FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vp3.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003-2004 The FFmpeg project
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * On2 VP3 Video Decoder
24  *
25  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26  * For more information about the VP3 coding process, visit:
27  * http://wiki.multimedia.cx/index.php?title=On2_VP3
28  *
29  * Theora decoder by Alex Beregszaszi
30  */
31 
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 
36 #include "libavutil/imgutils.h"
37 
38 #include "avcodec.h"
39 #include "get_bits.h"
40 #include "hpeldsp.h"
41 #include "internal.h"
42 #include "mathops.h"
43 #include "thread.h"
44 #include "videodsp.h"
45 #include "vp3data.h"
46 #include "vp3dsp.h"
47 #include "xiph.h"
48 
49 #define FRAGMENT_PIXELS 8
50 
51 // FIXME split things out into their own arrays
52 typedef struct Vp3Fragment {
53  int16_t dc;
56 } Vp3Fragment;
57 
58 #define SB_NOT_CODED 0
59 #define SB_PARTIALLY_CODED 1
60 #define SB_FULLY_CODED 2
61 
62 // This is the maximum length of a single long bit run that can be encoded
63 // for superblock coding or block qps. Theora special-cases this to read a
64 // bit instead of flipping the current bit to allow for runs longer than 4129.
65 #define MAXIMUM_LONG_BIT_RUN 4129
66 
67 #define MODE_INTER_NO_MV 0
68 #define MODE_INTRA 1
69 #define MODE_INTER_PLUS_MV 2
70 #define MODE_INTER_LAST_MV 3
71 #define MODE_INTER_PRIOR_LAST 4
72 #define MODE_USING_GOLDEN 5
73 #define MODE_GOLDEN_MV 6
74 #define MODE_INTER_FOURMV 7
75 #define CODING_MODE_COUNT 8
76 
77 /* special internal mode */
78 #define MODE_COPY 8
79 
80 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
81 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
82 
83 
84 /* There are 6 preset schemes, plus a free-form scheme */
85 static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
86  /* scheme 1: Last motion vector dominates */
91 
92  /* scheme 2 */
97 
98  /* scheme 3 */
103 
104  /* scheme 4 */
109 
110  /* scheme 5: No motion vector dominates */
115 
116  /* scheme 6 */
121 };
122 
123 static const uint8_t hilbert_offset[16][2] = {
124  { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
125  { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
126  { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
127  { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
128 };
129 
130 #define MIN_DEQUANT_VAL 2
131 
132 typedef struct Vp3DecodeContext {
135  int version;
136  int width, height;
141  int keyframe;
147  DECLARE_ALIGNED(16, int16_t, block)[64];
151 
152  int qps[3];
153  int nqps;
154  int last_qps[3];
155 
165  unsigned char *superblock_coding;
166 
170 
174 
177  int data_offset[3];
181 
182  int8_t (*motion_val[2])[2];
183 
184  /* tables */
185  uint16_t coded_dc_scale_factor[64];
186  uint32_t coded_ac_scale_factor[64];
189  uint8_t qr_size[2][3][64];
190  uint16_t qr_base[2][3][64];
191 
192  /**
193  * This is a list of all tokens in bitstream order. Reordering takes place
194  * by pulling from each level during IDCT. As a consequence, IDCT must be
195  * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
196  * otherwise. The 32 different tokens with up to 12 bits of extradata are
197  * collapsed into 3 types, packed as follows:
198  * (from the low to high bits)
199  *
200  * 2 bits: type (0,1,2)
201  * 0: EOB run, 14 bits for run length (12 needed)
202  * 1: zero run, 7 bits for run length
203  * 7 bits for the next coefficient (3 needed)
204  * 2: coefficient, 14 bits (11 needed)
205  *
206  * Coefficients are signed, so are packed in the highest bits for automatic
207  * sign extension.
208  */
209  int16_t *dct_tokens[3][64];
210  int16_t *dct_tokens_base;
211 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
212 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
213 #define TOKEN_COEFF(coeff) (((coeff) * 4) + 2)
214 
215  /**
216  * number of blocks that contain DCT coefficients at
217  * the given level or higher
218  */
219  int num_coded_frags[3][64];
221 
222  /* this is a list of indexes into the all_fragments array indicating
223  * which of the fragments are coded */
225 
229 
230  VLC dc_vlc[16];
235 
240 
241  /* these arrays need to be on 16-byte boundaries since SSE2 operations
242  * index into them */
243  DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
244 
245  /* This table contains superblock_count * 16 entries. Each set of 16
246  * numbers corresponds to the fragment indexes 0..15 of the superblock.
247  * An entry will be -1 to indicate that no entry corresponds to that
248  * index. */
250 
251  /* This is an array that indicates how a particular macroblock
252  * is coded. */
253  unsigned char *macroblock_coding;
254 
256 
257  /* Huffman decode */
258  int hti;
259  unsigned int hbits;
260  int entries;
262  uint32_t huffman_table[80][32][2];
263 
267 
268 /************************************************************************
269  * VP3 specific functions
270  ************************************************************************/
271 
272 static av_cold void free_tables(AVCodecContext *avctx)
273 {
274  Vp3DecodeContext *s = avctx->priv_data;
275 
277  av_freep(&s->all_fragments);
283  av_freep(&s->motion_val[0]);
284  av_freep(&s->motion_val[1]);
285 }
286 
287 static void vp3_decode_flush(AVCodecContext *avctx)
288 {
289  Vp3DecodeContext *s = avctx->priv_data;
290 
291  if (s->golden_frame.f)
293  if (s->last_frame.f)
295  if (s->current_frame.f)
297 }
298 
300 {
301  Vp3DecodeContext *s = avctx->priv_data;
302  int i;
303 
304  free_tables(avctx);
306 
307  s->theora_tables = 0;
308 
309  /* release all frames */
310  vp3_decode_flush(avctx);
314 
315  if (avctx->internal->is_copy)
316  return 0;
317 
318  for (i = 0; i < 16; i++) {
319  ff_free_vlc(&s->dc_vlc[i]);
320  ff_free_vlc(&s->ac_vlc_1[i]);
321  ff_free_vlc(&s->ac_vlc_2[i]);
322  ff_free_vlc(&s->ac_vlc_3[i]);
323  ff_free_vlc(&s->ac_vlc_4[i]);
324  }
325 
330 
331  return 0;
332 }
333 
334 /**
335  * This function sets up all of the various blocks mappings:
336  * superblocks <-> fragments, macroblocks <-> fragments,
337  * superblocks <-> macroblocks
338  *
339  * @return 0 is successful; returns 1 if *anything* went wrong.
