FFmpeg
vf_bilateral.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017 Ming Yang
3  * Copyright (c) 2019 Paul B Mahol
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "libavutil/imgutils.h"
25 #include "libavutil/opt.h"
26 #include "libavutil/pixdesc.h"
27 #include "avfilter.h"
28 #include "formats.h"
29 #include "internal.h"
30 #include "video.h"
31 
32 typedef struct BilateralContext {
33  const AVClass *class;
34 
35  float sigmaS;
36  float sigmaR;
37  int planes;
38 
40  int nb_planes;
41  int depth;
42  int planewidth[4];
43  int planeheight[4];
44 
45  float alpha;
46  float range_table[65536];
47 
48  float *img_out_f[4];
49  float *img_temp[4];
50  float *map_factor_a[4];
51  float *map_factor_b[4];
52  float *slice_factor_a[4];
53  float *slice_factor_b[4];
54  float *line_factor_a[4];
55  float *line_factor_b[4];
57 
58 #define OFFSET(x) offsetof(BilateralContext, x)
59 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
60 
61 static const AVOption bilateral_options[] = {
62  { "sigmaS", "set spatial sigma", OFFSET(sigmaS), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 512, FLAGS },
63  { "sigmaR", "set range sigma", OFFSET(sigmaR), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 1, FLAGS },
64  { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=1}, 0, 0xF, FLAGS },
65  { NULL }
66 };
67 
68 AVFILTER_DEFINE_CLASS(bilateral);
69 
70 static const enum AVPixelFormat pix_fmts[] = {
89 };
90 
92 {
93  BilateralContext *s = ctx->priv;
94  float inv_sigma_range;
95 
96  inv_sigma_range = 1.0f / (s->sigmaR * ((1 << s->depth) - 1));
97  s->alpha = expf(-sqrtf(2.f) / s->sigmaS);
98 
99  //compute a lookup table
100  for (int i = 0; i < (1 << s->depth); i++)
101  s->range_table[i] = s->alpha * expf(-i * inv_sigma_range);
102 
103  return 0;
104 }
105 
106 typedef struct ThreadData {
107  AVFrame *in, *out;
108 } ThreadData;
109 
111 {
112  AVFilterContext *ctx = inlink->dst;
113  BilateralContext *s = ctx->priv;
115 
116  s->depth = desc->comp[0].depth;
118 
119  s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
120  s->planewidth[0] = s->planewidth[3] = inlink->w;
121  s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
122  s->planeheight[0] = s->planeheight[3] = inlink->h;
123 
124  s->nb_planes = av_pix_fmt_count_planes(inlink->format);
125  s->nb_threads = ff_filter_get_nb_threads(ctx);
126 
127  for (int p = 0; p < s->nb_planes; p++) {
128  const int w = s->planewidth[p];
129  const int h = s->planeheight[p];
130 
131  s->img_out_f[p] = av_calloc(w * h, sizeof(float));
132  s->img_temp[p] = av_calloc(w * h, sizeof(float));
133  s->map_factor_a[p] = av_calloc(w * h, sizeof(float));
134  s->map_factor_b[p] = av_calloc(w * h, sizeof(float));
135  s->slice_factor_a[p] = av_calloc(w, sizeof(float));
136  s->slice_factor_b[p] = av_calloc(w, sizeof(float));
137  s->line_factor_a[p] = av_calloc(w, sizeof(float));
138  s->line_factor_b[p] = av_calloc(w, sizeof(float));
139 
140  if (!s->img_out_f[p] ||
141  !s->img_temp[p] ||
142  !s->map_factor_a[p] ||
143  !s->map_factor_b[p] ||
144  !s->slice_factor_a[p] ||
145  !s->slice_factor_a[p] ||
146  !s->line_factor_a[p] ||
147  !s->line_factor_a[p])
148  return AVERROR(ENOMEM);
