Go to the documentation of this file.
   60 #define MONO            0x1000001 
   61 #define STEREO          0x1000002 
   62 #define JOINT_STEREO    0x1000003 
   63 #define MC_COOK         0x2000000   // multichannel Cook, not supported 
   65 #define SUBBAND_SIZE    20 
   66 #define MAX_SUBPACKETS   5 
  108                            int *subband_coef_index, 
int *subband_coef_sign,
 
  115                      float *decode_buffer,
 
  116                      float *mlt_buffer1, 
float *mlt_buffer2);
 
  119                         cook_gains *gains_ptr, 
float *previous_buffer);
 
  122                         int gain_index, 
int gain_index_next);
 
  171     static const float exp2_tab[2] = {1, 
M_SQRT2};
 
  172     float exp2_val = 
powf(2, -63);
 
  173     float root_val = 
powf(2, -32);
 
  174     for (
i = -63; 
i < 64; 
i++) {
 
  187     q->gain_size_factor = q->samples_per_channel / 8;
 
  188     for (
i = 0; 
i < 31; 
i++)
 
  190                                (1.0 / (
double) q->gain_size_factor));
 
  199     for (
i = 0; 
i < 13; 
i++) {
 
  205     for (
i = 0; 
i < 7; 
i++) {
 
  211     for (
i = 0; 
i < q->num_subpackets; 
i++) {
 
  212         if (q->subpacket[
i].joint_stereo == 1) {
 
  214                                (1 << q->subpacket[
i].js_vlc_bits) - 1,
 
  228     int mlt_size = q->samples_per_channel;
 
  230     if ((q->mlt_window = 
av_malloc_array(mlt_size, 
sizeof(*q->mlt_window))) == 0)
 
  235     for (j = 0; j < mlt_size; j++)
 
  236         q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
 
  252     for (
i = 0; 
i < 5; 
i++)
 
  258 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4) 
  259 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) 
  283     static const uint32_t 
tab[4] = {
 
  290     uint32_t *obuf = (uint32_t *) 
out;
 
  297     off = (intptr_t) inbuffer & 3;
 
  298     buf = (
const uint32_t *) (inbuffer - off);
 
  301     for (
i = 0; 
i < bytes / 4; 
i++)
 
  321     for (
i = 0; 
i < 13; 
i++)
 
  323     for (
i = 0; 
i < 7; 
i++)
 
  325     for (
i = 0; 
i < q->num_subpackets; 
i++)
 
  351             gaininfo[
i++] = gain;
 
  364                            int *quant_index_table)
 
  368     quant_index_table[0] = 
get_bits(&q->gb, 6) - 6; 
 
  382         j = 
get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
 
  383                      q->envelope_quant_index[vlc_index - 1].bits, 2);
 
  384         quant_index_table[
i] = quant_index_table[
i - 1] + j - 12; 
 
  385         if (quant_index_table[
i] > 63 || quant_index_table[
i] < -63) {
 
  387                    "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
 
  388                    quant_index_table[
i], 
i);
 
  407     int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, 
index, v, 
i, j;
 
  408     int exp_index2[102] = { 0 };
 
  409     int exp_index1[102] = { 0 };
 
  411     int tmp_categorize_array[128 * 2] = { 0 };
 
  417     if (bits_left > q->samples_per_channel)
 
  418         bits_left = q->samples_per_channel +
 
  419                     ((bits_left - q->samples_per_channel) * 5) / 8;
 
  424     for (
i = 32; 
i > 0; 
i = 
i / 2) {
 
  428             exp_idx = av_clip_uintp2((
i - quant_index_table[
index] + bias) / 2, 3);
 
  432         if (num_bits >= bits_left - 32)
 
  439         exp_idx = av_clip_uintp2((bias - quant_index_table[
i]) / 2, 3);
 
  441         exp_index1[
i] = exp_idx;
 
  442         exp_index2[
i] = exp_idx;
 