340  */
342 {
343  int sb_x, sb_y, plane;
344  int x, y, i, j = 0;
345 
346  for (plane = 0; plane < 3; plane++) {
347  int sb_width = plane ? s->c_superblock_width
348  : s->y_superblock_width;
349  int sb_height = plane ? s->c_superblock_height
350  : s->y_superblock_height;
351  int frag_width = s->fragment_width[!!plane];
352  int frag_height = s->fragment_height[!!plane];
353 
354  for (sb_y = 0; sb_y < sb_height; sb_y++)
355  for (sb_x = 0; sb_x < sb_width; sb_x++)
356  for (i = 0; i < 16; i++) {
357  x = 4 * sb_x + hilbert_offset[i][0];
358  y = 4 * sb_y + hilbert_offset[i][1];
359 
360  if (x < frag_width && y < frag_height)
362  y * frag_width + x;
363  else
364  s->superblock_fragments[j++] = -1;
365  }
366  }
367 
368  return 0; /* successful path out */
369 }
370 
371 /*
372  * This function sets up the dequantization tables used for a particular
373  * frame.
374  */
375 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
376 {
377  int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
378  int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
379  int i, plane, inter, qri, bmi, bmj, qistart;
380 
381  for (inter = 0; inter < 2; inter++) {
382  for (plane = 0; plane < 3; plane++) {
383  int sum = 0;
384  for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
385  sum += s->qr_size[inter][plane][qri];
386  if (s->qps[qpi] <= sum)
387  break;
388  }
389  qistart = sum - s->qr_size[inter][plane][qri];
390  bmi = s->qr_base[inter][plane][qri];
391  bmj = s->qr_base[inter][plane][qri + 1];
392  for (i = 0; i < 64; i++) {
393  int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] -
394  2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
395  s->qr_size[inter][plane][qri]) /
396  (2 * s->qr_size[inter][plane][qri]);
397 
398  int qmin = 8 << (inter + !i);
399  int qscale = i ? ac_scale_factor : dc_scale_factor;
400 
401  s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
402  av_clip((qscale * coeff) / 100 * 4, qmin, 4096);
403  }
404  /* all DC coefficients use the same quant so as not to interfere
405  * with DC prediction */
406  s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
407  }
408  }
409 }
410 
411 /*
412  * This function initializes the loop filter boundary limits if the frame's
413  * quality index is different from the previous frame's.
414  *
415  * The filter_limit_values may not be larger than 127.
416  */
418 {
419  int *bounding_values = s->bounding_values_array + 127;
420  int filter_limit;
421  int x;
422  int value;
423 
424  filter_limit = s->filter_limit_values[s->qps[0]];
425  av_assert0(filter_limit < 128U);
426 
427  /* set up the bounding values */
428  memset(s->bounding_values_array, 0, 256 * sizeof(int));
429  for (x = 0; x < filter_limit; x++) {
430  bounding_values[-x] = -x;
431  bounding_values[x] = x;
432  }
433  for (x = value = filter_limit; x < 128 && value; x++, value--) {
434  bounding_values[ x] = value;
435  bounding_values[-x] = -value;
436  }
437  if (value)
438  bounding_values[128] = value;
439  bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
440 }
441 
442 /*
443  * This function unpacks all of the superblock/macroblock/fragment coding
444  * information from the bitstream.
445  */
447 {
448  int superblock_starts[3] = {
450  };
451  int bit = 0;
452  int current_superblock = 0;
453  int current_run = 0;
454  int num_partial_superblocks = 0;
455 
456  int i, j;
457  int current_fragment;
458  int plane;
459  int plane0_num_coded_frags = 0;
460 
461  if (s->keyframe) {
463  } else {
464  /* unpack the list of partially-coded superblocks */
465  bit = get_bits1(gb) ^ 1;
466  current_run = 0;
467 
468  while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
469  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
470  bit = get_bits1(gb);
471  else
472  bit ^= 1;
473 
474  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
475  6, 2) + 1;
476  if (current_run == 34)
477  current_run += get_bits(gb, 12);
478 
479  if (current_run > s->superblock_count - current_superblock) {
481  "Invalid partially coded superblock run length\n");
482  return -1;
483  }
484 
485  memset(s->superblock_coding + current_superblock, bit, current_run);
486 
487  current_superblock += current_run;
488  if (bit)
489  num_partial_superblocks += current_run;
490  }
491 
492  /* unpack the list of fully coded superblocks if any of the blocks were
493  * not marked as partially coded in the previous step */
494  if (num_partial_superblocks < s->superblock_count) {
495  int superblocks_decoded = 0;
496 
497  current_superblock = 0;
498  bit = get_bits1(gb) ^ 1;
499  current_run = 0;
500 
501  while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
502  get_bits_left(gb) > 0) {
503  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
504  bit = get_bits1(gb);
505  else
506  bit ^= 1;
507 
508  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
509  6, 2) + 1;
510  if (current_run == 34)
511  current_run += get_bits(gb, 12);
512 
513  for (j = 0; j < current_run; current_superblock++) {
514  if (current_superblock >= s->superblock_count) {
516  "Invalid fully coded superblock run length\n");
517  return -1;
518  }
519 
520  /* skip any superblocks already marked as partially coded */
521  if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
522  s->superblock_coding[current_superblock] = 2 * bit;
523  j++;
524  }
525  }
526  superblocks_decoded += current_run;
527  }
528  }
529 
530  /* if there were partial blocks, initialize bitstream for
531  * unpacking fragment codings */
532  if (num_partial_superblocks) {
533  current_run = 0;
534  bit = get_bits1(gb);
535  /* toggle the bit because as soon as the first run length is
536  * fetched the bit will be toggled again */
537  bit ^= 1;
538  }
539  }
540 
541  /* figure out which fragments are coded; iterate through each
542  * superblock (all planes) */
543  s->total_num_coded_frags = 0;
545 
548 
549  for (plane = 0; plane < 3; plane++) {
550  int sb_start = superblock_starts[plane];
551  int sb_end = sb_start + (plane ? s->c_superblock_count
552  : s->y_superblock_count);
553  int num_coded_frags = 0;
554 
555  if (s->keyframe) {
556  if (s->num_kf_coded_fragment[plane] == -1) {
557  for (i = sb_start; i < sb_end; i++) {
558  /* iterate through all 16 fragments in a superblock */
559  for (j = 0; j < 16; j++) {
560  /* if the fragment is in bounds, check its coding status */
561  current_fragment = s->superblock_fragments[i * 16 + j];
562  if (current_fragment != -1) {
563  s->coded_fragment_list[plane][num_coded_frags++] =
564  current_fragment;
565  }
566  }
567  }
568  s->num_kf_coded_fragment[plane] = num_coded_frags;
569  } else
570  num_coded_frags = s->num_kf_coded_fragment[plane];
571  } else {
572  for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
573  if (get_bits_left(gb) < plane0_num_coded_frags >> 2) {
574  return AVERROR_INVALIDDATA;
575  }
576  /* iterate through all 16 fragments in a superblock */
577  for (j = 0; j < 16; j++) {
578  /* if the fragment is in bounds, check its coding status */
579  current_fragment = s->superblock_fragments[i * 16 + j];
580  if (current_fragment != -1) {
581  int coded = s->superblock_coding[i];
582 
583  if (coded == SB_PARTIALLY_CODED) {
584  /* fragment may or may not be coded; this is the case
585  * that cares about the fragment coding runs */
586  if (current_run-- == 0) {
587  bit ^= 1;
588  current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
589  }
590  coded = bit;
591  }
592 
593  if (coded) {
594  /* default mode; actual mode will be decoded in
595  * the next phase */
596  s->all_fragments[current_fragment].coding_method =
598  s->coded_fragment_list[plane][num_coded_frags++] =
599  current_fragment;
600  } else {
601  /* not coded; copy this fragment from the prior frame */
602  s->all_fragments[current_fragment].coding_method =
603  MODE_COPY;
604  }
605  }
606  }
607  }
608  }
609  if (!plane)
610  plane0_num_coded_frags = num_coded_frags;
611  s->total_num_coded_frags += num_coded_frags;
612  for (i = 0; i < 64; i++)
613  s->num_coded_frags[plane][i] = num_coded_frags;
614  if (plane < 2)
615  s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
616  num_coded_frags;
617  }
618  return 0;
619 }
620 
621 /*
622  * This function unpacks all the coding mode data for individual macroblocks
623  * from the bitstream.
