Go to the documentation of this file.
54 const uint8_t *val_table,
int nb_codes,
55 int use_static,
int is_ac)
58 uint16_t huff_code[256];
59 uint16_t huff_sym[256];
66 for (
i = 0;
i < 256;
i++)
67 huff_sym[
i] =
i + 16 * is_ac;
70 huff_sym[0] = 16 * 256;
73 huff_code, 2, 2, huff_sym, 2, 2, use_static);
103 ht[
i].bits, ht[
i].values, ht[
i].codes,
104 0, ht[
i].class == 1);
108 if (ht[
i].
class < 2) {
109 memcpy(
s->raw_huffman_lengths[ht[
i].class][ht[
i].index],
111 memcpy(
s->raw_huffman_values[ht[
i].class][ht[
i].index],
112 ht[
i].values, ht[
i].length);
122 if (
len > 14 &&
buf[12] == 1)
123 s->interlace_polarity = 1;
124 if (
len > 14 &&
buf[12] == 2)
125 s->interlace_polarity = 0;
144 if (!
s->picture_ptr) {
148 s->picture_ptr =
s->picture;
158 s->first_picture = 1;
168 if (
s->extern_huff) {
174 "error using external huffman table, switching back to internal\n");
179 s->interlace_polarity = 1;
183 s->interlace_polarity = 1;
222 for (
i = 0;
i < 64;
i++) {
224 if (
s->quant_matrixes[
index][
i] == 0) {
232 s->quant_matrixes[
index][8]) >> 1;
235 len -= 1 + 64 * (1+pr);
265 for (
i = 1;
i <= 16;
i++) {
270 if (len < n || n > 256)
274 for (
i = 0;
i <
n;
i++) {
285 class,
index, code_max + 1);
287 code_max + 1, 0,
class > 0)) < 0)
293 code_max + 1, 0, 0)) < 0)
297 for (
i = 0;
i < 16;
i++)
298 s->raw_huffman_lengths[
class][
index][
i] = bits_table[
i + 1];
300 s->raw_huffman_values[
class][
index][
i] = val_table[
i];
313 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
314 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
324 if (
s->avctx->bits_per_raw_sample !=
bits) {
326 s->avctx->bits_per_raw_sample =
bits;
331 if (
bits == 9 && !
s->pegasus_rct)
334 if(
s->lossless &&
s->avctx->lowres){
343 if (
s->interlaced &&
s->width ==
width &&
s->height ==
height + 1)
349 if (
s->buf_size && (
width + 7) / 8 * ((
height + 7) / 8) >
s->buf_size * 4LL)
353 if (nb_components <= 0 ||
356 if (
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
357 if (nb_components !=
s->nb_components) {
359 "nb_components changing in interlaced picture\n");
363 if (
s->ls && !(
bits <= 8 || nb_components == 1)) {
365 "JPEG-LS that is not <= 8 "
366 "bits/component or 16-bit gray");
369 if (
len != 8 + 3 * nb_components) {
370 av_log(
s->avctx,
AV_LOG_ERROR,
"decode_sof0: error, len(%d) mismatch %d components\n",
len, nb_components);
374 s->nb_components = nb_components;
377 for (
i = 0;
i < nb_components;
i++) {
383 if (h_count[
i] >
s->h_max)
384 s->h_max = h_count[
i];
385 if (v_count[
i] >
s->v_max)
386 s->v_max = v_count[
i];
388 if (
s->quant_index[
i] >= 4) {
392 if (!h_count[
i] || !v_count[
i]) {
394 "Invalid sampling factor in component %d %d:%d\n",
395 i, h_count[
i], v_count[
i]);
400 i, h_count[
i], v_count[
i],
401 s->component_id[
i],
s->quant_index[
i]);
403 if ( nb_components == 4
404 &&
s->component_id[0] ==
'C' - 1
405 &&
s->component_id[1] ==
'M' - 1
406 &&
s->component_id[2] ==
'Y' - 1
407 &&
s->component_id[3] ==
'K' - 1)
408 s->adobe_transform = 0;
410 if (
s->ls && (
s->h_max > 1 ||
s->v_max > 1)) {
418 memcmp(
s->h_count, h_count,
sizeof(h_count)) ||
419 memcmp(
s->v_count, v_count,
sizeof(v_count))) {
425 memcpy(
s->h_count, h_count,
sizeof(h_count));
426 memcpy(
s->v_count, v_count,
sizeof(v_count));
431 if (
s->first_picture &&
432 (
s->multiscope != 2 ||
s->avctx->time_base.den >= 25 *
s->avctx->time_base.num) &&
433 s->org_height != 0 &&
434 s->height < ((
s->org_height * 3) / 4)) {
436 s->bottom_field =
s->interlace_polarity;
437 s->picture_ptr->interlaced_frame = 1;
438 s->picture_ptr->top_field_first = !
s->interlace_polarity;
446 s->first_picture = 0;
451 if (
s->got_picture &&
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
452 if (
s->progressive) {
457 if (
s->v_max == 1 &&
s->h_max == 1 &&
s->lossless==1 && (nb_components==3 || nb_components==4))
459 else if (!
