Go to the documentation of this file.
34 #if CONFIG_LIBFREETYPE
36 #include FT_FREETYPE_H
39 #if CONFIG_LIBFONTCONFIG
40 #include <fontconfig/fontconfig.h>
45 #define BASEFREQ 20.01523126408007475
46 #define ENDFREQ 20495.59681441799654
47 #define TLENGTH "384*tc/(384+tc*f)"
48 #define TLENGTH_MIN 0.001
49 #define VOLUME_MAX 100.0
50 #define FONTCOLOR "st(0, (midi(f)-59.5)/12);" \
51 "st(1, if(between(ld(0),0,1), 0.5-0.5*cos(2*PI*ld(0)), 0));" \
52 "r(1-ld(1)) + b(ld(1))"
53 #define CSCHEME "1|0.5|0|0|0.5|1"
55 #define PTS_TOLERANCE 1
57 #define OFFSET(x) offsetof(ShowCQTContext, x)
58 #define FLAGS (AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM)
115 av_log(
s->ctx,
level,
"fft_time = %16.3f s.\n",
s->fft_time * 1e-6);
117 av_log(
s->ctx,
level,
"cqt_time = %16.3f s.\n",
s->cqt_time * 1e-6);
118 if (
s->process_cqt_time)
119 av_log(
s->ctx,
level,
"process_cqt_time = %16.3f s.\n",
s->process_cqt_time * 1e-6);
120 if (
s->update_sono_time)
121 av_log(
s->ctx,
level,
"update_sono_time = %16.3f s.\n",
s->update_sono_time * 1e-6);
123 av_log(
s->ctx,
level,
"alloc_time = %16.3f s.\n",
s->alloc_time * 1e-6);
125 av_log(
s->ctx,
level,
"bar_time = %16.3f s.\n",
s->bar_time * 1e-6);
127 av_log(
s->ctx,
level,
"axis_time = %16.3f s.\n",
s->axis_time * 1e-6);
129 av_log(
s->ctx,
level,
"sono_time = %16.3f s.\n",
s->sono_time * 1e-6);
131 plot_time =
s->fft_time +
s->cqt_time +
s->process_cqt_time +
s->update_sono_time
132 +
s->alloc_time +
s->bar_time +
s->axis_time +
s->sono_time;
134 av_log(
s->ctx,
level,
"plot_time = %16.3f s.\n", plot_time * 1e-6);
136 s->fft_time =
s->cqt_time =
s->process_cqt_time =
s->update_sono_time
137 =
s->alloc_time =
s->bar_time =
s->axis_time =
s->sono_time = 0;
139 if (
s->axis_frame && !
s->axis_frame->buf[0]) {
141 for (k = 0; k < 4; k++)
142 s->axis_frame->data[k] =
NULL;
149 for (k = 0; k <
s->cqt_len; k++)
167 double log_base, log_end;
168 double rcp_n = 1.0 / n;
176 log_base = log(
base);
178 for (x = 0; x < n; x++) {
179 double log_freq = log_base + (x + 0.5) * (log_end - log_base) * rcp_n;
180 freq[x] =
exp(log_freq);
187 double nan_replace,
int idx)
191 av_log(log_ctx,
level,
"[%d] %s is nan, setting it to %g.\n",
192 idx,
name, nan_replace);
195 av_log(log_ctx,
level,
"[%d] %s is too low (%g), setting it to %g.\n",
199 av_log(log_ctx,
level,
"[%d] %s it too high (%g), setting it to %g.\n",
208 double ret = 12200.0*12200.0 * (
f*
f*
f*
f);
209 ret /= (
f*
f + 20.6*20.6) * (
f*
f + 12200.0*12200.0) *
210 sqrt((
f*
f + 107.7*107.7) * (
f*
f + 737.9*737.9));
216 double ret = 12200.0*12200.0 * (
f*
f*
f);
217 ret /= (
f*
f + 20.6*20.6) * (
f*
f + 12200.0*12200.0) * sqrt(
f*
f + 158.5*158.5);
223 double ret = 12200.0*12200.0 * (
f*
f);
224 ret /= (
f*
f + 20.6*20.6) * (
f*
f + 12200.0*12200.0);
230 const char *func_names[] = {
"a_weighting",
"b_weighting",
"c_weighting",
NULL };
231 const char *sono_names[] = {
"timeclamp",
"tc",
"frequency",
"freq",
"f",
"bar_v",
NULL };
232 const char *bar_names[] = {
"timeclamp",
"tc",
"frequency",
"freq",
"f",
"sono_v",
NULL };
239 if (!
s->sono_v_buf || !
s->bar_v_buf)
248 for (x = 0; x <
s->cqt_len; x++) {
249 double vars[] = {
s->timeclamp,
s->timeclamp,
s->freq[x],
s->freq[x],
s->freq[x], 0.0 };
253 s->bar_v_buf[x] = vol * vol;
256 s->sono_v_buf[x] = vol * vol;
271 int len,
int fft_len)
274 for (k = 0; k <
len; k++) {
277 for (x = 0; x < coeffs[k].