  444     tmpbias1 = tmpbias2 = num_bits;
 
  447         if (tmpbias1 + tmpbias2 > 2 * bits_left) {  
 
  451                 if (exp_index1[
i] < 7) {
 
  452                     v = (-2 * exp_index1[
i]) - quant_index_table[
i] + bias;
 
  461             tmp_categorize_array[tmp_categorize_array1_idx++] = 
index;
 
  469                 if (exp_index2[
i] > 0) {
 
  470                     v = (-2 * exp_index2[
i]) - quant_index_table[
i] + bias;
 
  479             tmp_categorize_array[--tmp_categorize_array2_idx] = 
index;
 
  490         category_index[
i] = tmp_categorize_array[tmp_categorize_array2_idx++];
 
  505     for (
i = 0; 
i < q->num_vectors; 
i++)
 
  507         int idx = category_index[
i];
 
  524                                  int *subband_coef_index, 
int *subband_coef_sign,
 
  531         if (subband_coef_index[
i]) {
 
  533             if (subband_coef_sign[
i])
 
  538             if (
av_lfg_get(&q->random_state) < 0x80000000)
 
  553                        int *subband_coef_index, 
int *subband_coef_sign)
 
  566         for (j = vd - 1; j >= 0; j--) {
 
  571         for (j = 0; j < vd; j++) {
 
  572             if (subband_coef_index[
i * vd + j]) {
 
  574                     subband_coef_sign[
i * vd + j] = 
get_bits1(&q->gb);
 
  577                     subband_coef_sign[
i * vd + j] = 0;
 
  580                 subband_coef_sign[
i * vd + j] = 0;
 
  597                            int *quant_index_table, 
float *mlt_buffer)
 
  618             memset(subband_coef_index, 0, 
sizeof(subband_coef_index));
 
  619             memset(subband_coef_sign,  0, 
sizeof(subband_coef_sign));
 
  621         q->scalar_dequant(q, 
index, quant_index_table[band],
 
  622                           subband_coef_index, subband_coef_sign,
 
  634     int category_index[128] = { 0 };
 
  636     int quant_index_table[102];
 
  663                               int gain_index, 
int gain_index_next)
 
  667     fc1 = 
pow2tab[gain_index + 63];
 
  669     if (gain_index == gain_index_next) {             
 
  670         for (
i = 0; 
i < q->gain_size_factor; 
i++)
 
  673         fc2 = q->gain_table[15 + (gain_index_next - gain_index)];
 
  674         for (
i = 0; 
i < q->gain_size_factor; 
i++) {
 
  690                               cook_gains *gains_ptr, 
float *previous_buffer)
 
  701     for (
i = 0; 
i < q->samples_per_channel; 
i++)
 
  702         inbuffer[
i] = inbuffer[
i] * 
fc * q->mlt_window[
i] -
 
  703                       previous_buffer[
i] * q->mlt_window[q->samples_per_channel - 1 - 
i];
 
  718                       cook_gains *gains_ptr, 
float *previous_buffer)
 
  720     float *buffer0 = q->mono_mdct_output;
 
  721     float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
 
  725     q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
 
  727     q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
 
  730     for (
i = 0; 
i < 8; 
i++)
 
  731         if (gains_ptr->
now[
i] || gains_ptr->
now[
i + 1])
 
  732             q->interpolate(q, &buffer1[q->gain_size_factor * 
i],
 
  733                            gains_ptr->
now[
i], gains_ptr->
now[
i + 1]);
 
  736     memcpy(previous_buffer, buffer0,
 
  737            q->samples_per_channel * 
sizeof(*previous_buffer));
 
  770             decouple_tab[
start + 
i] = v;
 
  790                            float *decode_buffer,
 
  791                            float *mlt_buffer1, 
float *mlt_buffer2)
 
  796         mlt_buffer1[
SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
 
  797         mlt_buffer2[
SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
 
  809                         float *mlt_buffer_left, 
float *mlt_buffer_right)
 