s->lossless)
462 pix_fmt_id = ((unsigned)
s->h_count[0] << 28) | (
s->v_count[0] << 24) |
463 (
s->h_count[1] << 20) | (
s->v_count[1] << 16) |
464 (
s->h_count[2] << 12) | (
s->v_count[2] << 8) |
465 (
s->h_count[3] << 4) |
s->v_count[3];
469 if (!(pix_fmt_id & 0xD0D0D0D0))
470 pix_fmt_id -= (pix_fmt_id & 0xF0F0F0F0) >> 1;
471 if (!(pix_fmt_id & 0x0D0D0D0D))
472 pix_fmt_id -= (pix_fmt_id & 0x0F0F0F0F) >> 1;
474 for (
i = 0;
i < 8;
i++) {
475 int j = 6 + (
i&1) - (
i&6);
476 int is = (pix_fmt_id >> (4*
i)) & 0xF;
477 int js = (pix_fmt_id >> (4*j)) & 0xF;
479 if (
is == 1 && js != 2 && (i < 2 || i > 5))
480 js = (pix_fmt_id >> ( 8 + 4*(
i&1))) & 0xF;
481 if (
is == 1 && js != 2 && (i < 2 || i > 5))
482 js = (pix_fmt_id >> (16 + 4*(
i&1))) & 0xF;
484 if (
is == 1 && js == 2) {
485 if (
i & 1)
s->upscale_h[j/2] = 1;
486 else s->upscale_v[j/2] = 1;
490 switch (pix_fmt_id) {
495 if (
s->adobe_transform == 0
496 ||
s->component_id[0] ==
'R' - 1 &&
s->component_id[1] ==
'G' - 1 &&
s->component_id[2] ==
'B' - 1) {
510 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
521 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
523 s->upscale_v[1] =
s->upscale_v[2] = 1;
524 s->upscale_h[1] =
s->upscale_h[2] = 1;
525 }
else if (
s->adobe_transform == 2 &&
s->bits <= 8) {
527 s->upscale_v[1] =
s->upscale_v[2] = 1;
528 s->upscale_h[1] =
s->upscale_h[2] = 1;
573 if (
s->component_id[0] ==
'Q' &&
s->component_id[1] ==
'F' &&
s->component_id[2] ==
'A') {
577 s->upscale_v[0] =
s->upscale_v[1] = 1;
579 if (pix_fmt_id == 0x14111100)
580 s->upscale_v[1] =
s->upscale_v[2] = 1;
588 if (
s->component_id[0] ==
'Q' &&
s->component_id[1] ==
'F' &&
s->component_id[2] ==
'A') {
592 s->upscale_h[0] =
s->upscale_h[1] = 1;
604 s->upscale_h[1] =
s->upscale_h[2] = 2;
620 if (pix_fmt_id == 0x42111100) {
623 s->upscale_h[1] =
s->upscale_h[2] = 1;
624 }
else if (pix_fmt_id == 0x24111100) {
627 s->upscale_v[1] =
s->upscale_v[2] = 1;
628 }
else if (pix_fmt_id == 0x23111100) {
631 s->upscale_v[1] =
s->upscale_v[2] = 2;
643 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
644 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
656 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
657 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
658 if (
s->nb_components == 3) {
660 }
else if (
s->nb_components != 1) {
663 }
else if (
s->palette_index &&
s->bits <= 8)
665 else if (
s->bits <= 8)
677 if (
s->avctx->pix_fmt ==
s->hwaccel_sw_pix_fmt && !size_change) {
678 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
681 #if CONFIG_MJPEG_NVDEC_HWACCEL
684 #if CONFIG_MJPEG_VAAPI_HWACCEL
691 if (
s->hwaccel_pix_fmt < 0)
694 s->hwaccel_sw_pix_fmt =
s->avctx->pix_fmt;
695 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
700 s->picture_ptr->key_frame = 1;
709 s->picture_ptr->key_frame = 1;
712 for (
i = 0;
i < 4;
i++)
713 s->linesize[
i] =
s->picture_ptr->linesize[
i] <<
s->interlaced;
715 ff_dlog(
s->avctx,
"%d %d %d %d %d %d\n",
716 s->width,
s->height,
s->linesize[0],
s->linesize[1],
717 s->interlaced,
s->avctx->height);
721 if ((
s->rgb && !
s->lossless && !
s->ls) ||
722 (!
s->rgb &&
s->ls &&
s->nb_components > 1) ||
730 if (
s->progressive) {
731 int bw = (
width +
s->h_max * 8 - 1) / (
s->h_max * 8);
732 int bh = (
height +
s->v_max * 8 - 1) / (
s->v_max * 8);
733 for (
i = 0;
i <
s->nb_components;
i++) {
734 int size = bw * bh *
s->h_count[
i] *
s->v_count[
i];
739 if (!
s->blocks[
i] || !
s->last_nnz[
i])
741 s->block_stride[
i] = bw *
s->h_count[
i];
743 memset(
s->coefs_finished, 0,
sizeof(
s->coefs_finished));
746 if (
s->avctx->hwaccel) {
747 s->hwaccel_picture_private =
748 av_mallocz(
s->avctx->hwaccel->frame_priv_data_size);
749 if (!
s->hwaccel_picture_private)
752 ret =
s->avctx->hwaccel->start_frame(
s->avctx,
s->raw_image_buffer,
753 s->raw_image_buffer_size);
765 if (code < 0 || code > 16) {
767 "mjpeg_decode_dc: bad vlc: %d:%d (%p)\n",
768 0, dc_index, &
s->vlcs[0][dc_index]);
780 int dc_index,
int ac_index, uint16_t *quant_matrix)
786 if (
val == 0xfffff) {
790 val =
val * (unsigned)quant_matrix[0] +
s->last_dc[component];
792 s->last_dc[component] =
val;
801 i += ((unsigned)
code) >> 4;
809 int sign = (~cache) >> 31;
819 j =
s->scantable.permutated[
i];
829 int component,
int dc_index,
830 uint16_t *quant_matrix,
int Al)
833 s->bdsp.clear_block(
block);
835 if (
val == 0xfffff) {
839 val = (
val * (quant_matrix[0] << Al)) +
s->last_dc[component];
840 s->last_dc[component] =
val;
847 uint8_t *last_nnz,
int ac_index,
848 uint16_t *quant_matrix,
849 int ss,
int se,
int Al,
int *EOBRUN)
861 for (
i =
ss; ;
i++) {
874 int sign = (~cache) >> 31;
882 j =
s->scantable.permutated[
se];
889 j =
s->scantable.permutated[
i];
919 #define REFINE_BIT(j) { \
920 UPDATE_CACHE(re, &s->gb); \
921 sign = block[j] >> 15; \
922 block[j] += SHOW_UBITS(re, &s->gb, 1) * \
923 ((quant_matrix[i] ^ sign) - sign) << Al; \
924 LAST_SKIP_BITS(re, &s->gb, 1); \
932 av_log(s->avctx, AV_LOG_ERROR, "error count: %d\n", i); \
937 j = s->scantable.permutated[i]; \
940 else if (run-- == 0) \
947 int ac_index, uint16_t *quant_matrix,
948 int ss,
int se,
int Al,
int *EOBRUN)
951 int last =
FFMIN(
se, *last_nnz);
967 j =
s->scantable.permutated[
i];
998 for (;
i <= last;
i++) {
999 j =
s->scantable.permutated[
i];
1015 if (
s->restart_interval) {
1019 for (
i = 0;
i < nb_components;
i++)
1020 s->last_dc[
i] = (4 <<
s->bits);
1025 if (
s->restart_count == 0) {
1033 for (
i = 0;
i < nb_components;
i++)
1034 s->last_dc[
i] = (4 <<
s->bits);
1048 int left[4], top[4], topleft[4];
1049 const int linesize =
s->linesize[0];
1050 const int mask = ((1 <<
s->bits) - 1) << point_transform;
1051 int resync_mb_y = 0;
1052 int resync_mb_x = 0;
1054 if (
s->nb_components != 3 &&
s->nb_components != 4)
1056 if (
s->v_max != 1 ||
s->h_max != 1 || !