len; x++) {
278 float u = coeffs[k].
val[x];
283 b.re +=
u *
src[j].re;
284 b.im +=
u *
src[j].im;
293 dst[k].
im =
r.re *
r.re +
r.im *
r.im;
299 const char *
var_names[] = {
"timeclamp",
"tc",
"frequency",
"freq",
"f",
NULL };
301 int rate =
s->ctx->inputs[0]->sample_rate;
302 int nb_cqt_coeffs = 0;
309 if (!(
s->coeffs =
av_calloc(
s->cqt_len,
sizeof(*
s->coeffs))))
312 for (k = 0; k <
s->cqt_len; k++) {
313 double vars[] = {
s->timeclamp,
s->timeclamp,
s->freq[k],
s->freq[k],
s->freq[k] };
314 double flen, center, tlength;
315 int start, end, m = k;
317 if (
s->freq[k] > 0.5 * rate)
322 flen = 8.0 *
s->fft_len / (tlength * rate);
323 center =
s->freq[k] *
s->fft_len / rate;
324 start =
FFMAX(0,
ceil(center - 0.5 * flen));
325 end =
FFMIN(
s->fft_len,
floor(center + 0.5 * flen));
327 s->coeffs[m].start = start & ~(
s->cqt_align - 1);
328 s->coeffs[m].len = (end | (
s->cqt_align - 1)) + 1 -
s->coeffs[m].start;
329 nb_cqt_coeffs +=
s->coeffs[m].len;
330 if (!(
s->coeffs[m].val =
av_calloc(
s->coeffs[m].len,
sizeof(*
s->coeffs[m].val))))
333 for (x = start; x <= end; x++) {
334 int sign = (x & 1) ? (-1) : 1;
335 double y = 2.0 *
M_PI * (x - center) * (1.0 / flen);
337 double w = 0.355768 + 0.487396 * cos(y) + 0.144232 * cos(2*y) + 0.012604 * cos(3*y);
338 w *= sign * (1.0 /
s->fft_len);
339 s->coeffs[m].val[x -
s->coeffs[m].start] =
w;
342 if (
s->permute_coeffs)
343 s->permute_coeffs(
s->coeffs[m].val,
s->coeffs[m].len);
353 for (k = 0; k <
s->cqt_len; k++)
373 memset(
out->data[0], 0,
out->linesize[0] *
h);
376 memset(
out->data[0], 16,
out->linesize[0] *
h);
377 memset(
out->data[1], 128,
out->linesize[1] * hh);
378 memset(
out->data[2], 128,
out->linesize[2] * hh);
380 memset(
out->data[3], 0,
out->linesize[3] *
h);
405 uint8_t *tmp_data[4] = {
NULL };
408 int tmp_w, tmp_h,
ret;
410 if ((
ret =
ff_load_image(tmp_data, tmp_linesize, &tmp_w, &tmp_h, &tmp_format,
411 s->axisfile,
s->ctx)) < 0)
420 tmp_format,
s->ctx)) < 0)
423 s->axis_frame->width =
s->width;
424 s->axis_frame->height =
s->axis_h;
435 static double midi(
void *p,
double f)
437 return log2(
f/440.0) * 12.0 + 69.0;
443 return lrint(x*255.0) << 16;
449 return lrint(x*255.0) << 8;
455 return lrint(x*255.0);
460 const char *
var_names[] = {
"timeclamp",
"tc",
"frequency",
"freq",
"f",
NULL };
461 const char *func_names[] = {
"midi",
"r",
"g",
"b",
NULL };
470 av_log(
s->ctx,
AV_LOG_WARNING,
"font axis rendering is not implemented in non-default frequency range,"
471 " please use axisfile option instead.\n");
475 if (
s->cqt_len == 1920)
487 double vars[] = {
s->timeclamp,
s->timeclamp, freq[
xs], freq[
xs], freq[
xs] };
491 int linesize =
tmp->linesize[0];
492 for (y = 0; y <
height; y++) {
493 data[linesize * y + 4 * x] =
r;
494 data[linesize * y + 4 * x + 1] =
g;
495 data[linesize * y + 4 * x + 2] =
b;
507 #if CONFIG_LIBFREETYPE
508 const char *
str =
"EF G A BC D ";
510 int linesize =
tmp->linesize[0];
511 FT_Library lib =
NULL;
513 int font_width = 16, font_height = 32;
514 int font_repeat = font_width * 12;
515 int linear_hori_advance = font_width * 65536;
516 int non_monospace_warning = 0;
522 if (FT_Init_FreeType(&lib))
525 if (FT_New_Face(lib, fontfile, 0, &face))
