Go to the documentation of this file.
35 #include "../internal.h"
41 #include <tensorflow/c/c_api.h>
83 #define OFFSET(x) offsetof(TFContext, x)
84 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM
121 for (uint32_t
i = 0;
i < nb_output; ++
i) {
140 if (!infer_request) {
147 return infer_request;
176 if (TF_GetCode(request->
status) != TF_OK) {
201 TF_DeleteStatus(request->
status);
228 TF_Buffer *graph_buf;
229 unsigned char *graph_data =
NULL;
231 long size, bytes_read;
244 bytes_read =
avio_read(model_file_context, graph_data,
size);
246 if (bytes_read !=
size){
251 graph_buf = TF_NewBuffer();
252 graph_buf->data = graph_data;
253 graph_buf->length =
size;
277 return TF_AllocateTensor(dt, input_dims, 4,
278 input_dims[1] * input_dims[2] * input_dims[3] *
size);
289 tf_output.oper = TF_GraphOperationByName(tf_model->
graph, input_name);
290 if (!tf_output.oper) {
296 input->dt = TF_OperationOutputType(tf_output);
300 TF_GraphGetTensorShape(tf_model->
graph, tf_output, dims, 4,
status);
301 if (TF_GetCode(
status) != TF_OK){
312 input->channels = dims[3];
317 static int get_output_tf(
void *model,
const char *input_name,
int input_width,
int input_height,
318 const char *output_name,
int *output_width,
int *output_height)
327 .output_names = &output_name,
361 #define SPACE_CHARS " \t\r\n"
373 if (
c >=
'0' &&
c <=
'9')
375 else if (
c >=
'A' &&
c <=
'F')
394 TF_Buffer *graph_def;
395 TF_ImportGraphDefOptions *graph_opts;
396 TF_SessionOptions *sess_opts;
397 const TF_Operation *init_op;
398 uint8_t *sess_config =
NULL;
399 int sess_config_length = 0;
434 tf_model->
graph = TF_NewGraph();
435 tf_model->
status = TF_NewStatus();
436 graph_opts = TF_NewImportGraphDefOptions();
437 TF_GraphImportGraphDef(tf_model->
graph, graph_def, graph_opts, tf_model->
status);
438 TF_DeleteImportGraphDefOptions(graph_opts);
439 TF_DeleteBuffer(graph_def);
440 if (TF_GetCode(tf_model->
status) != TF_OK){
441 TF_DeleteGraph(tf_model->
graph);
442 TF_DeleteStatus(tf_model->
status);
448 init_op = TF_GraphOperationByName(tf_model->
graph,
"init");
449 sess_opts = TF_NewSessionOptions();
452 TF_SetConfig(sess_opts, sess_config, sess_config_length,tf_model->
status);
454 if (TF_GetCode(tf_model->
status) != TF_OK) {
455 TF_DeleteGraph(tf_model->
graph);
456 TF_DeleteStatus(tf_model->
status);
457 TF_DeleteSessionOptions(sess_opts);
465 TF_DeleteSessionOptions(sess_opts);
466 if (TF_GetCode(tf_model->
status) != TF_OK)
468 TF_DeleteGraph(tf_model->
graph);
469 TF_DeleteStatus(tf_model->
status);
480 if (TF_GetCode(tf_model->
status) != TF_OK)
483 TF_DeleteGraph(tf_model->
graph);
484 TF_DeleteStatus(tf_model->
status);
493 #define NAME_BUFFER_SIZE 256
500 TF_OperationDescription *op_desc;
502 int64_t strides[] = {1, 1, 1, 1};
503 TF_Tensor *kernel_tensor =
NULL, *biases_tensor =
NULL;
513 op_desc = TF_NewOperation(tf_model->
graph,
"Const", name_buffer);
514 TF_SetAttrType(op_desc,
"dtype", TF_FLOAT);
520 kernel_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len,
size *
sizeof(
float));