  813     float *decode_buffer = q->decode_buffer_0;
 
  816     const float *cplscale;
 
  818     memset(decode_buffer, 0, 
sizeof(q->decode_buffer_0));
 
  821     memset(mlt_buffer_left,  0, 1024 * 
sizeof(*mlt_buffer_left));
 
  822     memset(mlt_buffer_right, 0, 1024 * 
sizeof(*mlt_buffer_right));
 
  830             mlt_buffer_left[
i  * 20 + j] = decode_buffer[
i * 40 + j];
 
  831             mlt_buffer_right[
i * 20 + j] = decode_buffer[
i * 40 + 20 + j];
 
  840         idx -= decouple_tab[cpl_tmp];
 
  842         f1 = cplscale[decouple_tab[cpl_tmp] + 1];
 
  844         q->decouple(q, p, 
i, f1, f2, decode_buffer,
 
  845                     mlt_buffer_left, mlt_buffer_right);
 
  884     q->adsp.vector_clipf(
out, q->mono_mdct_output + q->samples_per_channel,
 
  885                          FFALIGN(q->samples_per_channel, 8), -1.0f, 1.0f);
 
  901                                          cook_gains *gains_ptr, 
float *previous_buffer,
 
  904     imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
 
  906         q->saturate_output(q, 
out);
 
  919                             const uint8_t *inbuffer, 
float **outbuffer)
 
  921     int sub_packet_size = p->
size;
 
  924     memset(q->decode_buffer_1, 0, 
sizeof(q->decode_buffer_1));
 
  928         if ((res = 
joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
 
  931         if ((res = 
mono_decode(q, p, q->decode_buffer_1)) < 0)
 
  936             if ((res = 
mono_decode(q, p, q->decode_buffer_2)) < 0)
 
  961                              int *got_frame_ptr, 
AVPacket *avpkt)
 
  965     int buf_size = avpkt->
size;
 
  972     if (buf_size < avctx->block_align)
 
  976     if (q->discarded_packets >= 2) {
 
  977         frame->nb_samples = q->samples_per_channel;
 
  986     for (
i = 1; 
i < q->num_subpackets; 
i++) {
 
  988         q->subpacket[0].size -= q->subpacket[
i].size + 1;
 
  989         if (q->subpacket[0].size < 0) {
 
  991                    "frame subpacket size total > avctx->block_align!\n");
 
  997     for (
i = 0; 
i < q->num_subpackets; 
i++) {
 
  998         q->subpacket[
i].bits_per_subpacket = (q->subpacket[
i].size * 8) >>
 
  999                                               q->subpacket[
i].bits_per_subpdiv;
 
 1000         q->subpacket[
i].ch_idx = chidx;
 
 1002                "subpacket[%i] size %i js %i %i block_align %i\n",
 
 1003                i, q->subpacket[
i].size, q->subpacket[
i].joint_stereo, 
offset,
 
 1008         offset += q->subpacket[
i].size;
 
 1009         chidx += q->subpacket[
i].num_channels;
 
 1015     if (q->discarded_packets < 2) {
 
 1016         q->discarded_packets++;
 
 1029 #define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b); 
 1030     ff_dlog(q->avctx, 
"COOKextradata\n");
 
 1031     ff_dlog(q->avctx, 
"cookversion=%x\n", q->subpacket[0].cookversion);
 
 1032     if (q->subpacket[0].cookversion > 
STEREO) {
 
 1033         PRINT(
"js_subband_start", q->subpacket[0].js_subband_start);
 
 1034         PRINT(
"js_vlc_bits", q->subpacket[0].js_vlc_bits);
 
 1036     ff_dlog(q->avctx, 
"COOKContext\n");
 
 1037     PRINT(
"nb_channels", q->avctx->channels);
 
 1038     PRINT(
"bit_rate", (
int)q->avctx->bit_rate);
 
 1039     PRINT(
"sample_rate", q->avctx->sample_rate);
 
 1040     PRINT(
"samples_per_channel", q->subpacket[0].samples_per_channel);
 
 1041     PRINT(
"subbands", q->subpacket[0].subbands);
 
 1042     PRINT(
"js_subband_start", q->subpacket[0].js_subband_start);
 
 1043     PRINT(
"log2_numvector_size", q->subpacket[0].log2_numvector_size);
 
 1044     PRINT(
"numvector_size", q->subpacket[0].numvector_size);
 
 1045     PRINT(
"total_subbands", q->subpacket[0].total_subbands);
 
 1058     unsigned int channel_mask = 0;
 
 1059     int samples_per_frame = 0;
 
 1093         q->subpacket[
s].cookversion      = bytestream2_get_be32(&
gb);
 
 1094         samples_per_frame                = bytestream2_get_be16(&
gb);
 
 1095         q->subpacket[
s].subbands         = bytestream2_get_be16(&
gb);
 
 1096         bytestream2_get_be32(&
gb);    
 
 1097         q->subpacket[
s].js_subband_start = bytestream2_get_be16(&
gb);
 
 1098         if (q->subpacket[
s].js_subband_start >= 51) {
 
 1102         q->subpacket[
s].js_vlc_bits      = bytestream2_get_be16(&
gb);
 
 1105         q->subpacket[
s].samples_per_channel = samples_per_frame / 
avctx->
channels;
 
 1109         q->subpacket[
s].log2_numvector_size = 5;
 
 1110         q->subpacket[
s].total_subbands = q->subpacket[
s].subbands;
 
 1111         q->subpacket[
s].num_channels = 1;
 
 1116                q->subpacket[
s].cookversion);
 
 1117         q->subpacket[
s].joint_stereo = 0;
 
 1118         switch (q->subpacket[
s].cookversion) {
 
 1128                 q->subpacket[
s].bits_per_subpdiv = 1;
 
 1129                 q->subpacket[
s].num_channels = 2;
 
 1140                 q->subpacket[
s].total_subbands = q->subpacket[
s].subbands +
 
 1141                                                  q->subpacket[
s].js_subband_start;
 
 1142                 q->subpacket[
s].joint_stereo = 1;
 
 1143                 q->subpacket[
s].num_channels = 2;
 
 1145             if (q->subpacket[
s].samples_per_channel > 256) {
 
 1146                 q->subpacket[
s].log2_numvector_size = 6;
 
 1148             if (q->subpacket[
s].samples_per_channel > 512) {
 
 1149                 q->subpacket[
s].log2_numvector_size = 7;
 
 1154             channel_mask |= q->subpacket[
s].channel_mask = bytestream2_get_be32(&
gb);
 
 1157                 q->subpacket[
s].total_subbands = q->subpacket[
s].subbands +
 
 1158                                                  q->subpacket[
s].js_subband_start;
 
 1159                 q->subpacket[
s].joint_stereo = 1;
 
 1160                 q->subpacket[
s].num_channels = 2;
 
 1161                 q->subpacket[
s].samples_per_channel = samples_per_frame >> 1;
 
 1163                 if (q->subpacket[
s].samples_per_channel > 256) {
 
 1164                     q->subpacket[
s].log2_numvector_size = 6;
 
 1166                 if (q->subpacket[
s].samples_per_channel > 512) {
 
 1167                     q->subpacket[
s].log2_numvector_size = 7;
 
 1170                 q->subpacket[
s].samples_per_channel = samples_per_frame;
 
 1175                                   q->subpacket[
s].cookversion);
 
 1179         if (
s > 1 && q->subpacket[
s].samples_per_channel != q->samples_per_channel) {
 
 1183             q->samples_per_channel = q->subpacket[0].samples_per_channel;
 
 1187         q->subpacket[
s].numvector_size = (1 << q->subpacket[
s].log2_numvector_size);
 
 1190         if (q->subpacket[
s].total_subbands > 53) {
 
 1195         if ((q->subpacket[
s].js_vlc_bits > 6) ||
 
 1196             (q->subpacket[
s].js_vlc_bits < 2 * q->subpacket[
s].joint_stereo)) {
 
 1198                    q->subpacket[
s].js_vlc_bits, 2 * q->subpacket[
s].joint_stereo);
 
 1202         if (q->subpacket[
s].subbands > 50) {
 
 1206         if (q->subpacket[
s].subbands == 0) {
 
 1210         q->subpacket[
s].gains1.now      = q->subpacket[
s].gain_1;
 
 1211         q->subpacket[
s].gains1.previous = q->subpacket[
s].gain_2;
 
 1212         q->subpacket[
s].gains2.now      = q->subpacket[
s].gain_3;
 
 1213         q->subpacket[
s].gains2.previous = q->subpacket[
s].gain_4;
 
 1215         if (q->num_subpackets + q->subpacket[
s].num_channels > q->avctx->channels) {
 
 1216             av_log(
avctx, 
AV_LOG_ERROR, 
"Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
 
 1220         q->num_subpackets++;
 
 1225     if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
 
 1226         q->samples_per_channel != 1024) {
 
 1228                               q->samples_per_channel);
 
 1243     q->decoded_bytes_buffer =
 
 1247     if (!q->decoded_bytes_buffer)
 
 1280     .priv_data_size = 
sizeof(COOKContext),
 
  
static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category, int *quant_index_table, float *mlt_buffer)
Fill the mlt_buffer with mlt coefficients.
static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
@ AV_SAMPLE_FMT_FLTP
float, planar
static const uint16_t *const cvh_huffcodes[7]
static av_cold int init(AVCodecContext *avctx)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
uint64_t channel_layout
Audio channel layout.
static av_cold int cook_decode_init(AVCodecContext *avctx)
Cook initialization.
#define FFSWAP(type, a, b)
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
static enum AVSampleFormat sample_fmts[]
static av_cold void init_pow2table(void)
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
Fill the gain array for the timedomain quantization.
#define AV_CH_LAYOUT_MONO
static int cook_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
void(* interpolate)(struct cook *q, float *buffer, int gain_index, int gain_index_next)
static int get_bits_count(const GetBitContext *s)
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int *subband_coef_index, int *subband_coef_sign)
Unpack the subband_coef_index and subband_coef_sign vectors.
static av_cold int end(AVCodecContext *avctx)
This structure describes decoded (raw) audio or video data.
#define init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, codes, codes_wrap, codes_size, flags)
static void scalar_dequant_float(COOKContext *q, int index, int quant_index, int *subband_coef_index, int *subband_coef_sign, float *mlt_p)
The real requantization of the mltcoefs.
static const uint16_t envelope_quant_index_huffcodes[13][24]
av_cold void ff_audiodsp_init(AudioDSPContext *c)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
#define fc(width, name, range_min, range_max)
void(* scalar_dequant)(struct cook *q, int index, int quant_index, int *subband_coef_index, int *subband_coef_sign, float *mlt_p)
static av_cold int cook_decode_close(AVCodecContext *avctx)
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define DECODE_BYTES_PAD1(bytes)
static av_cold int init_cook_mlt(COOKContext *q)
static av_always_inline unsigned int bytestream2_get_bytes_left(GetByteContext *g)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static const int expbits_tab[8]
static const uint8_t *const cvh_huffbits[7]
static const struct twinvq_data tab
static int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
static int decode_subpacket(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer, float **outbuffer)
Cook subpacket decoding.
static const float dither_tab[9]
#define AV_CH_LAYOUT_STEREO
static av_cold void init_cplscales_table(COOKContext *q)
static void saturate_output_float(COOKContext *q, float *out)
Saturate the output signal and interleave.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static const float quant_centroid_tab[7][14]
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
const float * cplscales[5]
static av_cold int init_cook_vlc_tables(COOKContext *q)
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
static const int vhvlcsize_tab[7]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
void(* decouple)(struct cook *q, COOKSubpacket *p, int subband, float f1, float f2, float *decode_buffer, float *mlt_buffer1, float *mlt_buffer2)
void ff_free_vlc(VLC *vlc)
float decode_buffer_1[1024]
static const int vd_tab[7]
and forward the result(frame or status change) to the corresponding input. If nothing is possible
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static void imlt_window_float(COOKContext *q, float *inbuffer, cook_gains *gains_ptr, float *previous_buffer)
Apply transform window, overlap buffers.
static void decouple_float(COOKContext *q, COOKSubpacket *p, int subband, float f1, float f2, float *decode_buffer, float *mlt_buffer1, float *mlt_buffer2)
function decouples a pair of signals from a single signal via multiplication.
static unsigned int get_bits1(GetBitContext *s)
static void dump_cook_context(COOKContext *q)
static void mlt_compensate_output(COOKContext *q, float *decode_buffer, cook_gains *gains_ptr, float *previous_buffer, float *out)
Final part of subpacket decoding: Apply modulated lapped transform, gain compensation,...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static const int vpr_tab[7]
int av_get_channel_layout_nb_channels(uint64_t channel_layout)
Return the number of channels in the channel layout.
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
COOKSubpacket subpacket[MAX_SUBPACKETS]
static const float *const cplscales[5]
Context structure for the Lagged Fibonacci PRNG.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
enum AVSampleFormat sample_fmt
audio sample format
static void imlt_gain(COOKContext *q, float *inbuffer, cook_gains *gains_ptr, float *previous_buffer)
The modulated lapped transform, this takes transform coefficients and transforms them into timedomain...
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
unsigned int channel_mask
int channels
number of audio channels
static const int kmax_tab[7]
#define DECLARE_ALIGNED(n, t, v)
#define i(width, name, range_min, range_max)
float mono_previous_buffer1[1024]
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
void AAC_RENAME() ff_sine_window_init(INTFLOAT *window, int n)
Generate a sine window.
#define av_malloc_array(a, b)
AVSampleFormat
Audio sample formats.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
static const int vhsize_tab[7]
const char * name
Name of the codec implementation.
static int decode_envelope(COOKContext *q, COOKSubpacket *p, int *quant_index_table)
Create the quant index table needed for the envelope.
static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
function for getting the jointstereo coupling information
static float pow2tab[127]
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static const uint8_t *const ccpl_huffbits[5]
static void interpolate_float(COOKContext *q, float *buffer, int gain_index, int gain_index_next)
the actual requantization of the timedomain samples
#define AV_INPUT_BUFFER_PADDING_SIZE
#define FF_ARRAY_ELEMS(a)
main external API structure.
static float rootpow2tab[127]
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
float mono_previous_buffer2[1024]
uint8_t * decoded_bytes_buffer
static const uint8_t envelope_quant_index_huffbits[13][24]
static av_cold void init_gain_table(COOKContext *q)
Filter the word “frame” indicates either a video frame or a group of audio samples
static int joint_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer_left, float *mlt_buffer_right)
function for decoding joint stereo data
VLC envelope_quant_index[13]
void(* imlt_window)(struct cook *q, float *buffer1, cook_gains *gains_ptr, float *previous_buffer)
#define avpriv_request_sample(...)
This structure stores compressed data.
void(* saturate_output)(struct cook *q, float *out)
float decode_buffer_0[1060]
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table, int *category, int *category_index)
Calculate the category and category_index vector.
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static const uint16_t *const ccpl_huffcodes[5]
static const int cplband[51]
float mono_mdct_output[2048]
float decode_buffer_2[1024]
VLC_TYPE(* table)[2]
code, bits
static void expand_category(COOKContext *q, int *category, int *category_index)
Expand the category vector.
static const int invradix_tab[7]
static void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer, cook_gains *gains_ptr)
First part of subpacket decoding: decode raw stream bytes and read gain info.