528 if (FT_Set_Char_Size(face, 16*64, 0, 0, 0))
531 if (FT_Load_Char(face,
'A', FT_LOAD_RENDER))
534 if (FT_Set_Char_Size(face, 16*64 * linear_hori_advance / face->glyph->linearHoriAdvance, 0, 0, 0))
537 for (x = 0; x < 12; x++) {
538 int sx, sy, rx, bx, by, dx, dy;
543 if (FT_Load_Char(face,
str[x], FT_LOAD_RENDER))
546 if (face->glyph->advance.x != font_width*64 && !non_monospace_warning) {
548 non_monospace_warning = 1;
551 sy = font_height - 8 - face->glyph->bitmap_top;
552 for (rx = 0; rx < 10; rx++) {
553 sx = rx * font_repeat + x * font_width + face->glyph->bitmap_left;
554 for (by = 0; by < face->glyph->bitmap.rows; by++) {
558 if (dy >= font_height)
561 for (bx = 0; bx < face->glyph->bitmap.width; bx++) {
567 data[dy*linesize+4*dx+3] = face->glyph->bitmap.buffer[by*face->glyph->bitmap.width+bx];
574 FT_Done_FreeType(lib);
580 FT_Done_FreeType(lib);
591 #if CONFIG_LIBFONTCONFIG
592 FcConfig *fontconfig;
593 FcPattern *pat, *best;
594 FcResult
result = FcResultMatch;
601 for (
i = 0; font[
i];
i++) {
606 if (!(fontconfig = FcInitLoadConfigAndFonts())) {
611 if (!(pat = FcNameParse((uint8_t *)font))) {
613 FcConfigDestroy(fontconfig);
617 FcDefaultSubstitute(pat);
619 if (!FcConfigSubstitute(fontconfig, pat, FcMatchPattern)) {
621 FcPatternDestroy(pat);
622 FcConfigDestroy(fontconfig);
626 best = FcFontMatch(fontconfig, pat, &
result);
627 FcPatternDestroy(pat);
630 if (!best ||
result != FcResultMatch) {
635 if (FcPatternGetString(best, FC_FILE, 0, (FcChar8 **)&filename) != FcResultMatch) {
643 FcPatternDestroy(best);
644 FcConfigDestroy(fontconfig);
655 const char *
str =
"EF G A BC D ";
658 int linesize =
tmp->linesize[0];
662 uint8_t *startptr =
data + 4 * x;
663 for (
u = 0;
u < 12;
u++) {
664 for (v = 0; v <
height; v++) {
665 uint8_t *p = startptr + v * linesize +
height/2 * 4 *
u;
684 int default_font = 0;
709 s->axis_frame->width =
s->width;
710 s->axis_frame->height =
s->axis_h;
730 return expf(logf(v) /
g);
736 for (x = 0; x <
len; x++) {
746 for (x = 0; x <
len; x++) {
751 c[x].yuv.y =
cm[0][0] *
r +
cm[0][1] *
g +
cm[0][2] *
b;
752 c[x].yuv.u =
cm[1][0] *
r +
cm[1][1] *
g +
cm[1][2] *
b;
753 c[x].yuv.v =
cm[2][0] *
r +
cm[2][1] *
g +
cm[2][2] *
b;
760 int x, y,
w =
out->width;
761 float mul, ht, rcp_bar_h = 1.0f / bar_h, rcp_bar_t = 1.0f / bar_t;
762 uint8_t *v =
out->data[0], *lp;
763 int ls =
out->linesize[0];
765 for (y = 0; y < bar_h; y++) {
766 ht = (bar_h - y) * rcp_bar_h;
768 for (x = 0; x <
w; x++) {
774 mul = (
h[x] - ht) * rcp_h[x];
775 mul = (
mul < bar_t) ? (
mul * rcp_bar_t) : 1.0f;
784 #define DRAW_BAR_WITH_CHROMA(x) \
791 mul = (h[x] - ht) * rcp_h[x]; \
792 mul = (mul < bar_t) ? (mul * rcp_bar_t) : 1.0f; \
793 *lpy++ = lrintf(mul * c[x].yuv.y + 16.0f); \
794 *lpu++ = lrintf(mul * c[x].yuv.u + 128.0f); \
795 *lpv++ = lrintf(mul * c[x].yuv.v + 128.0f); \
799 #define DRAW_BAR_WITHOUT_CHROMA(x) \
804 mul = (h[x] - ht) * rcp_h[x]; \
805 mul = (mul < bar_t) ? (mul * rcp_bar_t) : 1.0f; \
806 *lpy++ = lrintf(mul * c[x].yuv.y + 16.0f); \
813 int x, y, yh,
w =
out->width;
814 float mul, ht, rcp_bar_h = 1.0f / bar_h, rcp_bar_t = 1.0f / bar_t;
815 uint8_t *vy =
out->data[0], *vu =
out->data[1], *vv =