521 memcpy(TF_TensorData(kernel_tensor), params->
kernel,
size *
sizeof(
float));
522 TF_SetAttrTensor(op_desc,
"value", kernel_tensor, tf_model->
status);
523 if (TF_GetCode(tf_model->
status) != TF_OK){
526 op = TF_FinishOperation(op_desc, tf_model->
status);
527 if (TF_GetCode(tf_model->
status) != TF_OK){
532 op_desc = TF_NewOperation(tf_model->
graph,
"Transpose", name_buffer);
534 TF_AddInput(op_desc,
input);
535 input.oper = transpose_op;
536 TF_AddInput(op_desc,
input);
537 TF_SetAttrType(op_desc,
"T", TF_FLOAT);
538 TF_SetAttrType(op_desc,
"Tperm", TF_INT32);
539 op = TF_FinishOperation(op_desc, tf_model->
status);
540 if (TF_GetCode(tf_model->
status) != TF_OK){
545 op_desc = TF_NewOperation(tf_model->
graph,
"Conv2D", name_buffer);
546 input.oper = *cur_op;
547 TF_AddInput(op_desc,
input);
549 TF_AddInput(op_desc,
input);
550 TF_SetAttrType(op_desc,
"T", TF_FLOAT);
551 TF_SetAttrIntList(op_desc,
"strides", strides, 4);
552 TF_SetAttrString(op_desc,
"padding",
"VALID", 5);
553 *cur_op = TF_FinishOperation(op_desc, tf_model->
status);
554 if (TF_GetCode(tf_model->
status) != TF_OK){
559 op_desc = TF_NewOperation(tf_model->
graph,
"Const", name_buffer);
560 TF_SetAttrType(op_desc,
"dtype", TF_FLOAT);
563 biases_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->
output_num *
sizeof(
float));
564 memcpy(TF_TensorData(biases_tensor), params->
biases, params->
output_num *
sizeof(
float));
565 TF_SetAttrTensor(op_desc,
"value", biases_tensor, tf_model->
status);
566 if (TF_GetCode(tf_model->
status) != TF_OK){
569 op = TF_FinishOperation(op_desc, tf_model->
status);
570 if (TF_GetCode(tf_model->
status) != TF_OK){
575 op_desc = TF_NewOperation(tf_model->
graph,
"BiasAdd", name_buffer);
576 input.oper = *cur_op;
577 TF_AddInput(op_desc,
input);
579 TF_AddInput(op_desc,
input);
580 TF_SetAttrType(op_desc,
"T", TF_FLOAT);
581 *cur_op = TF_FinishOperation(op_desc, tf_model->
status);
582 if (TF_GetCode(tf_model->
status) != TF_OK){
589 op_desc = TF_NewOperation(tf_model->
graph,
"Relu", name_buffer);
592 op_desc = TF_NewOperation(tf_model->
graph,
"Tanh", name_buffer);
595 op_desc = TF_NewOperation(tf_model->
graph,
"Sigmoid", name_buffer);
601 input.oper = *cur_op;
602 TF_AddInput(op_desc,
input);
603 TF_SetAttrType(op_desc,
"T", TF_FLOAT);
604 *cur_op = TF_FinishOperation(op_desc, tf_model->
status);
605 if (TF_GetCode(tf_model->
status) != TF_OK){
611 TF_DeleteTensor(kernel_tensor);
612 TF_DeleteTensor(biases_tensor);
621 TF_OperationDescription *op_desc;
626 op_desc = TF_NewOperation(tf_model->
graph,
"DepthToSpace", name_buffer);
627 input.oper = *cur_op;
629 TF_AddInput(op_desc,
input);
630 TF_SetAttrType(op_desc,
"T", TF_FLOAT);
631 TF_SetAttrInt(op_desc,
"block_size", params->
block_size);
632 *cur_op = TF_FinishOperation(op_desc, tf_model->
status);
633 if (TF_GetCode(tf_model->
status) != TF_OK){
647 TF_OperationDescription *op_desc;
650 int64_t pads_shape[] = {4, 2};
655 op_desc = TF_NewOperation(tf_model->
graph,
"Const", name_buffer);
656 TF_SetAttrType(op_desc,
"dtype", TF_INT32);