149  }
150 
151  return 0;
152 }
153 
154 #define BILATERAL_H(type, name) \
155 static void bilateralh_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
156  int jobnr, int nb_jobs, int plane) \
157 { \
158  const int width = s->planewidth[plane]; \
159  const int height = s->planeheight[plane]; \
160  const int slice_start = (height * jobnr) / nb_jobs; \
161  const int slice_end = (height * (jobnr+1)) / nb_jobs; \
162  const int src_linesize = in->linesize[plane] / sizeof(type); \
163  const type *src = (const type *)in->data[plane]; \
164  float *img_temp = s->img_temp[plane]; \
165  float *map_factor_a = s->map_factor_a[plane]; \
166  const float *const range_table = s->range_table; \
167  const float alpha = s->alpha; \
168  float ypr, ycr, fp, fc; \
169  const float inv_alpha_ = 1.f - alpha; \
170  \
171  for (int y = slice_start; y < slice_end; y++) { \
172  float *temp_factor_x, *temp_x = &img_temp[y * width]; \
173  const type *in_x = &src[y * src_linesize]; \
174  const type *texture_x = &src[y * src_linesize]; \
175  type tpr; \
176  \
177  *temp_x++ = ypr = *in_x++; \
178  tpr = *texture_x++; \
179  \
180  temp_factor_x = &map_factor_a[y * width]; \
181  *temp_factor_x++ = fp = 1; \
182  \
183  for (int x = 1; x < width; x++) { \
184  float alpha_; \
185  int range_dist; \
186  type tcr = *texture_x++; \
187  type dr = abs(tcr - tpr); \
188  \
189  range_dist = dr; \
190  alpha_ = range_table[range_dist]; \
191  *temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr; \
192  tpr = tcr; \
193  ypr = ycr; \
194  *temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp; \
195  fp = fc; \
196  } \
197  --temp_x; *temp_x = ((*temp_x) + (*--in_x)); \
198  tpr = *--texture_x; \
199  ypr = *in_x; \
200  \
201  --temp_factor_x; *temp_factor_x = ((*temp_factor_x) + 1); \
202  fp = 1; \
203  \
204  for (int x = width - 2; x >= 0; x--) { \
205  type tcr = *--texture_x; \
206  type dr = abs(tcr - tpr); \
207  int range_dist = dr; \
208  float alpha_ = range_table[range_dist]; \
209  \
210  ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr; \
211  --temp_x; *temp_x = ((*temp_x) + ycr); \
212  tpr = tcr; \
213  ypr = ycr; \
214  \
215  fc = inv_alpha_ + alpha_*fp; \
216  --temp_factor_x; \
217  *temp_factor_x = ((*temp_factor_x) + fc); \
218  fp = fc; \
219  } \
220  } \
221 }
222 
223 BILATERAL_H(uint8_t, byte)
224 BILATERAL_H(uint16_t, word)
225 
226 #define BILATERAL_V(type, name) \
227 static void bilateralv_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
228  int jobnr, int nb_jobs, int plane) \
229 { \
230  const int width = s->planewidth[plane]; \
231  const int height = s->planeheight[plane]; \
232  const int slice_start = (width * jobnr) / nb_jobs; \
233  const int slice_end = (width * (jobnr+1)) / nb_jobs; \
234  const int src_linesize = in->linesize[plane] / sizeof(type); \
235  const type *src = (const type *)in->data[plane] + slice_start; \
236  float *img_out_f = s->img_out_f[plane] + slice_start; \
237  float *img_temp = s->img_temp[plane] + slice_start; \
238  float *map_factor_a = s->map_factor_a[plane] + slice_start; \
239  float *map_factor_b = s->map_factor_b[plane] + slice_start; \
240  float *slice_factor_a = s->slice_factor_a[plane] + slice_start; \