out->data[2];
816 uint8_t *lpy, *lpu, *lpv;
817 int lsy =
out->linesize[0], lsu =
out->linesize[1], lsv =
out->linesize[2];
818 int fmt =
out->format;
820 for (y = 0; y < bar_h; y += 2) {
822 ht = (bar_h - y) * rcp_bar_h;
827 for (x = 0; x <
w; x += 2) {
832 for (x = 0; x <
w; x += 2) {
838 ht = (bar_h - (y+1)) * rcp_bar_h;
839 lpy = vy + (y+1) * lsy;
840 lpu = vu + (y+1) * lsu;
841 lpv = vv + (y+1) * lsv;
843 for (x = 0; x <
w; x += 2) {
848 for (x = 0; x <
w; x += 2) {
853 for (x = 0; x <
w; x += 2) {
864 float a, rcp_255 = 1.0f / 255.0f;
867 for (y = 0; y <
h; y++) {
868 lp =
out->data[0] + (off + y) *
out->linesize[0];
870 for (x = 0; x <
w; x++) {
875 }
else if (lpa[3] == 255) {
880 a = rcp_255 * lpa[3];
890 #define BLEND_WITH_CHROMA(c) \
893 *lpy = lrintf(c.yuv.y + 16.0f); \
894 *lpu = lrintf(c.yuv.u + 128.0f); \
895 *lpv = lrintf(c.yuv.v + 128.0f); \
896 } else if (255 == *lpaa) { \
901 float a = (1.0f/255.0f) * (*lpaa); \
902 *lpy = lrintf(a * (*lpay) + (1.0f - a) * (c.yuv.y + 16.0f)); \
903 *lpu = lrintf(a * (*lpau) + (1.0f - a) * (c.yuv.u + 128.0f)); \
904 *lpv = lrintf(a * (*lpav) + (1.0f - a) * (c.yuv.v + 128.0f)); \
906 lpy++; lpu++; lpv++; \
907 lpay++; lpau++; lpav++; lpaa++; \
910 #define BLEND_WITHOUT_CHROMA(c, alpha_inc) \
913 *lpy = lrintf(c.yuv.y + 16.0f); \
914 } else if (255 == *lpaa) { \
917 float a = (1.0f/255.0f) * (*lpaa); \
918 *lpy = lrintf(a * (*lpay) + (1.0f - a) * (c.yuv.y + 16.0f)); \
921 lpay++; lpaa += alpha_inc; \
924 #define BLEND_CHROMA2(c) \
926 if (!lpaa[0] && !lpaa[1]) { \
927 *lpu = lrintf(c.yuv.u + 128.0f); \
928 *lpv = lrintf(c.yuv.v + 128.0f); \
929 } else if (255 == lpaa[0] && 255 == lpaa[1]) { \
930 *lpu = *lpau; *lpv = *lpav; \
932 float a0 = (0.5f/255.0f) * lpaa[0]; \
933 float a1 = (0.5f/255.0f) * lpaa[1]; \
934 float b = 1.0f - a0 - a1; \
935 *lpu = lrintf(a0 * lpau[0] + a1 * lpau[1] + b * (c.yuv.u + 128.0f)); \
936 *lpv = lrintf(a0 * lpav[0] + a1 * lpav[1] + b * (c.yuv.v + 128.0f)); \
938 lpau += 2; lpav += 2; lpaa++; lpu++; lpv++; \
941 #define BLEND_CHROMA2x2(c) \
943 if (!lpaa[0] && !lpaa[1] && !lpaa[lsaa] && !lpaa[lsaa+1]) { \
944 *lpu = lrintf(c.yuv.u + 128.0f); \
945 *lpv = lrintf(c.yuv.v + 128.0f); \
946 } else if (255 == lpaa[0] && 255 == lpaa[1] && \
947 255 == lpaa[lsaa] && 255 == lpaa[lsaa+1]) { \
948 *lpu = *lpau; *lpv = *lpav; \
950 float a0 = (0.25f/255.0f) * lpaa[0]; \
951 float a1 = (0.25f/255.0f) * lpaa[1]; \
952 float a2 = (0.25f/255.0f) * lpaa[lsaa]; \
953 float a3 = (0.25f/255.0f) * lpaa[lsaa+1]; \
954 float b = 1.0f - a0 - a1 - a2 - a3; \
955 *lpu = lrintf(a0 * lpau[0] + a1 * lpau[1] + a2 * lpau[lsau] + a3 * lpau[lsau+1] \
956 + b * (c.yuv.u + 128.0f)); \
957 *lpv = lrintf(a0 * lpav[0] + a1 * lpav[1] + a2 * lpav[lsav] + a3 * lpav[lsav+1] \
958 + b * (c.yuv.v + 128.0f)); \
960 lpau += 2; lpav += 2; lpaa++; lpu++; lpv++; \
967 uint8_t *vy =
out->data[0], *vu =
out->data[1], *vv =
out->data[2];
968 uint8_t *vay = axis->
data[0], *vau = axis->
data[1], *vav = axis->
data[2], *vaa = axis->
data[3];
969 int lsy =
out->linesize[0], lsu =
out->linesize[1], lsv =
out->linesize[2];
971 uint8_t *lpy, *lpu, *lpv, *lpay, *lpau, *lpav, *lpaa;
973 for (y = 0; y <
h; y += 2) {
975 lpy = vy + (off + y) * lsy;
976 lpu = vu + (offh + yh) * lsu;
977 lpv = vv + (offh + yh) * lsv;
978 lpay = vay + y * lsay;
979 lpau = vau + y * lsau;
980 lpav = vav + y * lsav;
981 lpaa = vaa + y * lsaa;
983 for (x = 0; x <
w; x += 2) {
988 for (x = 0; x <
w; x += 2) {
994 for (x = 0; x <
w; x += 2) {
1001 lpy = vy + (off + y + 1) * lsy;
1002 lpu = vu + (off + y + 1) * lsu;
1003 lpv = vv + (off + y + 1) * lsv;
1004 lpay = vay + (y + 1) * lsay;
1005 lpau = vau + (y + 1) * lsau;
1006 lpav = vav + (y + 1) * lsav;
1007 lpaa = vaa + (y + 1) * lsaa;
1009 for (x = 0; x <
w; x += 2) {
1014 for (x = 0; x <
w; x += 2) {
1020 for (x = 0; x <
w; x += 2) {
1037 for (y = 0; y <
h; y++) {
1038 memcpy(
out->data[0] + (off + y) *
out->linesize[0],
1042 for (
i = 1;
i < nb_planes;
i++) {
1044 for (y = 0; y <
h; y += inc) {
1046 memcpy(
out->data[
i] + (offh + yh) *
out->linesize[
i],
1057 for (x = 0; x <
w; x++) {
1067 uint8_t *lpy = sono->
data[0] + idx * sono->
linesize[0];
1068 uint8_t *lpu = sono->
data[1] + idx * sono->
linesize[1];
1069 uint8_t *lpv = sono->
data[2] + idx * sono->
linesize[2];
1071 for (x = 0; x <
w; x += 2) {
1072 *lpy++ =
lrintf(
c[x].yuv.y + 16.0f);
1073 *lpu++ =
lrintf(
c[x].yuv.u + 128.0f);
1074 *lpv++ =
lrintf(
c[x].yuv.v + 128.0f);
1075 *lpy++ =
lrintf(
c[x+1].yuv.y + 16.0f);
1077 *lpu++ =
lrintf(
c[x+1].yuv.u + 128.0f);
1078 *lpv++ =
lrintf(
c[x+1].yuv.v + 128.0f);
1086 if (!
s->sono_count) {
1087 for (x = 0; x <
s->cqt_len; x++) {
1088 s->h_buf[x] =
s->bar_v_buf[x] * 0.5f * (
s->cqt_result[x].re +
s->cqt_result[x].im);
1090 if (
s->fcount > 1) {
1091 float rcp_fcount = 1.0f /
s->fcount;
1092 for (x = 0; x <
s->width; x++) {
1094 for (
i = 0;
i <
s->fcount;
i++)
1095 h +=
s->h_buf[
s->fcount * x +
i];
1096 s->h_buf[x] = rcp_fcount *
h;
1099 for (x = 0; x <
s->width; x++) {
1101 s->rcp_h_buf[x] = 1.0f / (
s->h_buf[x] + 0.0001f);
1105 for (x = 0; x <
s->cqt_len; x++) {
1106 s->cqt_result[x].re *=
s->sono_v_buf[x];
1107 s->cqt_result[x].im *=
s->sono_v_buf[x];
1110 if (
s->fcount > 1) {
1111 float rcp_fcount = 1.0f /
s->fcount;
1112 for (x = 0; x <
s->width; x++) {
1114 for (
i = 0;
i <
s->fcount;
i++) {
1115 result.re +=
s->cqt_result[
s->fcount * x +
i].re;
1116 result.im +=
s->cqt_result[
s->fcount * x +
i].im;
1118 s->cqt_result[x].re = rcp_fcount *
result.re;
1119 s->cqt_result[x].im = rcp_fcount *
result.im;
1126 yuv_from_cqt(
s->c_buf,
s->cqt_result,
s->sono_g,
s->width,
s->cmatrix,
s->cscheme_v);
1133 int64_t last_time, cur_time;
1135 #define UPDATE_TIME(t) \
1136 cur_time = av_gettime_relative(); \
1137 t += cur_time - last_time; \
1138 last_time = cur_time
1142 memcpy(
s->fft_input,
s->fft_data,
s->fft_len *
sizeof(*
s->fft_data));
1143 if (
s->attack_data) {
1145 for (k = 0; k <
s->remaining_fill_max; k++) {
1146 s->fft_input[
s->fft_len/2+k].re *=
s->attack_data[k];
1147 s->fft_input[
s->fft_len/2+k].im *=
s->attack_data[k];
1151 s->tx_fn(
s->fft_ctx,
s->fft_result,
s->fft_input,
sizeof(
float));
1152 s->fft_result[
s->fft_len] =
s->fft_result[0];
1155 s->cqt_calc(
s->cqt_result,
s->fft_result,
s->coeffs,
s->cqt_len,
s->fft_len);
1162 s->update_sono(
s->sono_frame,
s->c_buf,
s->sono_idx);
1166 if (!