657 tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 *
sizeof(
int32_t));
658 pads = (
int32_t *)TF_TensorData(tensor);
667 TF_SetAttrTensor(op_desc,
"value", tensor, tf_model->
status);
668 if (TF_GetCode(tf_model->
status) != TF_OK){
669 TF_DeleteTensor(tensor);
673 op = TF_FinishOperation(op_desc, tf_model->
status);
674 if (TF_GetCode(tf_model->
status) != TF_OK){
675 TF_DeleteTensor(tensor);
680 op_desc = TF_NewOperation(tf_model->
graph,
"MirrorPad",
"mirror_pad");
681 input.oper = *cur_op;
683 TF_AddInput(op_desc,
input);
685 TF_AddInput(op_desc,
input);
686 TF_SetAttrType(op_desc,
"T", TF_FLOAT);
687 TF_SetAttrType(op_desc,
"Tpaddings", TF_INT32);
688 TF_SetAttrString(op_desc,
"mode",
"SYMMETRIC", 9);
689 *cur_op = TF_FinishOperation(op_desc, tf_model->
status);
690 if (TF_GetCode(tf_model->
status) != TF_OK){
691 TF_DeleteTensor(tensor);
705 TF_OperationDescription *op_desc;
712 op_desc = TF_NewOperation(tf_model->
graph,
"Const", name_buffer);
713 TF_SetAttrType(op_desc,
"dtype", TF_FLOAT);
714 tensor = TF_AllocateTensor(TF_FLOAT,
NULL, 0, TF_DataTypeSize(TF_FLOAT));
715 y = (
float *)TF_TensorData(tensor);
717 TF_SetAttrTensor(op_desc,
"value", tensor, tf_model->
status);
718 if (TF_GetCode(tf_model->
status) != TF_OK){
719 TF_DeleteTensor(tensor);
723 op = TF_FinishOperation(op_desc, tf_model->
status);
724 if (TF_GetCode(tf_model->
status) != TF_OK){
725 TF_DeleteTensor(tensor);
731 op_desc = TF_NewOperation(tf_model->
graph,
"Maximum", name_buffer);
732 input.oper = *cur_op;
734 TF_AddInput(op_desc,
input);
736 TF_AddInput(op_desc,
input);
737 TF_SetAttrType(op_desc,
"T", TF_FLOAT);
738 *cur_op = TF_FinishOperation(op_desc, tf_model->
status);
739 if (TF_GetCode(tf_model->
status) != TF_OK){
740 TF_DeleteTensor(tensor);
752 TF_OperationDescription *op_desc;
754 TF_Operation *transpose_op;
755 TF_Tensor *tensor =
NULL;
758 int64_t transpose_perm_shape[] = {4};
759 int64_t input_shape[] = {1, -1, -1, -1};
770 native_model = model->
model;
771 tf_model->
graph = TF_NewGraph();
772 tf_model->
status = TF_NewStatus();
774 #define CLEANUP_ON_ERROR(tf_model) \
776 TF_DeleteTensor(tensor); \
777 TF_DeleteGraph(tf_model->graph); \
778 TF_DeleteStatus(tf_model->status); \
779 av_log(ctx, AV_LOG_ERROR, "Failed to set value or add operator to layer\n"); \
780 return DNN_GENERIC_ERROR; \
783 op_desc = TF_NewOperation(tf_model->
graph,
"Placeholder",
"x");
784 TF_SetAttrType(op_desc,
"dtype", TF_FLOAT);
785 TF_SetAttrShape(op_desc,
"shape", input_shape, 4);
786 op = TF_FinishOperation(op_desc, tf_model->
status);
787 if (TF_GetCode(tf_model->
status) != TF_OK){
791 op_desc = TF_NewOperation(tf_model->
graph,
"Const",
"transpose_perm");
792 TF_SetAttrType(op_desc,
"dtype", TF_INT32);
793 tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 *
sizeof(
int32_t));
799 TF_SetAttrTensor(op_desc,
"value", tensor, tf_model->
status);
800 if (TF_GetCode(tf_model->
status) != TF_OK){
803 transpose_op = TF_FinishOperation(op_desc, tf_model->
status);
804 if (TF_GetCode(tf_model->