241  float *slice_factor_b = s->slice_factor_b[plane] + slice_start; \
242  float *line_factor_a = s->line_factor_a[plane] + slice_start; \
243  float *line_factor_b = s->line_factor_b[plane] + slice_start; \
244  const float *const range_table = s->range_table; \
245  const float alpha = s->alpha; \
246  float *ycy, *ypy, *xcy; \
247  const float inv_alpha_ = 1.f - alpha; \
248  float *ycf, *ypf, *xcf, *in_factor; \
249  const type *tcy, *tpy; \
250  int h1; \
251  \
252  memcpy(img_out_f, img_temp, sizeof(float) * (slice_end - slice_start)); \
253  \
254  in_factor = map_factor_a; \
255  memcpy(map_factor_b, in_factor, sizeof(float) * (slice_end - slice_start)); \
256  for (int y = 1; y < height; y++) { \
257  tpy = &src[(y - 1) * src_linesize]; \
258  tcy = &src[y * src_linesize]; \
259  xcy = &img_temp[y * width]; \
260  ypy = &img_out_f[(y - 1) * width]; \
261  ycy = &img_out_f[y * width]; \
262  \
263  xcf = &in_factor[y * width]; \
264  ypf = &map_factor_b[(y - 1) * width]; \
265  ycf = &map_factor_b[y * width]; \
266  for (int x = 0; x < slice_end - slice_start; x++) { \
267  type dr = abs((*tcy++) - (*tpy++)); \
268  int range_dist = dr; \
269  float alpha_ = range_table[range_dist]; \
270  \
271  *ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++); \
272  *ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++); \
273  } \
274  } \
275  h1 = height - 1; \
276  ycf = line_factor_a; \
277  ypf = line_factor_b; \
278  memcpy(ypf, &in_factor[h1 * width], sizeof(float) * (slice_end - slice_start)); \
279  for (int x = 0, k = 0; x < slice_end - slice_start; x++) \
280  map_factor_b[h1 * width + x] = (map_factor_b[h1 * width + x] + ypf[k++]); \
281  \
282  ycy = slice_factor_a; \
283  ypy = slice_factor_b; \
284  memcpy(ypy, &img_temp[h1 * width], sizeof(float) * (slice_end - slice_start)); \
285  for (int x = 0, k = 0; x < slice_end - slice_start; x++) { \
286  int idx = h1 * width + x; \
287  img_out_f[idx] = (img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \
288  } \
289  \
290  for (int y = h1 - 1; y >= 0; y--) { \
291  float *ycf_, *ypf_, *factor_; \
292  float *ycy_, *ypy_, *out_; \
293  \
294  tpy = &src[(y + 1) * src_linesize]; \
295  tcy = &src[y * src_linesize]; \
296  xcy = &img_temp[y * width]; \
297  ycy_ = ycy; \
298  ypy_ = ypy; \
299  out_ = &img_out_f[y * width]; \
300  \
301  xcf = &in_factor[y * width]; \
302  ycf_ = ycf; \
303  ypf_ = ypf; \
304  factor_ = &map_factor_b[y * width]; \
305  for (int x = 0; x < slice_end - slice_start; x++) { \
306  type dr = abs((*tcy++) - (*tpy++)); \
307  int range_dist = dr; \
308  float alpha_ = range_table[range_dist]; \
309  float ycc, fcc = inv_alpha_*(*xcf++) + alpha_*(*ypf_++); \
310  \
311  *ycf_++ = fcc; \
312  *factor_ = (*factor_ + fcc); \
313  \
314  ycc = inv_alpha_*(*xcy++) + alpha_*(*ypy_++); \
315  *ycy_++ = ycc; \
316  *out_ = (*out_ + ycc) / (*factor_); \
317  out_++; \
318  factor_++; \
319  } \
320  \
321  ypy = ycy; \
322  ypf = ycf; \
323  } \
324 }
325 
326 BILATERAL_V(uint8_t, byte)
327 BILATERAL_V(uint16_t, word)
328 
329 #define BILATERAL_O(type, name) \
330 static void bilateralo_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