s->sono_count) {
1172 out->colorspace =
s->csp;
1176 s->draw_bar(
out,
s->h_buf,
s->rcp_h_buf,
s->c_buf,
s->bar_h,
s->bar_t);
1181 s->draw_axis(
out,
s->axis_frame,
s->c_buf,
s->bar_h);
1186 s->draw_sono(
out,
s->sono_frame,
s->bar_h +
s->axis_h,
s->sono_idx);
1189 out->pts =
s->next_pts;
1192 s->sono_count = (
s->sono_count + 1) %
s->count;
1194 s->sono_idx = (
s->sono_idx +
s->sono_h - 1) %
s->sono_h;
1210 kr = 0.299; kb = 0.114;
break;
1212 kr = 0.2126; kb = 0.0722;
break;
1214 kr = 0.30; kb = 0.11;
break;
1216 kr = 0.212; kb = 0.087;
break;
1218 kr = 0.2627; kb = 0.0593;
break;
1222 s->cmatrix[0][0] = 219.0 * kr;
1223 s->cmatrix[0][1] = 219.0 * kg;
1224 s->cmatrix[0][2] = 219.0 * kb;
1225 s->cmatrix[1][0] = -112.0 * kr / (1.0 - kb);
1226 s->cmatrix[1][1] = -112.0 * kg / (1.0 - kb);
1227 s->cmatrix[1][2] = 112.0;
1228 s->cmatrix[2][0] = 112.0;
1229 s->cmatrix[2][1] = -112.0 * kg / (1.0 - kr);
1230 s->cmatrix[2][2] = -112.0 * kb / (1.0 - kr);
1238 if (sscanf(
s->cscheme,
" %f | %f | %f | %f | %f | %f %1s", &
s->cscheme_v[0],
1239 &
s->cscheme_v[1], &
s->cscheme_v[2], &
s->cscheme_v[3], &
s->cscheme_v[4],
1240 &
s->cscheme_v[5], tail) != 6)
1243 for (k = 0; k < 6; k++)
1244 if (
isnan(
s->cscheme_v[k]) ||
s->cscheme_v[k] < 0.0f ||
s->cscheme_v[k] > 1.0f)
1262 if (
s->width != 1920 ||
s->height != 1080) {
1271 if (
s->axis_h < 0) {
1272 s->axis_h =
s->width / 60;
1275 if (
s->bar_h >= 0 &&
s->sono_h >= 0)
1276 s->axis_h =
s->height -
s->bar_h -
s->sono_h;
1277 if (
s->bar_h >= 0 &&
s->sono_h < 0)
1278 s->axis_h =
FFMIN(
s->axis_h,
s->height -
s->bar_h);
1279 if (
s->bar_h < 0 &&
s->sono_h >= 0)
1280 s->axis_h =
FFMIN(
s->axis_h,
s->height -
s->sono_h);
1284 s->bar_h = (
s->height -
s->axis_h) / 2;
1288 s->bar_h =
s->height -
s->sono_h -
s->axis_h;
1292 s->sono_h =
s->height -
s->axis_h -
s->bar_h;
1294 if ((
s->width & 1) || (
s->height & 1) || (
s->bar_h & 1) || (
s->axis_h & 1) || (
s->sono_h & 1) ||
1295 (
s->bar_h < 0) || (
s->axis_h < 0) || (
s->sono_h < 0) || (
s->bar_h >
s->height) ||
1296 (
s->axis_h >
s->height) || (
s->sono_h >
s->height) || (
s->bar_h +
s->axis_h +
s->sono_h !=
s->height)) {
1304 }
while(
s->fcount *
s->width < 1920 &&
s->fcount < 10);
1363 outlink->
w =
s->width;
1364 outlink->
h =
s->height;
1371 s->bar_h,
s->axis_h,
s->sono_h);
1373 s->cqt_len =
s->width *
s->fcount;
1381 s->fft_len = 1 <<
s->fft_bits;
1385 s->fft_data =
av_calloc(
s->fft_len,
sizeof(*
s->fft_data));
1389 if (!
s->fft_ctx || !
s->fft_data || !
s->fft_result || !
s->cqt_result)
1392 s->remaining_fill_max =
s->fft_len / 2;
1393 if (
s->attack > 0.0) {
1396 s->remaining_fill_max =
FFMIN(
s->remaining_fill_max,
ceil(
inlink->sample_rate *
s->attack));
1398 if (!
s->attack_data)
1401 for (k = 0; k <
s->remaining_fill_max; k++) {
1402 double y =
M_PI * k / (
inlink->sample_rate *
s->attack);
1403 s->attack_data[k] = 0.355768 + 0.487396 * cos(y) + 0.144232 * cos(2*y) + 0.012604 * cos(3*y);
1409 s->permute_coeffs =
NULL;
1432 }
else if (
s->axisfile) {
1460 if (!
s->h_buf || !
s->rcp_h_buf || !