624  */
626 {
627  int i, j, k, sb_x, sb_y;
628  int scheme;
629  int current_macroblock;
630  int current_fragment;
631  int coding_mode;
632  int custom_mode_alphabet[CODING_MODE_COUNT];
633  const int *alphabet;
634  Vp3Fragment *frag;
635 
636  if (s->keyframe) {
637  for (i = 0; i < s->fragment_count; i++)
639  } else {
640  /* fetch the mode coding scheme for this frame */
641  scheme = get_bits(gb, 3);
642 
643  /* is it a custom coding scheme? */
644  if (scheme == 0) {
645  for (i = 0; i < 8; i++)
646  custom_mode_alphabet[i] = MODE_INTER_NO_MV;
647  for (i = 0; i < 8; i++)
648  custom_mode_alphabet[get_bits(gb, 3)] = i;
649  alphabet = custom_mode_alphabet;
650  } else
651  alphabet = ModeAlphabet[scheme - 1];
652 
653  /* iterate through all of the macroblocks that contain 1 or more
654  * coded fragments */
655  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
656  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
657  if (get_bits_left(gb) <= 0)
658  return -1;
659 
660  for (j = 0; j < 4; j++) {
661  int mb_x = 2 * sb_x + (j >> 1);
662  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
663  current_macroblock = mb_y * s->macroblock_width + mb_x;
664 
665  if (mb_x >= s->macroblock_width ||
666  mb_y >= s->macroblock_height)
667  continue;
668 
669 #define BLOCK_X (2 * mb_x + (k & 1))
670 #define BLOCK_Y (2 * mb_y + (k >> 1))
671  /* coding modes are only stored if the macroblock has
672  * at least one luma block coded, otherwise it must be
673  * INTER_NO_MV */
674  for (k = 0; k < 4; k++) {
675  current_fragment = BLOCK_Y *
676  s->fragment_width[0] + BLOCK_X;
677  if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
678  break;
679  }
680  if (k == 4) {
681  s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
682  continue;
683  }
684 
685  /* mode 7 means get 3 bits for each coding mode */
686  if (scheme == 7)
687  coding_mode = get_bits(gb, 3);
688  else
689  coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
690 
691  s->macroblock_coding[current_macroblock] = coding_mode;
692  for (k = 0; k < 4; k++) {
693  frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
694  if (frag->coding_method != MODE_COPY)
695  frag->coding_method = coding_mode;
696  }
697 
698 #define SET_CHROMA_MODES \
699  if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
700  frag[s->fragment_start[1]].coding_method = coding_mode; \
701  if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
702  frag[s->fragment_start[2]].coding_method = coding_mode;
703 
704  if (s->chroma_y_shift) {
705  frag = s->all_fragments + mb_y *
706  s->fragment_width[1] + mb_x;
708  } else if (s->chroma_x_shift) {
709  frag = s->all_fragments +
710  2 * mb_y * s->fragment_width[1] + mb_x;
711  for (k = 0; k < 2; k++) {
713  frag += s->fragment_width[1];
714  }
715  } else {
716  for (k = 0; k < 4; k++) {
717  frag = s->all_fragments +
718  BLOCK_Y * s->fragment_width[1] + BLOCK_X;
720  }
721  }
722  }
723  }
724  }
725  }
726 
727  return 0;
728 }
729 
730 /*
731  * This function unpacks all the motion vectors for the individual
732  * macroblocks from the bitstream.
733  */
735 {
736  int j, k, sb_x, sb_y;
737  int coding_mode;
738  int motion_x[4];
739  int motion_y[4];
740  int last_motion_x = 0;
741  int last_motion_y = 0;
742  int prior_last_motion_x = 0;
743  int prior_last_motion_y = 0;
744  int current_macroblock;
745  int current_fragment;
746  int frag;
747 
748  if (s->keyframe)
749  return 0;
750 
751  /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
752  coding_mode = get_bits1(gb);
753 
754  /* iterate through all of the macroblocks that contain 1 or more
755  * coded fragments */
756  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
757  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
758  if (get_bits_left(gb) <= 0)
759  return -1;
760 
761  for (j = 0; j < 4; j++) {
762  int mb_x = 2 * sb_x + (j >> 1);
763  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
764  current_macroblock = mb_y * s->macroblock_width + mb_x;
765 
766  if (mb_x >= s->macroblock_width ||
767  mb_y >= s->macroblock_height ||
768  s->macroblock_coding[current_macroblock] == MODE_COPY)
769  continue;
770 
771  switch (s->macroblock_coding[current_macroblock]) {
772  case MODE_INTER_PLUS_MV:
773  case MODE_GOLDEN_MV:
774  /* all 6 fragments use the same motion vector */
775  if (coding_mode == 0) {
776  motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
777  motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
778  } else {
779  motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
780  motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
781  }
782 
783  /* vector maintenance, only on MODE_INTER_PLUS_MV */
784  if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
785  prior_last_motion_x = last_motion_x;
786  prior_last_motion_y = last_motion_y;
787  last_motion_x = motion_x[0];
788  last_motion_y = motion_y[0];
789  }
790  break;
791 
792  case MODE_INTER_FOURMV:
793  /* vector maintenance */
794  prior_last_motion_x = last_motion_x;
795  prior_last_motion_y = last_motion_y;
796 
797  /* fetch 4 vectors from the bitstream, one for each
798  * Y fragment, then average for the C fragment vectors */
799  for (k = 0; k < 4; k++) {
800  current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
801  if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
802  if (coding_mode == 0) {
803  motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
804  motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
805  } else {
806  motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
807  motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
808  }
809  last_motion_x = motion_x[k];
810  last_motion_y = motion_y[k];
811  } else {
812  motion_x[k] = 0;
813  motion_y[k] = 0;
814  }
815  }
816  break;
817 
818  case MODE_INTER_LAST_MV:
819  /* all 6 fragments use the last motion vector */
820  motion_x[0] = last_motion_x;
821  motion_y[0] = last_motion_y;
822 
823  /* no vector maintenance (last vector remains the
824  * last vector) */
825  break;
826 
828  /* all 6 fragments use the motion vector prior to the
829  * last motion vector */
830  motion_x[0] = prior_last_motion_x;
831  motion_y[0] = prior_last_motion_y;
832 
833  /* vector maintenance */
834  prior_last_motion_x = last_motion_x;
835  prior_last_motion_y = last_motion_y;
836  last_motion_x = motion_x[0];
837  last_motion_y = motion_y[0];
838  break;
839 
840  default:
841  /* covers intra, inter without MV, golden without MV */
842  motion_x[0] = 0;
843  motion_y[0] = 0;
844 
845  /* no vector maintenance */
846  break;
847  }
848 