331  int jobnr, int nb_jobs, int plane) \
332 { \
333  const int width = s->planewidth[plane]; \
334  const int height = s->planeheight[plane]; \
335  const int slice_start = (height * jobnr) / nb_jobs; \
336  const int slice_end = (height * (jobnr+1)) / nb_jobs; \
337  const int dst_linesize = out->linesize[plane] / sizeof(type); \
338  \
339  for (int i = slice_start; i < slice_end; i++) { \
340  type *dst = (type *)out->data[plane] + i * dst_linesize; \
341  const float *const img_out_f = s->img_out_f[plane] + i * width; \
342  for (int j = 0; j < width; j++) \
343  dst[j] = lrintf(img_out_f[j]); \
344  } \
345 }
346 
347 BILATERAL_O(uint8_t, byte)
348 BILATERAL_O(uint16_t, word)
349 
351  int jobnr, int nb_jobs)
352 {
353  BilateralContext *s = ctx->priv;
354  ThreadData *td = arg;
355  AVFrame *out = td->out;
356  AVFrame *in = td->in;
357 
358  for (int plane = 0; plane < s->nb_planes; plane++) {
359  if (!(s->planes & (1 << plane)))
360  continue;
361 
362  if (s->depth <= 8)
363  bilateralh_byte(s, out, in, jobnr, nb_jobs, plane);
364  else
365  bilateralh_word(s, out, in, jobnr, nb_jobs, plane);
366  }
367 
368  return 0;
369 }
370 
372  int jobnr, int nb_jobs)
373 {
374  BilateralContext *s = ctx->priv;
375  ThreadData *td = arg;
376  AVFrame *out = td->out;
377  AVFrame *in = td->in;
378 
379  for (int plane = 0; plane < s->nb_planes; plane++) {
380  if (!(s->planes & (1 << plane)))
381  continue;
382 
383  if (s->depth <= 8)
384  bilateralv_byte(s, out, in, jobnr, nb_jobs, plane);
385  else
386  bilateralv_word(s, out, in, jobnr, nb_jobs, plane);
387  }
388 
389  return 0;
390 }
391 
393  int jobnr, int nb_jobs)
394 {
395  BilateralContext *s = ctx->priv;
396  ThreadData *td = arg;
397  AVFrame *out = td->out;
398  AVFrame *in = td->in;
399 
400  for (int plane = 0; plane < s->nb_planes; plane++) {
401  if (!(s->planes & (1 << plane))) {
402  if (out != in) {
403  const int height = s->planeheight[plane];
404  const int slice_start = (height * jobnr) / nb_jobs;
405  const int slice_end = (height * (jobnr+1)) / nb_jobs;
406  const int width = s->planewidth[plane];
407  const int linesize = in->linesize[plane];
408  const int dst_linesize = out->linesize[plane];
409  const uint8_t *src = in->data[plane];
410  uint8_t *dst = out->data[plane];
411 
412  av_image_copy_plane(dst + slice_start * dst_linesize,
413  dst_linesize,
414  src + slice_start * linesize,
415  linesize,
416  width * ((s->depth + 7) / 8),
417  slice_end - slice_start);
418  }
419  continue;
420  }
421 
422  if (s->depth <= 8)
423  bilateralo_byte(s, out, in, jobnr, nb_jobs, plane);
424  else
425  bilateralo_word(s, out, in, jobnr, nb_jobs, plane);
426  }
427 
428  return 0;
429 }
430 
432 {
433  AVFilterContext *ctx = inlink->dst;
434  BilateralContext *s = ctx->priv;
435  AVFilterLink *outlink = ctx->outputs[0];
436  ThreadData td;
437  AVFrame *out;
438 
439  if (av_frame_is_writable(in)) {
440  out = in;
441  } else {
442  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
443  if (!out) {
444  av_frame_free(&in);
445  return AVERROR(ENOMEM);
446  }
448  }
449 
450  td.in = in;
451  td.out = out;
452  ff_filter_execute(ctx, bilateralh_planes, &td, NULL, s->nb_threads);
453  ff_filter_execute(ctx, bilateralv_planes, &td, NULL, s->nb_threads);
454  ff_filter_execute(ctx, bilateralo_planes, &td, NULL, s->nb_threads);
455 
456  if (out != in)
457  av_frame_free(&in);
458  return ff_filter_frame(outlink, out);
459 }
460 
462 {
463  BilateralContext *s = ctx->priv;
464 
465  for (int p = 0; p < s->nb_planes; p++) {
466  av_freep(&s->img_out_f[p]);
467  av_freep(&s->img_temp[p]);
468  av_freep(&s->map_factor_a[p]);
469  av_freep(&s->map_factor_b[p]);
470  av_freep(&s->slice_factor_a[p]);
471  av_freep(&s->slice_factor_b[p]);
472  av_freep(&s->line_factor_a[p]);
473  av_freep(&s->line_factor_b[p]);
474  }
475 }
476 
478  const char *cmd,
479  const char *arg,
480  char *res,
481  int res_len,
482  int flags)
483 {
484  int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);
485 
486  if (ret < 0)
487  return ret;
488 
489  return config_params(ctx);
490 }
491 
492 static const AVFilterPad bilateral_inputs[] = {
493  {
494  .name = "default",
495  .type = AVMEDIA_TYPE_VIDEO,
496  .config_props = config_input,
497  .filter_frame = filter_frame,
498  },
499 };
500 
501 static const AVFilterPad bilateral_outputs[] = {
502  {
503  .name = "default",
504  .type = AVMEDIA_TYPE_VIDEO,
505  },
506 };
507 
509  .name = "bilateral",
510  .description = NULL_IF_CONFIG_SMALL("Apply Bilateral filter."),
511  .priv_size = sizeof(BilateralContext),
512  .priv_class = &bilateral_class,
513  .uninit = uninit,
519  .process_command = process_command,
520 };
ff_get_video_buffer
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:101
AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_YUVA422P16
Definition: pixfmt.h:449
AV_PIX_FMT_GBRAP16
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:428
td
#define td
Definition: regdef.h:70
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
config_params
static int config_params(AVFilterContext *ctx)
Definition: vf_bilateral.c:91
out
FILE * out
Definition: movenc.c:54
ff_filter_frame
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:999
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2662
FILTER_PIXFMTS_ARRAY
#define FILTER_PIXFMTS_ARRAY(array)
Definition: internal.h:170
inlink
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
Definition: filter_design.txt:212
bilateralv_planes
static int bilateralv_planes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_bilateral.c:371
av_frame_free
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:111
BilateralContext::sigmaR
float sigmaR
Definition: vf_bilateral.c:36
AV_PIX_FMT_YUVA422P9
#define AV_PIX_FMT_YUVA422P9
Definition: pixfmt.h:441
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:325
pixdesc.h
AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P16
Definition: pixfmt.h:448
w
uint8_t w
Definition: llviddspenc.c:38
AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:443
AVOption
AVOption.
Definition: opt.h:251
BilateralContext::planewidth
int planewidth[4]
Definition: vf_bilateral.c:42
expf
#define expf(x)
Definition: libm.h:283
AV_PIX_FMT_YUV420P10
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:406
AV_PIX_FMT_YUV440P
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:99
AVFilter::name
const char * name
Filter name.
Definition: avfilter.h:175
FLAGS
#define FLAGS
Definition: vf_bilateral.c:59
ThreadData::out
AVFrame * out
Definition: af_adeclick.c:473
video.h
ThreadData::in
AVFrame * in
Definition: af_adecorrelate.c:154
AV_PIX_FMT_YUVA422P10
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:444
AV_PIX_FMT_GRAY9
#define AV_PIX_FMT_GRAY9
Definition: pixfmt.h:386
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:346
av_image_copy_plane
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
Definition: imgutils.c:374
formats.h
av_pix_fmt_count_planes
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2702
AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_YUVA420P9
Definition: pixfmt.h:440
AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:424
AV_PIX_FMT_GBRAP
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:205
AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:422
AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUVA444P16
Definition: pixfmt.h:450
BilateralContext::slice_factor_a
float * slice_factor_a[4]
Definition: vf_bilateral.c:52
AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:404
uninit
static av_cold void uninit(AVFilterContext *ctx)
Definition: vf_bilateral.c:461
BilateralContext::range_table
float range_table[65536]
Definition: vf_bilateral.c:46
pix_fmts
static enum AVPixelFormat pix_fmts[]
Definition: vf_bilateral.c:70
AV_PIX_FMT_GRAY16
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:390
AVFilterPad
A filter pad used for either input or output.
Definition: internal.h:49
AV_PIX_FMT_YUV444P10
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:409
AV_PIX_FMT_YUVJ411P
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:248
av_cold
#define av_cold
Definition: attributes.h:90
AV_PIX_FMT_YUV422P16
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:418
AV_PIX_FMT_YUVJ422P
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:426
filter_frame
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Definition: vf_bilateral.c:431
width
#define width
s
#define s(width, name)
Definition: cbs_vp9.c:256
config_input
static int config_input(AVFilterLink *inlink)
Definition: vf_bilateral.c:110
AV_PIX_FMT_GBRAP12
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:427
AV_PIX_FMT_YUVA420P
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
AV_PIX_FMT_YUV444P16
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:419
AV_CEIL_RSHIFT
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:50
BilateralContext::nb_planes
int nb_planes
Definition: vf_bilateral.c:40
slice_end
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
Definition: mpeg12dec.c:2013
AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:403
AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:417
ctx
AVFormatContext * ctx
Definition: movenc.c:48
AV_PIX_FMT_GRAY14
#define AV_PIX_FMT_GRAY14
Definition: pixfmt.h:389
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
BilateralContext::img_out_f
float * img_out_f[4]
Definition: vf_bilateral.c:48
AVFILTER_DEFINE_CLASS
AVFILTER_DEFINE_CLASS(bilateral)
FILTER_INPUTS
#define FILTER_INPUTS(array)
Definition: internal.h:190
bilateral_options
static const AVOption bilateral_options[]
Definition: vf_bilateral.c:61
AV_PIX_FMT_YUVJ444P
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
arg
const char * arg
Definition: jacosubdec.c:67
AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GRAY10
Definition: pixfmt.h:387
AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:425
OFFSET
#define OFFSET(x)
Definition: vf_bilateral.c:58
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:66
NULL
#define NULL
Definition: coverity.c:32
av_frame_copy_props
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:596
AV_PIX_FMT_YUVJ420P
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
BilateralContext::map_factor_b
float * map_factor_b[4]
Definition: vf_bilateral.c:51
sqrtf
static __device__ float sqrtf(float a)
Definition: cuda_runtime.h:184
AV_PIX_FMT_YUV422P10
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:407
AV_PIX_FMT_GRAY8
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:74
AV_PIX_FMT_GBRP9
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:421
BilateralContext::sigmaS
float sigmaS
Definition: vf_bilateral.c:35
bilateral_inputs
static const AVFilterPad bilateral_inputs[]
Definition: vf_bilateral.c:492
planes
static const struct @328 planes[]
BILATERAL_H
#define BILATERAL_H(type, name)
Definition: vf_bilateral.c:154
f
f
Definition: af_crystalizer.c:122
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:411
BilateralContext::planes
int planes
Definition: vf_bilateral.c:37
BilateralContext::slice_factor_b
float * slice_factor_b[4]
Definition: vf_bilateral.c:53
AV_PIX_FMT_YUV444P12
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:413
av_frame_is_writable
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Definition: frame.c:523
BilateralContext::img_temp
float * img_temp[4]
Definition: vf_bilateral.c:49
ff_filter_process_command
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
Definition: avfilter.c:863
height
#define height
AV_PIX_FMT_YUVA444P
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:167
AV_PIX_FMT_YUVA444P10
#define AV_PIX_FMT_YUVA444P10
Definition: pixfmt.h:445
internal.h
AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
Definition: avfilter.h:152
AV_OPT_TYPE_FLOAT
@ AV_OPT_TYPE_FLOAT
Definition: opt.h:228
BILATERAL_V
#define BILATERAL_V(type, name)
Definition: vf_bilateral.c:226
bilateralh_planes
static int bilateralh_planes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_bilateral.c:350
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
BilateralContext::planeheight
int planeheight[4]
Definition: vf_bilateral.c:43
AV_PIX_FMT_GBRP12
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:423
ff_filter_get_nb_threads
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:783
ThreadData
Used for passing data between threads.
Definition: dsddec.c:68
AV_PIX_FMT_YUVJ440P
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
Definition: pixfmt.h:100
AVFilterPad::name
const char * name
Pad name.
Definition: internal.h:55
av_calloc
void * av_calloc(size_t nmemb, size_t size)
Definition: mem.c:272
AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:405
AVFilter
Filter definition.
Definition: avfilter.h:171
ret
ret
Definition: filter_design.txt:187
bilateral_outputs
static const AVFilterPad bilateral_outputs[]
Definition: vf_bilateral.c:501
AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUVA444P9
Definition: pixfmt.h:442
BilateralContext::nb_threads
int nb_threads
Definition: vf_bilateral.c:39
AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:410
bilateralo_planes
static int bilateralo_planes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_bilateral.c:392
BilateralContext::depth
int depth
Definition: vf_bilateral.c:41
AV_PIX_FMT_YUV422P14
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:415
process_command
static int process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Definition: vf_bilateral.c:477
BilateralContext::alpha
float alpha
Definition: vf_bilateral.c:45
AV_PIX_FMT_NONE
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:225
avfilter.h
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
BilateralContext
Definition: vf_bilateral.c:32
AVFilterContext
An instance of a filter.
Definition: avfilter.h:408
AV_PIX_FMT_GBRP
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:158
AVFILTER_FLAG_SLICE_THREADS
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:127
desc
const char * desc
Definition: libsvtav1.c:83
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
BilateralContext::line_factor_b
float * line_factor_b[4]
Definition: vf_bilateral.c:55
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
ff_vf_bilateral
const AVFilter ff_vf_bilateral
Definition: vf_bilateral.c:508
FILTER_OUTPUTS
#define FILTER_OUTPUTS(array)
Definition: internal.h:191
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
src
INIT_CLIP pixel * src
Definition: h264pred_template.c:418
BilateralContext::line_factor_a
float * line_factor_a[4]
Definition: vf_bilateral.c:54
AV_PIX_FMT_YUV411P
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:73
imgutils.h
flags
#define flags(name, subs,...)
Definition: cbs_av1.c:561
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
Definition: frame.h:370
AV_PIX_FMT_YUV410P
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV440P12
Definition: pixfmt.h:412
h
h
Definition: vp9dsp_template.c:2038
AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:416
AV_PIX_FMT_GRAY12
#define AV_PIX_FMT_GRAY12
Definition: pixfmt.h:388
BILATERAL_O
#define BILATERAL_O(type, name)
Definition: vf_bilateral.c:329
ff_filter_execute
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
Definition: internal.h:142
BilateralContext::map_factor_a
float * map_factor_a[4]
Definition: vf_bilateral.c:50
AV_PIX_FMT_YUVA422P
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:166
AV_PIX_FMT_YUV420P14
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:414