s->c_buf)
1466 s->remaining_fill =
s->remaining_fill_max;
1467 s->remaining_frac = 0;
1469 s->step = (
int)(
s->step_frac.num /
s->step_frac.den);
1470 s->step_frac.num %=
s->step_frac.den;
1471 if (
s->step_frac.num) {
1473 inlink->sample_rate,
s->step,
s->step_frac.num,
s->step_frac.den);
1477 inlink->sample_rate,
s->step);
1489 int remaining,
step,
ret, x,
i, j, m;
1494 while (
s->remaining_fill <
s->remaining_fill_max) {
1495 memset(&
s->fft_data[
s->fft_len/2 +
s->remaining_fill_max -
s->remaining_fill], 0,
sizeof(*
s->fft_data) *
s->remaining_fill);
1500 step =
s->step + (
s->step_frac.num +
s->remaining_frac) /
s->step_frac.den;
1501 s->remaining_frac = (
s->step_frac.num +
s->remaining_frac) %
s->step_frac.den;
1502 for (x = 0; x < (
s->fft_len/2 +
s->remaining_fill_max -
step); x++)
1503 s->fft_data[x] =
s->fft_data[x+
step];
1504 s->remaining_fill +=
step;
1513 audio_data = (
float*) insamples->
data[0];
1517 j =
s->fft_len/2 +
s->remaining_fill_max -
s->remaining_fill;
1518 if (remaining >=
s->remaining_fill) {
1519 for (m = 0; m <
s->remaining_fill; m++) {
1520 s->fft_data[j+m].re = audio_data[2*(
i+m)];
1521 s->fft_data[j+m].im = audio_data[2*(
i+m)+1];
1528 remaining -=
s->remaining_fill;
1531 pts += insamples->
nb_samples - remaining -
s->remaining_fill_max;
1547 step =
s->step + (
s->step_frac.num +
s->remaining_frac) /
s->step_frac.den;
1548 s->remaining_frac = (
s->step_frac.num +
s->remaining_frac) %
s->step_frac.den;
1549 for (m = 0; m <
s->fft_len/2 +
s->remaining_fill_max -
step; m++)
1550 s->fft_data[m] =
s->fft_data[m+
step];
1551 s->remaining_fill =
step;
1553 for (m = 0; m < remaining; m++) {
1554 s->fft_data[j+m].re = audio_data[2*(
i+m)];
1555 s->fft_data[j+m].im = audio_data[2*(
i+m)+1];
1557 s->remaining_fill -= remaining;
1595 .description =
NULL_IF_CONFIG_SMALL(
"Convert input audio to a CQT (Constant/Clamped Q Transform) spectrum video output."),
1602 .priv_class = &showcqt_class,
static void error(const char *err)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
int64_t av_gettime_relative(void)
Get the current time in microseconds since some unspecified starting point.
A list of supported channel layouts.
#define AV_LOG_WARNING
Something somehow does not look correct.
const AVFilter ff_avf_showcqt
AVPixelFormat
Pixel format.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option name
static void draw_axis_yuv(AVFrame *out, AVFrame *axis, const ColorFloat *c, int off)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void draw_bar_yuv(AVFrame *out, const float *h, const float *rcp_h, const ColorFloat *c, int bar_h, float bar_t)
int av_frame_get_buffer(AVFrame *frame, int align)
Allocate new buffer(s) for audio or video data.
#define u(width, name, range_min, range_max)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
enum MovChannelLayoutTag * layouts
#define AVERROR_EOF
End of file.
@ AV_OPT_TYPE_VIDEO_RATE
offset must point to AVRational
static const char *const var_names[]
AVRational av_div_q(AVRational b, AVRational c)
Divide one rational by another.
static int init_cscheme(ShowCQTContext *s)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
#define AV_CHANNEL_LAYOUT_STEREO_DOWNMIX
#define FILTER_QUERY_FUNC(func)
static uint8_t half(int a, int b)
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
#define BLEND_WITH_CHROMA(c)
static double c_weighting(void *p, double f)
#define AV_CHANNEL_LAYOUT_STEREO
const char * name
Filter name.
static int render_default_font(AVFrame *tmp)
#define AVERROR_UNKNOWN
Unknown error, typically from an external library.
static void draw_axis_rgb(AVFrame *out, AVFrame *axis, const ColorFloat *c, int off)
A link between two filters.
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags)
Initialize a transform context with the given configuration (i)MDCTs with an odd length are currently...
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
static double a_weighting(void *p, double f)
static double val(void *priv, double ch)
static av_cold void uninit(AVFilterContext *ctx)
static av_always_inline float scale(float x, float s)
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
A filter pad used for either input or output.
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
static __device__ float ceil(float a)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static const uint16_t mask[17]
#define BLEND_WITHOUT_CHROMA(c, alpha_inc)
#define DRAW_BAR_WITHOUT_CHROMA(x)
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static void init_colormatrix(ShowCQTContext *s)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate. The lists are not just lists
static __device__ float floor(float a)
@ AVCOL_SPC_SMPTE170M
also ITU-R BT601-6 525 / ITU-R BT1358 525 / ITU-R BT1700 NTSC / functionally identical to above
static double av_q2d(AVRational a)
Convert an AVRational to a double.
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable; if left to 0/0,...
static enum AVPixelFormat pix_fmts[]
@ AV_TX_FLOAT_FFT
Standard complex to complex FFT with sample data type of AVComplexFloat, AVComplexDouble or AVComplex...
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
double av_expr_eval(AVExpr *e, const double *const_values, void *opaque)
Evaluate a previously parsed expression.