849  /* assign the motion vectors to the correct fragments */
850  for (k = 0; k < 4; k++) {
851  current_fragment =
852  BLOCK_Y * s->fragment_width[0] + BLOCK_X;
853  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
854  s->motion_val[0][current_fragment][0] = motion_x[k];
855  s->motion_val[0][current_fragment][1] = motion_y[k];
856  } else {
857  s->motion_val[0][current_fragment][0] = motion_x[0];
858  s->motion_val[0][current_fragment][1] = motion_y[0];
859  }
860  }
861 
862  if (s->chroma_y_shift) {
863  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
864  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
865  motion_x[2] + motion_x[3], 2);
866  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
867  motion_y[2] + motion_y[3], 2);
868  }
869  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
870  motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
871  frag = mb_y * s->fragment_width[1] + mb_x;
872  s->motion_val[1][frag][0] = motion_x[0];
873  s->motion_val[1][frag][1] = motion_y[0];
874  } else if (s->chroma_x_shift) {
875  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
876  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
877  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
878  motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
879  motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
880  } else {
881  motion_x[1] = motion_x[0];
882  motion_y[1] = motion_y[0];
883  }
884  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
885  motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
886 
887  frag = 2 * mb_y * s->fragment_width[1] + mb_x;
888  for (k = 0; k < 2; k++) {
889  s->motion_val[1][frag][0] = motion_x[k];
890  s->motion_val[1][frag][1] = motion_y[k];
891  frag += s->fragment_width[1];
892  }
893  } else {
894  for (k = 0; k < 4; k++) {
895  frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
896  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
897  s->motion_val[1][frag][0] = motion_x[k];
898  s->motion_val[1][frag][1] = motion_y[k];
899  } else {
900  s->motion_val[1][frag][0] = motion_x[0];
901  s->motion_val[1][frag][1] = motion_y[0];
902  }
903  }
904  }
905  }
906  }
907  }
908 
909  return 0;
910 }
911 
913 {
914  int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
915  int num_blocks = s->total_num_coded_frags;
916 
917  for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
918  i = blocks_decoded = num_blocks_at_qpi = 0;
919 
920  bit = get_bits1(gb) ^ 1;
921  run_length = 0;
922 
923  do {
924  if (run_length == MAXIMUM_LONG_BIT_RUN)
925  bit = get_bits1(gb);
926  else
927  bit ^= 1;
928 
929  run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
930  if (run_length == 34)
931  run_length += get_bits(gb, 12);
932  blocks_decoded += run_length;
933 
934  if (!bit)
935  num_blocks_at_qpi += run_length;
936 
937  for (j = 0; j < run_length; i++) {
938  if (i >= s->total_num_coded_frags)
939  return -1;
940 
941  if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
942  s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
943  j++;
944  }
945  }
946  } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
947 
948  num_blocks -= num_blocks_at_qpi;
949  }
950 
951  return 0;
952 }
953 
954 /*
955  * This function is called by unpack_dct_coeffs() to extract the VLCs from
956  * the bitstream. The VLCs encode tokens which are used to unpack DCT
957  * data. This function unpacks all the VLCs for either the Y plane or both
958  * C planes, and is called for DC coefficients or different AC coefficient
959  * levels (since different coefficient types require different VLC tables.
960  *
961  * This function returns a residual eob run. E.g, if a particular token gave
962  * instructions to EOB the next 5 fragments and there were only 2 fragments
963  * left in the current fragment range, 3 would be returned so that it could
964  * be passed into the next call to this same function.
965  */
967  VLC *table, int coeff_index,
968  int plane,
969  int eob_run)
970 {
971  int i, j = 0;
972  int token;
973  int zero_run = 0;
974  int16_t coeff = 0;
975  int bits_to_get;
976  int blocks_ended;
977  int coeff_i = 0;
978  int num_coeffs = s->num_coded_frags[plane][coeff_index];
979  int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
980 
981  /* local references to structure members to avoid repeated dereferences */
982  int *coded_fragment_list = s->coded_fragment_list[plane];
983  Vp3Fragment *all_fragments = s->all_fragments;
984  VLC_TYPE(*vlc_table)[2] = table->table;
985 
986  if (num_coeffs < 0) {
988  "Invalid number of coefficients at level %d\n", coeff_index);
989  return AVERROR_INVALIDDATA;
990  }
991 
992  if (eob_run > num_coeffs) {
993  coeff_i =
994  blocks_ended = num_coeffs;
995  eob_run -= num_coeffs;
996  } else {
997  coeff_i =
998  blocks_ended = eob_run;
999  eob_run = 0;
1000  }
1001 
1002  // insert fake EOB token to cover the split between planes or zzi
1003  if (blocks_ended)
1004  dct_tokens[j++] = blocks_ended << 2;
1005 
1006  while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
1007  /* decode a VLC into a token */
1008  token = get_vlc2(gb, vlc_table, 11, 3);
1009  /* use the token to get a zero run, a coefficient, and an eob run */
1010  if ((unsigned) token <= 6U) {
1011  eob_run = eob_run_base[token];
1012  if (eob_run_get_bits[token])
1013  eob_run += get_bits(gb, eob_run_get_bits[token]);
1014 
1015  if (!eob_run)
1016  eob_run = INT_MAX;
1017 
1018  // record only the number of blocks ended in this plane,
1019  // any spill will be recorded in the next plane.
1020  if (eob_run > num_coeffs - coeff_i) {
1021  dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
1022  blocks_ended += num_coeffs - coeff_i;
1023  eob_run -= num_coeffs - coeff_i;
1024  coeff_i = num_coeffs;
1025  } else {
1026  dct_tokens[j++] = TOKEN_EOB(eob_run);
1027  blocks_ended += eob_run;
1028  coeff_i += eob_run;
1029  eob_run = 0;
1030  }
1031  } else if (token >= 0) {
1032  bits_to_get = coeff_get_bits[token];
1033  if (bits_to_get)
1034  bits_to_get = get_bits(gb, bits_to_get);
1035  coeff = coeff_tables[token][bits_to_get];
1036 
1037  zero_run = zero_run_base[token];
1038  if (zero_run_get_bits[token])
1039  zero_run += get_bits(gb, zero_run_get_bits[token]);
1040 
1041  if (zero_run) {
1042  dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
1043  } else {
1044  // Save DC into the fragment structure. DC prediction is
1045  // done in raster order, so the actual DC can't be in with
1046  // other tokens. We still need the token in dct_tokens[]
1047  // however, or else the structure collapses on itself.