status) != TF_OK){
808 for (layer = 0; layer < native_model->
layers_num; ++layer){
833 if (layer_add_res != 0){
838 op_desc = TF_NewOperation(tf_model->
graph,
"Identity",
"y");
841 TF_AddInput(op_desc,
input);
842 TF_FinishOperation(op_desc, tf_model->
status);
843 if (TF_GetCode(tf_model->
status) != TF_OK){
868 tf_model->
model = model;
870 ctx->class = &dnn_tensorflow_class;
885 if (
ctx->options.nireq <= 0) {
889 #if !HAVE_PTHREAD_CANCEL
890 if (
ctx->options.async) {
891 ctx->options.async = 0;
901 for (
int i = 0;
i <
ctx->options.nireq;
i++) {
913 item->
status = TF_NewStatus();
934 model->
model = tf_model;
977 if (!infer_request->
tf_input->oper){
1113 task = lltask->
task;
1114 tf_model = task->
model;
1230 tf_model = (*model)->
model;
1251 if (tf_model->
graph){
1252 TF_DeleteGraph(tf_model->
graph);
1259 TF_DeleteStatus(tf_model->
status);
AVFILTER_DEFINE_CLASS(dnn_tensorflow)
DNNAsyncStatusType ff_dnn_get_result_tf(const DNNModel *model, AVFrame **in, AVFrame **out)
#define AV_LOG_WARNING
Something somehow does not look correct.
Stores execution parameters for single call to the TensorFlow C API.
static int execute_model_tf(TFRequestItem *request, Queue *lltask_queue)
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static FilteringContext * filter_ctx
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
void * ff_safe_queue_pop_front(SafeQueue *sq)
Remove and free first element from the queue in SafeQueue.
Common Async Execution Mechanism for the DNN Backends.
static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
static int add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op, ConvolutionalParams *params, const int layer)
void * ff_queue_pop_front(Queue *q)
Remove and free first element from the Queue.
int ff_check_exec_params(void *ctx, DNNBackendType backend, DNNFunctionType func_type, DNNExecBaseParams *exec_params)
size_t ff_queue_size(Queue *q)
Return the length of the Queue.
#define DNN_GENERIC_ERROR
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
DNNModel * ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
Double-ended queue with mutex locks ensuring data consistency while multithreading.
FramePrePostProc frame_pre_proc
static int load_tf_model(TFModel *tf_model, const char *model_filename)
SafeQueue * request_queue
void(* callback)(void *args)
Completion Callback for the backend.
int64_t avio_size(AVIOContext *s)
Get the filesize.
static int load_native_model(TFModel *tf_model, const char *model_filename)
static void destroy_request_item(TFRequestItem **arg)
Free the TFRequestItem completely.
AVFilterContext * filter_ctx
Queue * ff_queue_create(void)
Create a Queue instance.
int ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params)
static int get_input_tf(void *model, DNNData *input, const char *input_name)
Linear double-ended data structure.
static int add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op, DepthToSpaceParams *params, const int layer)
int ff_queue_push_back(Queue *q, void *v)
Add data to the tail of the queue.