s->lossless)
1060 s->restart_count =
s->restart_interval;
1063 (
unsigned)
s->mb_width * 4 *
sizeof(
s->ljpeg_buffer[0][0]));
1064 if (!
s->ljpeg_buffer)
1069 for (
i = 0;
i < 4;
i++)
1072 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1073 uint8_t *ptr =
s->picture_ptr->data[0] + (linesize * mb_y);
1075 if (
s->interlaced &&
s->bottom_field)
1076 ptr += linesize >> 1;
1078 for (
i = 0;
i < 4;
i++)
1081 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1082 int modified_predictor = predictor;
1089 if (
s->restart_interval && !
s->restart_count){
1090 s->restart_count =
s->restart_interval;
1094 top[
i] =
left[
i]= topleft[
i]= 1 << (
s->bits - 1);
1096 if (mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || !mb_x)
1097 modified_predictor = 1;
1099 for (
i=0;
i<nb_components;
i++) {
1102 topleft[
i] = top[
i];
1112 mask & (
pred + (unsigned)(
dc * (1 << point_transform)));
1115 if (
s->restart_interval && !--
s->restart_count) {
1120 if (
s->rct &&
s->nb_components == 4) {
1121 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1122 ptr[4*mb_x + 2] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1123 ptr[4*mb_x + 1] =
buffer[mb_x][1] + ptr[4*mb_x + 2];
1124 ptr[4*mb_x + 3] =
buffer[mb_x][2] + ptr[4*mb_x + 2];
1125 ptr[4*mb_x + 0] =
buffer[mb_x][3];
1127 }
else if (
s->nb_components == 4) {
1128 for(
i=0;
i<nb_components;
i++) {
1129 int c=
s->comp_index[
i];
1131 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1134 }
else if(
s->bits == 9) {
1137 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1138 ((uint16_t*)ptr)[4*mb_x+
c] =
buffer[mb_x][
i];
1142 }
else if (
s->rct) {
1143 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1144 ptr[3*mb_x + 1] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1145 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1146 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1148 }
else if (
s->pegasus_rct) {
1149 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1151 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1152 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1155 for(
i=0;
i<nb_components;
i++) {
1156 int c=
s->comp_index[
i];
1158 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1161 }
else if(
s->bits == 9) {
1164 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1165 ((uint16_t*)ptr)[3*mb_x+2-
c] =
buffer[mb_x][
i];
1175 int point_transform,
int nb_components)
1177 int i, mb_x, mb_y,
mask;
1178 int bits= (
s->bits+7)&~7;
1179 int resync_mb_y = 0;
1180 int resync_mb_x = 0;
1182 point_transform +=
bits -
s->bits;
1183 mask = ((1 <<
s->bits) - 1) << point_transform;
1185 av_assert0(nb_components>=1 && nb_components<=4);
1187 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1188 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1193 if (
s->restart_interval && !
s->restart_count){
1194 s->restart_count =
s->restart_interval;
1199 if(!mb_x || mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || s->
interlaced){
1200 int toprow = mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x;
1201 int leftcol = !mb_x || mb_y == resync_mb_y && mb_x == resync_mb_x;
1202 for (
i = 0;
i < nb_components;
i++) {
1205 int n,
h, v, x, y,
c, j, linesize;
1206 n =
s->nb_blocks[
i];
1207 c =
s->comp_index[
i];
1212 linesize=
s->linesize[
c];
1214 if(
bits>8) linesize /= 2;
1216 for(j=0; j<
n; j++) {
1222 if (
h * mb_x + x >=
s->width
1223 || v * mb_y + y >=
s->height) {
1225 }
else if (
bits<=8) {
1226 ptr =
s->picture_ptr->data[
c] + (linesize * (v * mb_y + y)) + (
h * mb_x + x);
1228 if(x==0 && leftcol){
1234 if(x==0 && leftcol){
1235 pred= ptr[-linesize];
1237 PREDICT(
pred, ptr[-linesize-1], ptr[-linesize], ptr[-1], predictor);
1241 if (
s->interlaced &&
s->bottom_field)
1242 ptr += linesize >> 1;
1244 *ptr=
pred + ((unsigned)
dc << point_transform);
1246 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1248 if(x==0 && leftcol){
1254 if(x==0 && leftcol){
1255 pred= ptr16[-linesize];
1257 PREDICT(
pred, ptr16[-linesize-1], ptr16[-linesize], ptr16[-1], predictor);
1261 if (
s->interlaced &&
s->bottom_field)
1262 ptr16 += linesize >> 1;
1264 *ptr16=
pred + ((unsigned)
dc << point_transform);
1273 for (
i = 0;
i < nb_components;
i++) {
1276 int n,
h, v, x, y,
c, j, linesize,
dc;
1277 n =
s->nb_blocks[
i];
1278 c =
s->comp_index[
i];
1283 linesize =
s->linesize[
c];
1285 if(
bits>8) linesize /= 2;
1287 for (j = 0; j <
n; j++) {
1293 if (
h * mb_x + x >=
s->width
1294 || v * mb_y + y >=
s->height) {
1296 }
else if (
bits<=8) {
1297 ptr =
s->picture_ptr->data[
c] +
1298 (linesize * (v * mb_y + y)) +
1300 PREDICT(
pred, ptr[-linesize-1], ptr[-linesize], ptr[-1], predictor);
1303 *ptr =
pred + ((unsigned)
dc << point_transform);
1305 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1306 PREDICT(