#define BLEND_CHROMA2x2(c)
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define FILTER_INPUTS(array)
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
static float mul(float src0, float src1)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
static double clip_with_log(void *log_ctx, const char *name, double val, double min, double max, double nan_replace, int idx)
#define xs(width, name, var, subs,...)
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static av_cold int init(AVFilterContext *ctx)
static const uint8_t vars[2][12]
static int render_freetype(ShowCQTContext *s, AVFrame *tmp, char *fontfile)
@ AV_OPT_TYPE_IMAGE_SIZE
offset must point to two consecutive integers
AVFilterLink ** inputs
array of pointers to input links
static __device__ float sqrtf(float a)
static void rgb_from_cqt(ColorFloat *c, const AVComplexFloat *v, float g, int len, float cscheme[6])
static const AVFilterPad showcqt_inputs[]
static AVFrame * alloc_frame_empty(enum AVPixelFormat format, int w, int h)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int init_axis_from_file(ShowCQTContext *s)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static const AVFilterPad showcqt_outputs[]
An AVChannelLayout holds information about the channel layout of audio data.
static void process_cqt(ShowCQTContext *s)
static float calculate_gamma(float v, float g)
static int init_axis_color(ShowCQTContext *s, AVFrame *tmp, int half)
int format
agreed upon media format
static int init_axis_from_font(ShowCQTContext *s)
static AVRational av_make_q(int num, int den)
Create an AVRational.
static void update_sono_rgb(AVFrame *sono, const ColorFloat *c, int idx)
static int query_formats(AVFilterContext *ctx)
int ff_load_image(uint8_t *data[4], int linesize[4], int *w, int *h, enum AVPixelFormat *pix_fmt, const char *filename, void *log_ctx)
Load image from filename and put the resulting image in data.
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
AVFilterContext * src
source filter
AVFilterFormatsConfig incfg
Lists of supported formats / etc.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
static int init_volume(ShowCQTContext *s)
static void yuv_from_cqt(ColorFloat *c, const AVComplexFloat *v, float gamma, int len, float cm[3][3], float cscheme[6])
av_cold void av_tx_uninit(AVTXContext **ctx)
Frees a context and sets *ctx to NULL, does nothing when *ctx == NULL.
#define AV_LOG_INFO
Standard information.
@ AVCOL_SPC_SMPTE240M
derived from 170M primaries and D65 white point, 170M is derived from BT470 System M's primaries
static enum AVPixelFormat convert_axis_pixel_format(enum AVPixelFormat format)
static double * create_freq_table(double base, double end, int n)
int nb_samples
number of audio samples (per channel) described by this frame
static double b_weighting(void *p, double f)
const uint8_t avpriv_vga16_font[4096]
#define i(width, name, range_min, range_max)
static double b_func(void *p, double x)
static double r_func(void *p, double x)
@ AVCOL_SPC_BT2020_NCL
ITU-R BT2020 non-constant luminance system.
int w
agreed upon image width
#define av_malloc_array(a, b)
AVSampleFormat
Audio sample formats.
static av_always_inline float cbrtf(float x)
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
const char * name
Pad name.
static void draw_bar_rgb(AVFrame *out, const float *h, const float *rcp_h, const ColorFloat *c, int bar_h, float bar_t)
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
void * av_calloc(size_t nmemb, size_t size)
static void cqt_calc(AVComplexFloat *dst, const AVComplexFloat *src, const Coeffs *coeffs, int len, int fft_len)
static void common_uninit(ShowCQTContext *s)
static int plot_cqt(AVFilterContext *ctx, AVFrame **frameout)
static int config_output(AVFilterLink *outlink)
static const AVOption showcqt_options[]
int h
agreed upon image height
@ AVCOL_SPC_FCC
FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
static double midi(void *p, double f)
static int init_cqt(ShowCQTContext *s)
static void update_sono_yuv(AVFrame *sono, const ColorFloat *c, int idx)
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
void ff_showcqt_init_x86(ShowCQTContext *s)
static double g_func(void *p, double x)
AVRational av_mul_q(AVRational b, AVRational c)
Multiply two rationals.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static const uint16_t channel_layouts[7]
#define FILTER_OUTPUTS(array)
static int request_frame(AVFilterLink *outlink)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
AVFILTER_DEFINE_CLASS(showcqt)
@ AVCOL_SPC_BT709
also ITU-R BT1361 / IEC 61966-2-4 xvYCC709 / derived in SMPTE RP 177 Annex B
int ff_scale_image(uint8_t *dst_data[4], int dst_linesize[4], int dst_w, int dst_h, enum AVPixelFormat dst_pix_fmt, uint8_t *const src_data[4], int src_linesize[4], int src_w, int src_h, enum AVPixelFormat src_pix_fmt, void *log_ctx)
Scale image using libswscale.
static void draw_sono(AVFrame *out, AVFrame *sono, int off, int idx)
#define DRAW_BAR_WITH_CHROMA(x)
static int init_axis_empty(ShowCQTContext *s)
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
static int render_fontconfig(ShowCQTContext *s, AVFrame *tmp, char *font)