#define DNN_BACKEND_COMMON_OPTIONS
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int fill_model_input_tf(TFModel *tf_model, TFRequestItem *request)
DNNAsyncExecModule exec_module
static TF_Buffer * read_graph(const char *model_filename)
static int op(uint8_t **dst, const uint8_t *dst_end, GetByteContext *gb, int pixel, int count, int *x, int width, int linesize)
Perform decode operation.
void ff_queue_destroy(Queue *q)
Destroy the Queue instance.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static const AVFilterPad outputs[]
DNNActivationFunc activation
static const AVOption dnn_tensorflow_options[]
int ff_dnn_fill_gettingoutput_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int input_height, int input_width, void *ctx)
Allocate input and output frames and fill the Task with execution parameters.
size_t ff_safe_queue_size(SafeQueue *sq)
Return the length of the SafeQueue.
int ff_proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx)
void ff_dnn_free_model_native(DNNModel **model)
int ff_dnn_flush_tf(const DNNModel *model)
Describe the class of an AVClass context structure.
int ff_frame_to_dnn_detect(AVFrame *frame, DNNData *input, void *log_ctx)
SafeQueue * ff_safe_queue_create(void)
Create and initialize a SafeQueue instance.
FramePrePostProc frame_post_proc
int av_opt_set_from_string(void *ctx, const char *opts, const char *const *shorthand, const char *key_val_sep, const char *pairs_sep)
Parse the key-value pairs list in opts.
static TFInferRequest * tf_create_inference_request(void)
Create a TensorFlow inference request.
int ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module)
Join the Async Execution thread and set module pointers to NULL.
static void infer_completion_callback(void *args)
static void tf_free_request(TFInferRequest *request)
Free the contents of TensorFlow inference request.
static void transpose_perm(int16_t *out, int16_t *in, int num_vect, const uint8_t line_len[2], int length_div)
Interpret the input data as in the following table:
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
const OptionDef options[]
DetectPostProc detect_post_proc
DNNFunctionType func_type
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
void ff_safe_queue_destroy(SafeQueue *sq)
Destroy the SafeQueue instance.
static int hex_to_data(uint8_t *data, const char *p)
static int tf_start_inference(void *args)
Start synchronous inference for the TensorFlow model.
int ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int async, int do_ioproc)
Fill the Task for Backend Execution.
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
DNNModel * ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
int ff_safe_queue_push_back(SafeQueue *sq, void *v)
Add data to the tail of queue in the SafeQueue after locking mutex.
int avio_closep(AVIOContext **s)
Close the resource accessed by the AVIOContext *s, free it and set the pointer pointing to it to NULL...
static int add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op, DnnLayerMaximumParams *params, const int layer)
#define i(width, name, range_min, range_max)
TF_Tensor ** output_tensors
TFInferRequest * infer_request
#define av_malloc_array(a, b)
int(* start_inference)(void *request)
Synchronous inference function for the backend with corresponding request item as the argument.
void * args
Argument for the execution functions.
static av_const int av_toupper(int c)
Locale-independent conversion of ASCII characters to uppercase.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char ** output_names
void * av_calloc(size_t nmemb, size_t size)
int(* get_input)(void *model, DNNData *input, const char *input_name)
#define AV_INPUT_BUFFER_PADDING_SIZE
static TF_Tensor * allocate_input_tensor(const DNNData *input)
LastLevelTaskItem * lltask
int avio_read(AVIOContext *s, unsigned char *buf, int size)
Read size bytes from AVIOContext into buf.
DNNAsyncStatusType ff_dnn_get_result_common(Queue *task_queue, AVFrame **in, AVFrame **out)
Extract input and output frame from the Task Queue after asynchronous inference.
void * ff_queue_peek_front(Queue *q)
Return a pointer to the data at the head of the queue.
int avio_open(AVIOContext **s, const char *url, int flags)
Create and initialize a AVIOContext for accessing the resource indicated by url.
void ff_dnn_free_model_tf(DNNModel **model)
int ff_dnn_start_inference_async(void *ctx, DNNAsyncExecModule *async_module)
Start asynchronous inference routine for the TensorFlow model on a detached thread.
#define AVIO_FLAG_READ
read-only
static void free_buffer(void *data, size_t length)
static int get_output_tf(void *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height)
int(* get_output)(void *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height)
union DnnLayerMaximumParams::@205 val
#define CLEANUP_ON_ERROR(tf_model)
static int add_pad_layer(TFModel *tf_model, TF_Operation **cur_op, LayerPadParams *params, const int layer)
int ff_proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx)