
 
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
 
GetBitContext gb_extra_bits
 
static av_cold int wavpack_decode_init(AVCodecContext *avctx)
 
main external API structure.
 
#define UPDATE_WEIGHT_CLIP(weight, delta, samples, in)
 
static int wv_get_value(WavpackFrameContext *ctx, GetBitContext *gb, int channel, int *last)
 
static float wv_get_value_float(WavpackFrameContext *s, uint32_t *crc, int S)
 
Filter the word “frame” indicates either a video frame or a group of audio samples
 
static const int factor[16]
 
static int shift(int a, int b)
 
static float add(float src0, float src1)
 
static av_cold int wv_alloc_frame_context(WavpackContext *c)
 
A reference to a data buffer.
 
static av_always_inline int get_bitsz(GetBitContext *s, int n)
Read 0-25 bits.
 
uint8_t probabilities[MAX_HISTORY_BINS][256]
 
This structure stores compressed data.
 
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
 
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
 
static int wv_dsd_reset(WavpackContext *s, int channels)
 
uint8_t * value_lookup[MAX_HISTORY_BINS]
 
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
 
static int dsd_channel(AVCodecContext *avctx, void *frmptr, int jobnr, int threadnr)