1048  if (!coeff_index)
1049  all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
1050 
1051  dct_tokens[j++] = TOKEN_COEFF(coeff);
1052  }
1053 
1054  if (coeff_index + zero_run > 64) {
1056  "Invalid zero run of %d with %d coeffs left\n",
1057  zero_run, 64 - coeff_index);
1058  zero_run = 64 - coeff_index;
1059  }
1060 
1061  // zero runs code multiple coefficients,
1062  // so don't try to decode coeffs for those higher levels
1063  for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
1064  s->num_coded_frags[plane][i]--;
1065  coeff_i++;
1066  } else {
1067  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1068  return -1;
1069  }
1070  }
1071 
1072  if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1073  av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1074 
1075  // decrement the number of blocks that have higher coefficients for each
1076  // EOB run at this level
1077  if (blocks_ended)
1078  for (i = coeff_index + 1; i < 64; i++)
1079  s->num_coded_frags[plane][i] -= blocks_ended;
1080 
1081  // setup the next buffer
1082  if (plane < 2)
1083  s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1084  else if (coeff_index < 63)
1085  s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1086 
1087  return eob_run;
1088 }
1089 
1091  int first_fragment,
1092  int fragment_width,
1093  int fragment_height);
1094 /*
1095  * This function unpacks all of the DCT coefficient data from the
1096  * bitstream.
1097  */
1099 {
1100  int i;
1101  int dc_y_table;
1102  int dc_c_table;
1103  int ac_y_table;
1104  int ac_c_table;
1105  int residual_eob_run = 0;
1106  VLC *y_tables[64];
1107  VLC *c_tables[64];
1108 
1109  s->dct_tokens[0][0] = s->dct_tokens_base;
1110 
1111  if (get_bits_left(gb) < 16)
1112  return AVERROR_INVALIDDATA;
1113 
1114  /* fetch the DC table indexes */
1115  dc_y_table = get_bits(gb, 4);
1116  dc_c_table = get_bits(gb, 4);
1117 
1118  /* unpack the Y plane DC coefficients */
1119  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1120  0, residual_eob_run);
1121  if (residual_eob_run < 0)
1122  return residual_eob_run;
1123  if (get_bits_left(gb) < 8)
1124  return AVERROR_INVALIDDATA;
1125 
1126  /* reverse prediction of the Y-plane DC coefficients */
1128 
1129  /* unpack the C plane DC coefficients */
1130  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1131  1, residual_eob_run);
1132  if (residual_eob_run < 0)
1133  return residual_eob_run;
1134  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1135  2, residual_eob_run);
1136  if (residual_eob_run < 0)
1137  return residual_eob_run;
1138 
1139  /* reverse prediction of the C-plane DC coefficients */
1140  if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
1142  s->fragment_width[1], s->fragment_height[1]);
1144  s->fragment_width[1], s->fragment_height[1]);
1145  }
1146 
1147  if (get_bits_left(gb) < 8)
1148  return AVERROR_INVALIDDATA;
1149  /* fetch the AC table indexes */
1150  ac_y_table = get_bits(gb, 4);
1151  ac_c_table = get_bits(gb, 4);
1152 
1153  /* build tables of AC VLC tables */
1154  for (i = 1; i <= 5; i++) {
1155  y_tables[i] = &s->ac_vlc_1[ac_y_table];
1156  c_tables[i] = &s->ac_vlc_1[ac_c_table];
1157  }
1158  for (i = 6; i <= 14; i++) {
1159  y_tables[i] = &s->ac_vlc_2[ac_y_table];
1160  c_tables[i] = &s->ac_vlc_2[ac_c_table];
1161  }
1162  for (i = 15; i <= 27; i++) {
1163  y_tables[i] = &s->ac_vlc_3[ac_y_table];
1164  c_tables[i] = &s->ac_vlc_3[ac_c_table];
1165  }
1166  for (i = 28; i <= 63; i++) {
1167  y_tables[i] = &s->ac_vlc_4[ac_y_table];
1168  c_tables[i] = &s->ac_vlc_4[ac_c_table];
1169  }
1170 
1171  /* decode all AC coefficients */
1172  for (i = 1; i <= 63; i++) {
1173  residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1174  0, residual_eob_run);
1175  if (residual_eob_run < 0)
1176  return residual_eob_run;
1177 
1178  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1179  1, residual_eob_run);
1180  if (residual_eob_run < 0)
1181  return residual_eob_run;
1182  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1183  2, residual_eob_run);
1184  if (residual_eob_run < 0)
1185  return residual_eob_run;
1186  }
1187 
1188  return 0;
1189 }
1190 
1191 /*
1192  * This function reverses the DC prediction for each coded fragment in
1193  * the frame. Much of this function is adapted directly from the original
1194  * VP3 source code.
1195  */
1196 #define COMPATIBLE_FRAME(x) \
1197  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1198 #define DC_COEFF(u) s->all_fragments[u].dc
1199 
1201  int first_fragment,
1202  int fragment_width,
1203  int fragment_height)
1204 {
1205 #define PUL 8
1206 #define PU 4
1207 #define PUR 2
1208 #define PL 1
1209 
1210  int x, y;
1211  int i = first_fragment;
1212 
1213  int predicted_dc;
1214 
1215  /* DC values for the left, up-left, up, and up-right fragments */
1216  int vl, vul, vu, vur;
1217 
1218  /* indexes for the left, up-left, up, and up-right fragments */
1219  int l, ul, u, ur;
1220 
1221  /*
1222  * The 6 fields mean:
1223  * 0: up-left multiplier
1224  * 1: up multiplier
1225  * 2: up-right multiplier
1226  * 3: left multiplier
1227  */
1228  static const int predictor_transform[16][4] = {
1229  { 0, 0, 0, 0 },
1230  { 0, 0, 0, 128 }, // PL
1231  { 0, 0, 128, 0 }, // PUR
1232  { 0, 0, 53, 75 }, // PUR|PL
1233  { 0, 128, 0, 0 }, // PU
1234  { 0, 64, 0, 64 }, // PU |PL
1235  { 0, 128, 0, 0 }, // PU |PUR
1236  { 0, 0, 53, 75 }, // PU |PUR|PL
1237  { 128, 0, 0, 0 }, // PUL
1238  { 0, 0, 0, 128 }, // PUL|PL
1239  { 64, 0, 64, 0 }, // PUL|PUR
1240  { 0, 0, 53, 75 }, // PUL|PUR|PL
1241  { 0, 128, 0, 0 }, // PUL|PU
1242  { -104, 116, 0, 116 }, // PUL|PU |PL
1243  { 24, 80, 24, 0 }, // PUL|PU |PUR
1244  { -104, 116, 0, 116 } // PUL|PU |PUR|PL
1245  };
1246 
1247  /* This table shows which types of blocks can use other blocks for
1248  * prediction. For example, INTRA is the only mode in this table to
1249  * have a frame number of 0. That means INTRA blocks can only predict
1250  * from other INTRA blocks. There are 2 golden frame coding types;
1251  * blocks encoding in these modes can only predict from other blocks
1252  * that were encoded with these 1 of these 2 modes. */
1253  static const unsigned char compatible_frame[9] = {
1254  1, /* MODE_INTER_NO_MV */
1255  0, /* MODE_INTRA */
1256  1, /* MODE_INTER_PLUS_MV */
1257  1, /* MODE_INTER_LAST_MV */
1258  1, /* MODE_INTER_PRIOR_MV */
1259  2, /* MODE_USING_GOLDEN */
1260  2, /* MODE_GOLDEN_MV */
1261  1, /* MODE_INTER_FOUR_MV */
1262  3 /* MODE_COPY */
1263  };
1264  int current_frame_type;
1265 
1266  /* there is a last DC predictor for each of the 3 frame types */
1267  short last_dc[3];
1268 
1269  int transform = 0;
1270 
1271  vul =
1272  vu =
1273  vur =
1274  vl = 0;
1275  last_dc[0] =