pred, ptr16[-linesize-1], ptr16[-linesize], ptr16[-1], predictor);
1309 *ptr16=
pred + ((unsigned)
dc << point_transform);
1319 if (
s->restart_interval && !--
s->restart_count) {
1330 int linesize,
int lowres)
1333 case 0:
s->hdsp.put_pixels_tab[1][0](dst,
src, linesize, 8);
1339 case 3: *dst = *
src;
1346 int block_x, block_y;
1347 int size = 8 >>
s->avctx->lowres;
1349 for (block_y=0; block_y<
size; block_y++)
1350 for (block_x=0; block_x<
size; block_x++)
1351 *(uint16_t*)(ptr + 2*block_x + block_y*linesize) <<= 16 -
s->bits;
1353 for (block_y=0; block_y<
size; block_y++)
1354 for (block_x=0; block_x<
size; block_x++)
1355 *(ptr + block_x + block_y*linesize) <<= 8 -
s->bits;
1360 int Al,
const uint8_t *mb_bitmask,
1361 int mb_bitmask_size,
1364 int i, mb_x, mb_y, chroma_h_shift, chroma_v_shift, chroma_width, chroma_height;
1369 int bytes_per_pixel = 1 + (
s->bits > 8);
1372 if (mb_bitmask_size != (
s->mb_width *
s->mb_height + 7)>>3) {
1376 init_get_bits(&mb_bitmask_gb, mb_bitmask,
s->mb_width *
s->mb_height);
1379 s->restart_count = 0;
1386 for (
i = 0;
i < nb_components;
i++) {
1387 int c =
s->comp_index[
i];
1388 data[
c] =
s->picture_ptr->data[
c];
1389 reference_data[
c] = reference ? reference->
data[
c] :
NULL;
1390 linesize[
c] =
s->linesize[
c];
1391 s->coefs_finished[
c] |= 1;
1394 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1395 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1398 if (
s->restart_interval && !
s->restart_count)
1399 s->restart_count =
s->restart_interval;
1406 for (
i = 0;
i < nb_components;
i++) {
1408 int n,
h, v, x, y,
c, j;
1410 n =
s->nb_blocks[
i];
1411 c =
s->comp_index[
i];
1416 for (j = 0; j <
n; j++) {
1417 block_offset = (((linesize[
c] * (v * mb_y + y) * 8) +
1418 (
h * mb_x + x) * 8 * bytes_per_pixel) >>
s->avctx->lowres);
1420 if (
s->interlaced &&
s->bottom_field)
1421 block_offset += linesize[
c] >> 1;
1422 if ( 8*(
h * mb_x + x) < ((
c == 1) || (
c == 2) ? chroma_width :
s->width)
1423 && 8*(v * mb_y + y) < ((
c == 1) || (
c == 2) ? chroma_height :
s->height)) {
1424 ptr =
data[
c] + block_offset;
1427 if (!
s->progressive) {
1431 linesize[
c],
s->avctx->lowres);
1434 s->bdsp.clear_block(
s->block);
1436 s->dc_index[
i],
s->ac_index[
i],
1437 s->quant_matrixes[
s->quant_sindex[
i]]) < 0) {
1439 "error y=%d x=%d\n", mb_y, mb_x);
1443 s->idsp.idct_put(ptr, linesize[
c],
s->block);
1449 int block_idx =
s->block_stride[
c] * (v * mb_y + y) +
1451 int16_t *
block =
s->blocks[
c][block_idx];
1454 s->quant_matrixes[
s->quant_sindex[
i]][0] << Al;
1456 s->quant_matrixes[
s->quant_sindex[
i]],
1459 "error y=%d x=%d\n", mb_y, mb_x);
1463 ff_dlog(
s->avctx,
"mb: %d %d processed\n", mb_y, mb_x);
1464 ff_dlog(
s->avctx,
"%d %d %d %d %d %d %d %d \n",
1465 mb_x, mb_y, x, y,
c,
s->bottom_field,
1466 (v * mb_y + y) * 8, (
h * mb_x + x) * 8);
1481 int se,
int Ah,
int Al)
1485 int c =
s->comp_index[0];
1486 uint16_t *quant_matrix =
s->quant_matrixes[
s->quant_sindex[0]];
1489 if (se < ss || se > 63) {
1496 s->coefs_finished[
c] |= (2ULL <<
se) - (1ULL <<
ss);
1498 s->restart_count = 0;
1500 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1501 int block_idx = mb_y *
s->block_stride[
c];
1502 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1503 uint8_t *last_nnz = &
s->last_nnz[
c][block_idx];
1505 av_log(
s->avctx,
AV_LOG_ERROR,
"bitstream truncated in mjpeg_decode_scan_progressive_ac\n");
1508 for (mb_x = 0; mb_x <
s->mb_width; mb_x++,
block++, last_nnz++) {
1510 if (
s->restart_interval && !
s->restart_count)
1511 s->restart_count =
s->restart_interval;
1515 quant_matrix,
ss,
se, Al, &EOBRUN);
1518 quant_matrix,
ss,
se, Al, &EOBRUN);
1524 "error y=%d x=%d\n", mb_y, mb_x);
1539 const int bytes_per_pixel = 1 + (
s->bits > 8);
1540 const int block_size =
s->lossless ? 1 : 8;
1542 for (
c = 0;
c <
s->nb_components;
c++) {
1544 int linesize =
s->linesize[
c];
1545 int h =
s->h_max /
s->h_count[
c];
1546 int v =
s->v_max /
s->v_count[
c];
1547 int mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1548 int mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1550 if (~
s->coefs_finished[
c])
1553 if (
s->interlaced &&
s->bottom_field)
1554 data += linesize >> 1;
1556 for (mb_y = 0; mb_y < mb_height; mb_y++) {
1557 uint8_t *ptr =
data + (mb_y * linesize * 8 >>
s->avctx->lowres);
1558 int block_idx = mb_y *
s->block_stride[
c];
1559 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1560 for (mb_x = 0; mb_x < mb_width; mb_x++,
block++) {
1561 s->idsp.idct_put(ptr, linesize, *
block);
1564 ptr += bytes_per_pixel*8 >>
s->avctx->lowres;
1571 int mb_bitmask_size,
const AVFrame *reference)
1573 int len, nb_components,
i,
h, v, predictor, point_transform;
1575 const int block_size =
s->lossless ? 1 : 8;
1576 int ilv, prev_shift;
1578 if (!
s->got_picture) {
1580 "Can not process SOS before SOF, skipping\n");
1585 if (reference->
width !=
s->picture_ptr->width ||
1586 reference->
height !=
s->picture_ptr->height ||
1587 reference->
format !=
s->picture_ptr->format) {
1598 "decode_sos: nb_components (%d)",
1602 if (
len != 6 + 2 * nb_components) {
1606 for (
i = 0;
i < nb_components;
i++) {
1611 if (
id ==
s->component_id[
index])
1613 if (
index ==
s->nb_components) {
1615 "decode_sos: index(%d) out of components\n",
index);
1619 if (
s->avctx->codec_tag ==
MKTAG(
'M',
'T',
'S',
'J')
1620 && nb_components == 3 &&
s->nb_components == 3 &&
i)
1623 s->quant_sindex[
i] =
s->quant_index[
index];
1625 s->h_scount[
i] =
s->h_count[
index];
1626 s->v_scount[
i] =
s->v_count[
index];
1628 if((nb_components == 1 || nb_components == 3) &&
s->nb_components == 3 &&
s->avctx->pix_fmt ==
AV_PIX_FMT_GBR24P)
1636 if (
s->dc_index[
i] < 0 ||
s->ac_index[
i] < 0 ||
1637 s->dc_index[
i] >= 4 ||
s->ac_index[
i] >= 4)
1639 if (!
s->vlcs[0][
s->dc_index[
i]].table || !(
s->progressive ?
s->vlcs[2][
s->ac_index[0]].table :
s->vlcs[1][
s->ac_index[
i]].table))
1645 if(
s->avctx->codec_tag !=
AV_RL32(
"CJPG")){
1649 prev_shift = point_transform = 0;
1651 if (nb_components > 1) {
1653 s->mb_width = (
s->width +
s->h_max * block_size - 1) / (
s->h_max * block_size);
1654 s->mb_height = (
s->height +
s->v_max * block_size - 1) / (
s->v_max * block_size);
1655 }
else if (!
s->ls) {
1656 h =
s->h_max /
s->h_scount[0];
1657 v =
s->v_max /
s->v_scount[0];
1658 s->mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1659 s->mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1660 s->nb_blocks[0] = 1;
1667 s->lossless ?
"lossless" :
"sequential DCT",
s->rgb ?
"RGB" :
"",
1668 predictor, point_transform, ilv,
s->bits,
s->mjpb_skiptosod,
1669 s->pegasus_rct ?
"PRCT" : (
s->rct ?
"RCT" :
""), nb_components);
1673 for (
i =
s->mjpb_skiptosod;
i > 0;
i--)
1677 for (
i = 0;
i < nb_components;
i++)
1678 s->last_dc[
i] = (4 <<
s->bits);
1680 if (
s->avctx->hwaccel) {
1683 s->raw_scan_buffer_size >= bytes_to_start);
1685 ret =
s->avctx->hwaccel->decode_slice(
s->avctx,
1686 s->raw_scan_buffer + bytes_to_start,
1687 s->raw_scan_buffer_size - bytes_to_start);
1691 }
else if (
s->lossless) {
1693 if (CONFIG_JPEGLS_DECODER &&
s->ls) {
1698 point_transform, ilv)) < 0)
1707 nb_components)) < 0)
1712 if (
s->progressive && predictor) {
1716 point_transform)) < 0)
1720 prev_shift, point_transform,
1721 mb_bitmask, mb_bitmask_size, reference)) < 0)
1726 if (
s->interlaced &&
1735 s->bottom_field ^= 1;
1753 s->restart_count = 0;
1755 s->restart_interval);
1795 int t_w, t_h, v1, v2;
1803 s->avctx->sample_aspect_ratio.num =
get_bits(&
s->gb, 16);
1804 s->avctx->sample_aspect_ratio.den =
get_bits(&
s->gb, 16);
1805 if (
s->avctx->sample_aspect_ratio.num <= 0
1806 ||
s->avctx->sample_aspect_ratio.den <= 0) {
1807 s->avctx->sample_aspect_ratio.num = 0;
1808 s->avctx->sample_aspect_ratio.den = 1;
1813 "mjpeg: JFIF header found (version: %x.%x) SAR=%d/%d\n",
1815 s->avctx->sample_aspect_ratio.num,
1816 s->avctx->sample_aspect_ratio.den);
1824 if (
len -10 - (t_w * t_h * 3) > 0)
1825 len -= t_w * t_h * 3;
1842 av_log(
s->avctx,
AV_LOG_INFO,
"mjpeg: Adobe header found, transform=%d\n",
s->adobe_transform);
1849 int pegasus_rct =
s->pegasus_rct;
1852 "Pegasus lossless jpeg header found\n");
1872 if (rgb !=
s->rgb || pegasus_rct !=
s->pegasus_rct) {
1878 s->pegasus_rct = pegasus_rct;
1918 }
else if (
type == 1) {
1930 if (!(
flags & 0x04)) {
1940 int ret, le, ifd_offset, bytes_read;
1973 if ((
s->start_code ==
APP1) && (
len > (0x28 - 8))) {
1996 unsigned nummarkers;
2016 if (nummarkers == 0) {
2019 }
else if (
s->iccnum != 0 && nummarkers !=
s->iccnum) {
2022 }
else if (seqno > nummarkers) {
2028 if (
s->iccnum == 0) {
2029 s->iccdata =
av_mallocz(nummarkers *
sizeof(*(
s->iccdata)));
2030 s->iccdatalens =
av_mallocz(nummarkers *
sizeof(*(
s->iccdatalens)));
2031 if (!
s->iccdata || !
s->iccdatalens) {
2035 s->iccnum = nummarkers;
2038 if (
s->iccdata[seqno - 1]) {
2043 s->iccdatalens[seqno - 1] =
len;
2045 if (!
s->iccdata[seqno - 1]) {
2055 if (
s->iccread >
s->iccnum)
2063 "mjpeg: error, decode_app parser read over the end\n");
2079 for (
i = 0;
i <
len - 2;
i++)
2081 if (
i > 0 && cbuf[
i - 1] ==
'\n')
2090 if (!strncmp(cbuf,
"AVID", 4)) {
2092 }
else if (!strcmp(cbuf,
"CS=ITU601"))
2094 else if ((!strncmp(cbuf,
"Intel(R) JPEG Library, version 1", 32) &&
s->avctx->codec_tag) ||
2095 (!strncmp(cbuf,
"Metasoft MJPEG Codec", 20)))
2097 else if (!strcmp(cbuf,
"MULTISCOPE II")) {
2098 s->avctx->sample_aspect_ratio = (
AVRational) { 1, 2 };
2117 buf_ptr = *pbuf_ptr;
2118 while (buf_end - buf_ptr > 1) {
2121 if ((v == 0xff) && (v2 >=
SOF0) && (v2 <=
COM) && buf_ptr < buf_end) {
2130 ff_dlog(
NULL,
"find_marker skipped %d bytes\n", skipped);
2131 *pbuf_ptr = buf_ptr;
2137 const uint8_t **unescaped_buf_ptr,
2138 int *unescaped_buf_size)
2153 #define copy_data_segment(skip) do { \
2154 ptrdiff_t length = (ptr - src) - (skip); \
2156 memcpy(dst, src, length); \
2166 while (ptr < buf_end) {
2171 while (ptr < buf_end && x == 0xff) {
2186 if (x < RST0 || x >
RST7) {
2196 #undef copy_data_segment
2198 *unescaped_buf_ptr =
s->buffer;
2199 *unescaped_buf_size = dst -
s->buffer;
2200 memset(
s->buffer + *unescaped_buf_size, 0,
2204 (buf_end - *buf_ptr) - (dst -
s->buffer));
2213 while (
src + t < buf_end) {
2216 while ((
src + t < buf_end) && x == 0xff)
2231 if (x == 0xFF &&
b < t) {
2243 *unescaped_buf_ptr = dst;
2244 *unescaped_buf_size = (bit_count + 7) >> 3;
2245 memset(
s->buffer + *unescaped_buf_size, 0,
2248 *unescaped_buf_ptr = *buf_ptr;
2249 *unescaped_buf_size = buf_end - *buf_ptr;
2260 for (
i = 0;
i <
s->iccnum;
i++)
2274 int buf_size = avpkt->
size;
2276 const uint8_t *buf_end, *buf_ptr;
2277 const uint8_t *unescaped_buf_ptr;
2279 int unescaped_buf_size;
2285 s->buf_size = buf_size;
2289 s->adobe_transform = -1;
2295 buf_end =
buf + buf_size;
2296 while (buf_ptr < buf_end) {
2300 &unescaped_buf_size);
2304 }
else if (unescaped_buf_size > INT_MAX / 8) {
2306 "MJPEG packet 0x%x too big (%d/%d), corrupt data?\n",
2346 if (!CONFIG_JPEGLS_DECODER &&
2370 s->restart_interval = 0;
2371 s->restart_count = 0;
2372 s->raw_image_buffer = buf_ptr;
2373 s->raw_image_buffer_size = buf_end - buf_ptr;
2421 if (!CONFIG_JPEGLS_DECODER ||
2428 s->progressive &&
s->cur_scan &&
s->got_picture)
2431 if (!
s->got_picture) {
2433 "Found EOI before any SOF, ignoring\n");
2436 if (
s->interlaced) {
2437 s->bottom_field ^= 1;
2439 if (
s->bottom_field == !
s->interlace_polarity)
2444 goto the_end_no_picture;
2446 if (
s->avctx->hwaccel) {
2447 ret =
s->avctx->hwaccel->end_frame(
s->avctx);
2462 int qpw = (
s->width + 15) / 16;
2465 memset(qp_table_buf->
data, qp, qpw);
2475 s->raw_scan_buffer = buf_ptr;
2476 s->raw_scan_buffer_size = buf_end - buf_ptr;
2503 "mjpeg: unsupported coding type (%x)\n",
start_code);
2511 "marker parser used %d bytes (%d bits)\n",
2514 if (
s->got_picture &&
s->cur_scan) {
2547 for (p = 0; p<
s->nb_components; p++) {
2551 if (!
s->upscale_h[p])
2557 if (
s->upscale_v[p] == 1)
2560 for (
i = 0;
i <
h;
i++) {
2561 if (
s->upscale_h[p] == 1) {
2562 if (is16bit) ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 2];
2570 }
else if (
s->upscale_h[p] == 2) {
2572 ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 3];
2574 ((uint16_t*)
line)[
w - 2] = ((uint16_t*)
line)[
w - 1];
2584 line +=
s->linesize[p];
2609 for (p = 0; p <
s->nb_components; p++) {
2613 if (!
s->upscale_v[p])
2619 dst = &((
uint8_t *)
s->picture_ptr->data[p])[(
h - 1) *
s->linesize[p]];
2621 uint8_t *
src1 = &((
uint8_t *)
s->picture_ptr->data[p])[
i *
s->upscale_v[p] / (
s->upscale_v[p] + 1) *
s->linesize[p]];
2622 uint8_t *src2 = &((
uint8_t *)
s->picture_ptr->data[p])[(
i + 1) *
s->upscale_v[p] / (
s->upscale_v[p] + 1) *
s->linesize[p]];
2623 if (
s->upscale_v[p] != 2 && (
src1 == src2 ||
i ==
h - 1)) {
2624 memcpy(dst,
src1,
w);
2629 dst -=
s->linesize[p];
2633 if (
s->flipped && !
s->rgb) {
2642 int w =
s->picture_ptr->width;
2643 int h =
s->picture_ptr->height;
2650 for (
i=0;
i<
h/2;
i++) {
2652 FFSWAP(
int, dst[j], dst2[j]);
2653 dst +=
s->picture_ptr->linesize[
index];
2654 dst2 -=
s->picture_ptr->linesize[
index];
2660 int w =
s->picture_ptr->width;
2661 int h =
s->picture_ptr->height;
2663 for (
i=0;
i<
h;
i++) {
2668 +
s->picture_ptr->linesize[
index]*
i;
2670 for (j=0; j<
w; j++) {
2672 int r = dst[0][j] * k;
2673 int g = dst[1][j] * k;
2674 int b = dst[2][j] * k;
2675 dst[0][j] =
g*257 >> 16;
2676 dst[1][j] =
b*257 >> 16;
2677 dst[2][j] =
r*257 >> 16;
2683 int w =
s->picture_ptr->width;
2684 int h =
s->picture_ptr->height;
2686 for (
i=0;
i<
h;
i++) {
2691 +
s->picture_ptr->linesize[
index]*
i;
2693 for (j=0; j<
w; j++) {
2695 int r = (255 - dst[0][j]) * k;
2696 int g = (128 - dst[1][j]) * k;
2697 int b = (128 - dst[2][j]) * k;
2698 dst[0][j] =
r*257 >> 16;
2699 dst[1][j] = (
g*257 >> 16) + 128;
2700 dst[2][j] = (
b*257 >> 16) + 128;
2709 stereo->
type =
s->stereo3d->type;
2710 stereo->
flags =
s->stereo3d->flags;
2715 if (
s->iccnum != 0 &&
s->iccnum ==
s->iccread) {
2722 for (
i = 0;
i <
s->iccnum;
i++)
2723 total_size +=
s->iccdatalens[
i];
2732 for (
i = 0;
i <
s->iccnum;
i++) {
2745 return buf_ptr -
buf;
2753 if (
s->interlaced &&
s->bottom_field == !
s->interlace_polarity &&
s->got_picture && !avctx->
frame_number) {
2759 s->picture_ptr =
NULL;
2760 }
else if (
s->picture_ptr)
2766 s->ljpeg_buffer_size = 0;
2768 for (
i = 0;
i < 3;
i++) {
2769 for (j = 0; j < 4; j++)
2791 #if CONFIG_MJPEG_DECODER
2792 #define OFFSET(x) offsetof(MJpegDecodeContext, x)
2793 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2795 {
"extern_huff",
"Use external huffman table.",
2800 static const AVClass mjpegdec_class = {
2819 .priv_class = &mjpegdec_class,
2824 #if CONFIG_MJPEG_NVDEC_HWACCEL
2827 #if CONFIG_MJPEG_VAAPI_HWACCEL
2834 #if CONFIG_THP_DECODER
#define HWACCEL_NVDEC(codec)
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
#define AV_LOG_WARNING
Something somehow does not look correct.
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
av_cold void ff_init_scantable(uint8_t *permutation, ScanTable *st, const uint8_t *src_scantable)
AVPixelFormat
Pixel format.
static av_cold int init(AVCodecContext *avctx)
static unsigned int show_bits_long(GetBitContext *s, int n)
Show 0-32 bits.
AVBufferRef * av_buffer_alloc(int size)
Allocate an AVBuffer of the given size using av_malloc().
void ff_mjpeg_build_huffman_codes(uint8_t *huff_size, uint16_t *huff_code, const uint8_t *bits_table, const uint8_t *val_table)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
enum AVColorSpace colorspace
YUV colorspace type.
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
#define FFSWAP(type, a, b)
static av_always_inline void mjpeg_copy_block(MJpegDecodeContext *s, uint8_t *dst, const uint8_t *src, int linesize, int lowres)
The official guide to swscale for confused that is
static void decode_flush(AVCodecContext *avctx)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
uint8_t * data
The data buffer.
#define MKTAG(a, b, c, d)
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
#define GET_VLC(code, name, gb, table, bits, max_depth)
If the vlc code is invalid and max_depth=1, then no bits will be removed.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, int size)
Add a new side data to a frame.
const uint8_t avpriv_mjpeg_bits_ac_luminance[17]
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
#define se(name, range_min, range_max)
static int get_bits_count(const GetBitContext *s)
static void init_idct(AVCodecContext *avctx)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
const uint8_t avpriv_mjpeg_val_ac_luminance[]
#define AV_PIX_FMT_YUVA420P16
@ AVCOL_RANGE_JPEG
the normal 2^n-1 "JPEG" YUV ranges
#define FF_PROFILE_MJPEG_JPEG_LS
enum AVFieldOrder field_order
Field order.
static int mjpeg_decode_dc(MJpegDecodeContext *s, int dc_index)
int step
Number of elements between 2 horizontally consecutive pixels.
void * av_mallocz_array(size_t nmemb, size_t size)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
static int build_vlc(VLC *vlc, const uint8_t *bits_table, const uint8_t *val_table, int nb_codes, int use_static, int is_ac)
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
#define UPDATE_CACHE(name, gb)
const uint8_t avpriv_mjpeg_bits_dc_luminance[17]
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define GET_CACHE(name, gb)
static void skip_bits(GetBitContext *s, int n)
@ AV_STEREO3D_SIDEBYSIDE
Views are next to each other.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
int ff_mjpeg_decode_dht(MJpegDecodeContext *s)
static int ljpeg_decode_yuv_scan(MJpegDecodeContext *s, int predictor, int point_transform, int nb_components)
static void shift_output(MJpegDecodeContext *s, uint8_t *ptr, int linesize)
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
const struct AVCodec * codec
av_cold int ff_mjpeg_decode_init(AVCodecContext *avctx)
enum AVDiscard skip_frame
Skip decoding for selected frames.
@ AV_STEREO3D_2D
Video is not stereoscopic (and metadata has to be there).
#define AV_PIX_FMT_YUVA444P16
#define FF_PROFILE_MJPEG_HUFFMAN_BASELINE_DCT
static int mjpeg_decode_com(MJpegDecodeContext *s)
static int init_default_huffman_tables(MJpegDecodeContext *s)
int flags
AV_CODEC_FLAG_*.
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_PIX_FMT_GRAY16
#define ss(width, name, subs,...)
#define FF_CODEC_CAP_SKIP_FRAME_FILL_PARAM
The decoder extracts and fills its parameters even if the frame is skipped due to the skip_frame sett...
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
const uint8_t avpriv_mjpeg_bits_dc_chrominance[17]
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
const AVProfile ff_mjpeg_profiles[]
int ff_exif_decode_ifd(void *logctx, GetByteContext *gbytes, int le, int depth, AVDictionary **metadata)
static int aligned(int val)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int decode_dc_progressive(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, uint16_t *quant_matrix, int Al)
#define AV_PIX_FMT_YUV422P16
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
#define FF_CODEC_PROPERTY_LOSSLESS
#define FF_PROFILE_MJPEG_HUFFMAN_PROGRESSIVE_DCT
static const uint16_t mask[17]
static int handle_rstn(MJpegDecodeContext *s, int nb_components)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define CLOSE_READER(name, gb)
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
@ AV_STEREO3D_LINES
Views are packed per line, as if interlaced.
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static void parse_avid(MJpegDecodeContext *s, uint8_t *buf, int len)
const uint8_t avpriv_mjpeg_val_dc[12]
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
#define FF_PROFILE_MJPEG_HUFFMAN_LOSSLESS
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
int ff_jpegls_decode_picture(MJpegDecodeContext *s, int near, int point_transform, int ilv)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_PIX_FMT_YUV420P16
static void reset_icc_profile(MJpegDecodeContext *s)
av_cold int ff_mjpeg_decode_end(AVCodecContext *avctx)
void ff_free_vlc(VLC *vlc)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
int flags
Additional information about the frame packing.
@ AVDISCARD_ALL
discard all
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
#define PTRDIFF_SPECIFIER
static void flush(AVCodecContext *avctx)
static void mjpeg_idct_scan_progressive_ac(MJpegDecodeContext *s)
static void copy_block2(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Rational number (pair of numerator and denominator).
int ff_mjpeg_decode_dqt(MJpegDecodeContext *s)
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
const char * av_default_item_name(void *ptr)
Return the context name.
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
@ AV_FRAME_DATA_ICC_PROFILE
The data contains an ICC profile as an opaque octet buffer following the format described by ISO 1507...
#define LAST_SKIP_BITS(name, gb, num)
static int mjpeg_decode_scan(MJpegDecodeContext *s, int nb_components, int Ah, int Al, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
static int decode_block_refinement(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
static int mjpeg_decode_scan_progressive_ac(MJpegDecodeContext *s, int ss, int se, int Ah, int Al)
int ff_init_vlc_sparse(VLC *vlc_arg, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
#define AV_EF_EXPLODE
abort decoding on minor error detection
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
const uint8_t avpriv_mjpeg_val_ac_chrominance[]
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_always_inline int bytestream2_tell(GetByteContext *g)
#define copy_data_segment(skip)
const OptionDef options[]
static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
static int ljpeg_decode_rgb_scan(MJpegDecodeContext *s, int nb_components, int predictor, int point_transform)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
int ff_jpegls_decode_lse(MJpegDecodeContext *s)
Decode LSE block with initialization parameters.
#define FF_QSCALE_TYPE_MPEG1
static int decode_block_progressive(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
int ff_mjpeg_decode_sos(MJpegDecodeContext *s, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
const char const char void * val
#define OPEN_READER(name, gb)
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static int get_xbits(GetBitContext *s, int n)
Read MPEG-1 dc-style VLC (sign bit + mantissa with no MSB).
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
static int find_marker(const uint8_t **pbuf_ptr, const uint8_t *buf_end)
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
#define AV_LOG_INFO
Standard information.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static void copy_block4(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
int ff_mjpeg_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
static int decode_block(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, int ac_index, uint16_t *quant_matrix)
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
#define FF_PROFILE_MJPEG_HUFFMAN_EXTENDED_SEQUENTIAL_DCT
@ AV_STEREO3D_TOPBOTTOM
Views are on top of each other.
static int mjpeg_decode_dri(MJpegDecodeContext *s)
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
#define FF_DEBUG_STARTCODE
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
@ AVCOL_RANGE_MPEG
the normal 219*2^(n-8) "MPEG" YUV ranges
const uint8_t ff_zigzag_direct[64]
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
static const float pred[4]
AVStereo3D * av_stereo3d_alloc(void)
Allocate an AVStereo3D structure and set its fields to default values.
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
enum AVStereo3DType type
How views are packed within the video.
static const uint8_t * align_get_bits(GetBitContext *s)
@ LSE
JPEG-LS extension parameters.
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
#define FF_ARRAY_ELEMS(a)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
int ff_mjpeg_find_marker(MJpegDecodeContext *s, const uint8_t **buf_ptr, const uint8_t *buf_end, const uint8_t **unescaped_buf_ptr, int *unescaped_buf_size)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without and describe what they for example set the foo of the bar offset is the offset of the field in your see the OFFSET() macro
main external API structure.
#define HWACCEL_VAAPI(codec)
#define SHOW_UBITS(name, gb, num)
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
@ AVCHROMA_LOC_CENTER
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
int ff_tdecode_header(GetByteContext *gb, int *le, int *ifd_offset)
Decodes a TIFF header from the input bytestream and sets the endianness in *le and the offset to the ...
static const AVProfile profiles[]
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
int ff_mjpeg_decode_sof(MJpegDecodeContext *s)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
A reference to a data buffer.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int mjpeg_decode_app(MJpegDecodeContext *s)
int frame_number
Frame counter, set by libavcodec.
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
#define avpriv_request_sample(...)
Structure to hold side data for an AVFrame.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
This structure stores compressed data.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
int av_dict_copy(AVDictionary **dst, const AVDictionary *src, int flags)
Copy entries from one AVDictionary struct into another.
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define flags(name, subs,...)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
const uint8_t avpriv_mjpeg_bits_ac_chrominance[17]
Stereo 3D type: this structure describes how two videos are packed within a single video surface,...
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_RB24
#define PREDICT(ret, topleft, top, left, predictor)
int av_frame_set_qp_table(AVFrame *f, AVBufferRef *buf, int stride, int qp_type)
#define av_fourcc2str(fourcc)