1276  last_dc[1] =
1277  last_dc[2] = 0;
1278 
1279  /* for each fragment row... */
1280  for (y = 0; y < fragment_height; y++) {
1281  /* for each fragment in a row... */
1282  for (x = 0; x < fragment_width; x++, i++) {
1283 
1284  /* reverse prediction if this block was coded */
1285  if (s->all_fragments[i].coding_method != MODE_COPY) {
1286  current_frame_type =
1287  compatible_frame[s->all_fragments[i].coding_method];
1288 
1289  transform = 0;
1290  if (x) {
1291  l = i - 1;
1292  vl = DC_COEFF(l);
1293  if (COMPATIBLE_FRAME(l))
1294  transform |= PL;
1295  }
1296  if (y) {
1297  u = i - fragment_width;
1298  vu = DC_COEFF(u);
1299  if (COMPATIBLE_FRAME(u))
1300  transform |= PU;
1301  if (x) {
1302  ul = i - fragment_width - 1;
1303  vul = DC_COEFF(ul);
1304  if (COMPATIBLE_FRAME(ul))
1305  transform |= PUL;
1306  }
1307  if (x + 1 < fragment_width) {
1308  ur = i - fragment_width + 1;
1309  vur = DC_COEFF(ur);
1310  if (COMPATIBLE_FRAME(ur))
1311  transform |= PUR;
1312  }
1313  }
1314 
1315  if (transform == 0) {
1316  /* if there were no fragments to predict from, use last
1317  * DC saved */
1318  predicted_dc = last_dc[current_frame_type];
1319  } else {
1320  /* apply the appropriate predictor transform */
1321  predicted_dc =
1322  (predictor_transform[transform][0] * vul) +
1323  (predictor_transform[transform][1] * vu) +
1324  (predictor_transform[transform][2] * vur) +
1325  (predictor_transform[transform][3] * vl);
1326 
1327  predicted_dc /= 128;
1328 
1329  /* check for outranging on the [ul u l] and
1330  * [ul u ur l] predictors */
1331  if ((transform == 15) || (transform == 13)) {
1332  if (FFABS(predicted_dc - vu) > 128)
1333  predicted_dc = vu;
1334  else if (FFABS(predicted_dc - vl) > 128)
1335  predicted_dc = vl;
1336  else if (FFABS(predicted_dc - vul) > 128)
1337  predicted_dc = vul;
1338  }
1339  }
1340 
1341  /* at long last, apply the predictor */
1342  DC_COEFF(i) += predicted_dc;
1343  /* save the DC */
1344  last_dc[current_frame_type] = DC_COEFF(i);
1345  }
1346  }
1347  }
1348 }
1349 
1351  int ystart, int yend)
1352 {
1353  int x, y;
1354  int *bounding_values = s->bounding_values_array + 127;
1355 
1356  int width = s->fragment_width[!!plane];
1357  int height = s->fragment_height[!!plane];
1358  int fragment = s->fragment_start[plane] + ystart * width;
1359  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1360  uint8_t *plane_data = s->current_frame.f->data[plane];
1361  if (!s->flipped_image)
1362  stride = -stride;
1363  plane_data += s->data_offset[plane] + 8 * ystart * stride;
1364 
1365  for (y = ystart; y < yend; y++) {
1366  for (x = 0; x < width; x++) {
1367  /* This code basically just deblocks on the edges of coded blocks.
1368  * However, it has to be much more complicated because of the
1369  * brain damaged deblock ordering used in VP3/Theora. Order matters
1370  * because some pixels get filtered twice. */
1371  if (s->all_fragments[fragment].coding_method != MODE_COPY) {
1372  /* do not perform left edge filter for left columns frags */
1373  if (x > 0) {
1374  s->vp3dsp.h_loop_filter(
1375  plane_data + 8 * x,
1376  stride, bounding_values);
1377  }
1378 
1379  /* do not perform top edge filter for top row fragments */
1380  if (y > 0) {
1381  s->vp3dsp.v_loop_filter(
1382  plane_data + 8 * x,
1383  stride, bounding_values);
1384  }
1385 
1386  /* do not perform right edge filter for right column
1387  * fragments or if right fragment neighbor is also coded
1388  * in this frame (it will be filtered in next iteration) */
1389  if ((x < width - 1) &&
1390  (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1391  s->vp3dsp.h_loop_filter(
1392  plane_data + 8 * x + 8,
1393  stride, bounding_values);
1394  }
1395 
1396  /* do not perform bottom edge filter for bottom row
1397  * fragments or if bottom fragment neighbor is also coded
1398  * in this frame (it will be filtered in the next row) */
1399  if ((y < height - 1) &&
1400  (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1401  s->vp3dsp.v_loop_filter(
1402  plane_data + 8 * x + 8 * stride,
1403  stride, bounding_values);
1404  }
1405  }
1406 
1407  fragment++;
1408  }
1409  plane_data += 8 * stride;
1410  }
1411 }
1412 
1413 /**
1414  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1415  * for the next block in coding order
1416  */
1417 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1418  int plane, int inter, int16_t block[64])
1419 {
1420  int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1421  uint8_t *perm = s->idct_scantable;
1422  int i = 0;
1423 
1424  do {
1425  int token = *s->dct_tokens[plane][i];
1426  switch (token & 3) {
1427  case 0: // EOB
1428  if (--token < 4) // 0-3 are token types so the EOB run must now be 0
1429  s->dct_tokens[plane][i]++;
1430  else
1431  *s->dct_tokens[plane][i] = token & ~3;
1432  goto end;
1433  case 1: // zero run
1434  s->dct_tokens[plane][i]++;
1435  i += (token >> 2) & 0x7f;
1436  if (i > 63) {
1437  av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1438  return i;
1439  }
1440  block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1441  i++;
1442  break;
1443  case 2: // coeff
1444  block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1445  s->dct_tokens[plane][i++]++;
1446  break;
1447  default: // shouldn't happen
1448  return i;
1449  }
1450  } while (i < 64);
1451  // return value is expected to be a valid level
1452  i--;
1453 end:
1454  // the actual DC+prediction is in the fragment structure
1455  block[0] = frag->dc * s->qmat[0][inter][plane][0];
1456  return i;
1457 }
1458 
1459 /**
1460  * called when all pixels up to row y are complete
1461  */
1463 {
1464  int h, cy, i;
1466 
1467  if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
1468  int y_flipped = s->flipped_image ? s->height - y : y;
1469 
1470  /* At the end of the frame, report INT_MAX instead of the height of
1471  * the frame. This makes the other threads' ff_thread_await_progress()
1472  * calls cheaper, because they don't have to clip their values. */
1474  y_flipped == s->height ? INT_MAX
1475  : y_flipped - 1,
1476  0);
1477  }
1478 
1479  if (!s->avctx->draw_horiz_band)
1480  return;
1481 
1482  h = y - s->last_slice_end;
1483  s->last_slice_end = y;
1484  y -= h;
1485 
1486  if (!s->flipped_image)
1487  y = s->height - y - h;
1488 
1489  cy = y >> s->chroma_y_shift;
1490  offset[0] = s->current_frame.f->linesize[0] * y;
1491  offset[1] = s->current_frame.f->linesize[1] * cy;
1492  offset[2] = s->current_frame.f->linesize[2] * cy;
1493  for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1494  offset[i] = 0;
1495 
1496  emms_c();
1497  s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1498 }
1499 
1500 /**
1501  * Wait for the reference frame of the current fragment.
1502  * The progress value is in luma pixel rows.
1503  */
1505  int motion_y, int y)
1506 {
1508  int ref_row;
1509  int border = motion_y & 1;
1510 
1511  if (fragment->coding_method == MODE_USING_GOLDEN ||
1512  fragment->coding_method == MODE_GOLDEN_MV)
1513  ref_frame = &s->golden_frame;
1514  else
1515  ref_frame = &s->last_frame;
1516 
1517  ref_row = y + (motion_y >> 1);
1518  ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1519 
1520  ff_thread_await_progress(ref_frame, ref_row, 0);
1521 }
1522 
1523 /*
1524  * Perform the final rendering for a particular slice of data.
1525  * The slice number ranges from 0..(c_superblock_height - 1).
1526  */
1527 static void render_slice(Vp3DecodeContext *s, int slice)
1528 {
1529  int x, y, i, j, fragment;
1530  int16_t *block = s->block;
1531  int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1532  int motion_halfpel_index;
1533  uint8_t *motion_source;
1534  int plane, first_pixel;
1535 
1536  if (slice >= s->c_superblock_height)
1537  return;
1538 
1539  for (plane = 0; plane < 3; plane++) {
1541  s->data_offset[plane];
1542  uint8_t *last_plane = s->last_frame.f->data[plane] +
1543  s->data_offset[plane];
1544  uint8_t *golden_plane = s->golden_frame.f->data[plane] +
1545  s->data_offset[plane];
1546  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1547  int plane_width = s->width >> (plane && s->chroma_x_shift);
1548  int plane_height = s->height >> (plane && s->chroma_y_shift);
1549  int8_t(*motion_val)[2] = s->motion_val[!!plane];
1550 
1551  int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
1552  int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
1553  int slice_width = plane ? s->c_superblock_width
1554  : s->y_superblock_width;
1555 
1556  int fragment_width = s->fragment_width[!!plane];
1557  int fragment_height = s->fragment_height[!!plane];
1558  int fragment_start = s->fragment_start[plane];
1559 
1560  int do_await = !plane && HAVE_THREADS &&
1562 
1563  if (!s->flipped_image)
1564  stride = -stride;
1565  if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
1566  continue;
1567 
1568  /* for each superblock row in the slice (both of them)... */
1569  for (; sb_y < slice_height; sb_y++) {
1570  /* for each superblock in a row... */
1571  for (sb_x = 0; sb_x < slice_width; sb_x++) {
1572  /* for each block in a superblock... */
1573  for (j = 0; j < 16; j++) {
1574  x = 4 * sb_x + hilbert_offset[j][0];
1575  y = 4 * sb_y + hilbert_offset[j][1];
1576  fragment = y * fragment_width + x;
1577 
1578  i = fragment_start + fragment;
1579 
1580  // bounds check
1581  if (x >= fragment_width || y >= fragment_height)
1582  continue;
1583 
1584  first_pixel = 8 * y * stride + 8 * x;
1585 
1586  if (do_await &&
1589  motion_val[fragment][1],
1590  (16 * y) >> s->chroma_y_shift);
1591 
1592  /* transform if this block was coded */
1593  if (s->all_fragments[i].coding_method != MODE_COPY) {
1596  motion_source = golden_plane;
1597  else
1598  motion_source = last_plane;
1599 
1600  motion_source += first_pixel;
1601  motion_halfpel_index = 0;
1602 
1603  /* sort out the motion vector if this fragment is coded
1604  * using a motion vector method */
1605  if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1607  int src_x, src_y;
1608  motion_x = motion_val[fragment][0];
1609  motion_y = motion_val[fragment][1];
1610 
1611  src_x = (motion_x >> 1) + 8 * x;
1612  src_y = (motion_y >> 1) + 8 * y;
1613 
1614  motion_halfpel_index = motion_x & 0x01;
1615  motion_source += (motion_x >> 1);
1616 
1617  motion_halfpel_index |= (motion_y & 0x01) << 1;
1618  motion_source += ((motion_y >> 1) * stride);
1619 
1620  if (src_x < 0 || src_y < 0 ||
1621  src_x + 9 >= plane_width ||
1622  src_y + 9 >= plane_height) {
1624  if (stride < 0)
1625  temp -= 8 * stride;
1626 
1627  s->vdsp.emulated_edge_mc(temp, motion_source,
1628  stride, stride,
1629  9, 9, src_x, src_y,
1630  plane_width,
1631  plane_height);
1632  motion_source = temp;
1633  }
1634  }
1635 
1636  /* first, take care of copying a block from either the
1637  * previous or the golden frame */
1638  if (s->all_fragments[i].coding_method != MODE_INTRA) {
1639  /* Note, it is possible to implement all MC cases
1640  * with put_no_rnd_pixels_l2 which would look more
1641  * like the VP3 source but this would be slower as
1642  * put_no_rnd_pixels_tab is better optimized */
1643  if (motion_halfpel_index != 3) {
1644  s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1645  output_plane + first_pixel,
1646  motion_source, stride, 8);
1647  } else {
1648  /* d is 0 if motion_x and _y have the same sign,
1649  * else -1 */
1650  int d = (motion_x ^ motion_y) >> 31;
1651  s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
1652  motion_source - d,
1653  motion_source + stride + 1 + d,
1654  stride, 8);
1655  }
1656  }
1657 
1658  /* invert DCT and place (or add) in final output */
1659 
1660  if (s->all_fragments[i].coding_method == MODE_INTRA) {
1661  vp3_dequant(s, s->all_fragments + i,
1662  plane, 0, block);
1663  s->vp3dsp.idct_put(output_plane + first_pixel,
1664  stride,
1665  block);
1666  } else {
1667  if (vp3_dequant(s, s->all_fragments + i,
1668  plane, 1, block)) {
1669  s->vp3dsp.idct_add(output_plane + first_pixel,
1670  stride,
1671  block);
1672  } else {
1673  s->vp3dsp.idct_dc_add(output_plane + first_pixel,
1674  stride, block);
1675  }
1676  }
1677  } else {
1678  /* copy directly from the previous frame */
1679  s->hdsp.put_pixels_tab[1][0](
1680  output_plane + first_pixel,
1681  last_plane + first_pixel,
1682  stride, 8);
1683  }
1684  }
1685  }
1686 
1687  // Filter up to the last row in the superblock row
1688  if (!s->skip_loop_filter)
1689  apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
1690  FFMIN(4 * sb_y + 3, fragment_height - 1));
1691  }
1692  }
1693 
1694  /* this looks like a good place for slice dispatch... */
1695  /* algorithm:
1696  * if (slice == s->macroblock_height - 1)
1697  * dispatch (both last slice & 2nd-to-last slice);
1698  * else if (slice > 0)
1699  * dispatch (slice - 1);
1700  */
1701 
1702  vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
1703  s->height - 16));
1704 }
1705 
1706 /// Allocate tables for per-frame data in Vp3DecodeContext
1708 {
1709  Vp3DecodeContext *s = avctx->priv_data;
1710  int y_fragment_count, c_fragment_count;
1711 
1712  free_tables(avctx);
1713 
1714  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1715  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1716 
1719 
1720  s-> kf_coded_fragment_list = av_mallocz_array(s->fragment_count, sizeof(int));
1722  memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment));
1723 
1725  64 * sizeof(*s->dct_tokens_base));
1726  s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
1727  s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
1728 
1729  /* work out the block mapping tables */
1730  s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
1732 
1733  if (!s->superblock_coding || !s->all_fragments ||
1737  !s->motion_val[0] || !s->motion_val[1]) {
1738  vp3_decode_end(avctx);
1739  return -1;
1740  }
1741 
1742  init_block_mapping(s);
1743 
1744  return 0;
1745 }
1746 
1748 {
1750  s->last_frame.f = av_frame_alloc();
1751  s->golden_frame.f = av_frame_alloc();
1752 
1753  if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
1755  av_frame_free(&s->last_frame.f);
1757  return AVERROR(ENOMEM);
1758  }
1759 
1760  return 0;
1761 }
1762 
1764 {
1765  Vp3DecodeContext *s = avctx->priv_data;
1766  int i, inter, plane, ret;
1767  int c_width;
1768  int c_height;
1769  int y_fragment_count, c_fragment_count;
1770 
1771  ret = init_frames(s);
1772  if (ret < 0)
1773  return ret;
1774 
1775  avctx->internal->allocate_progress = 1;
1776 
1777  if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
1778  s->version = 0;
1779  else
1780  s->version = 1;
1781 
1782  s->avctx = avctx;
1783  s->width = FFALIGN(avctx->coded_width, 16);
1784  s->height = FFALIGN(avctx->coded_height, 16);
1785  if (avctx->codec_id != AV_CODEC_ID_THEORA)
1786  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1789  ff_videodsp_init(&s->vdsp, 8);
1790  ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
1791 
1792  for (i = 0; i < 64; i++) {
1793 #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
1794  s->idct_permutation[i] = TRANSPOSE(i);
1796 #undef TRANSPOSE
1797  }
1798 
1799  /* initialize to an impossible value which will force a recalculation
1800  * in the first frame decode */
1801  for (i = 0; i < 3; i++)
1802  s->qps[i] = -1;
1803 
1805  if (ret)
1806  return ret;
1807 
1808  s->y_superblock_width = (s->width + 31) / 32;
1809  s->y_superblock_height = (s->height + 31) / 32;
1811 
1812  /* work out the dimensions for the C planes */
1813  c_width = s->width >> s->chroma_x_shift;
1814  c_height = s->height >> s->chroma_y_shift;
1815  s->c_superblock_width = (c_width + 31) / 32;
1816  s->c_superblock_height = (c_height + 31) / 32;
1818 
1822 
1823  s->macroblock_width = (s->width + 15) / 16;
1824  s->macroblock_height = (s->height + 15) / 16;
1826 
1827  s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1828  s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1829  s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
1830  s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1831 
1832  /* fragment count covers all 8x8 blocks for all 3 planes */
1833  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1834  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1835  s->fragment_count = y_fragment_count + 2 * c_fragment_count;
1836  s->fragment_start[1] = y_fragment_count;
1837  s->fragment_start[2] = y_fragment_count + c_fragment_count;
1838 
1839  if (!s->theora_tables) {
1840  for (i = 0; i < 64; i++) {
1843  s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1844  s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1845  s->base_matrix[2][i] = vp31_inter_dequant[i];
1847  }
1848 
1849  for (inter = 0; inter < 2; inter++) {
1850  for (plane = 0; plane < 3; plane++) {
1851  s->qr_count[inter][plane] = 1;
1852  s->qr_size[inter][plane][0] = 63;
1853  s->qr_base[inter][plane][0] =
1854  s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
1855  }
1856  }
1857 
1858  /* init VLC tables */
1859  for (i = 0; i < 16; i++) {
1860  /* DC histograms */
1861  init_vlc(&s->dc_vlc[i], 11, 32,
1862  &dc_bias[i][0][1], 4, 2,
1863  &dc_bias[i][0][0], 4, 2, 0);
1864 
1865  /* group 1 AC histograms */
1866  init_vlc(&s->ac_vlc_1[i], 11, 32,
1867  &ac_bias_0[i][0][1], 4, 2,
1868  &ac_bias_0[i][0][0], 4, 2, 0);
1869 
1870  /* group 2 AC histograms */
1871  init_vlc(&s->ac_vlc_2[i], 11, 32,
1872  &ac_bias_1[i][0][1], 4, 2,
1873  &ac_bias_1[i][0][0], 4, 2, 0);
1874 
1875  /* group 3 AC histograms */
1876  init_vlc(&s->ac_vlc_3[i], 11, 32,
1877  &ac_bias_2[i][0][1], 4, 2,
1878  &ac_bias_2[i][0][0], 4, 2, 0);
1879 
1880  /* group 4 AC histograms */
1881  init_vlc(&s->ac_vlc_4[i], 11, 32,
1882  &ac_bias_3[i][0][1], 4, 2,
1883  &ac_bias_3[i][0][0], 4, 2, 0);
1884  }
1885  } else {
1886  for (i = 0; i < 16; i++) {
1887  /* DC histograms */
1888  if (init_vlc(&s->dc_vlc[i], 11, 32,
1889  &s->huffman_table[i][0][1], 8, 4,
1890  &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1891  goto vlc_fail;
1892 
1893  /* group 1 AC histograms */
1894  if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1895  &s->huffman_table[i + 16][0][1], 8, 4,
1896  &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
1897  goto vlc_fail;
1898 
1899  /* group 2 AC histograms */
1900  if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1901  &s->huffman_table[i + 16 * 2][0][1], 8, 4,
1902  &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
1903  goto vlc_fail;
1904 
1905  /* group 3 AC histograms */
1906  if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1907  &s->huffman_table[i + 16 * 3][0][1], 8, 4,
1908  &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
1909  goto vlc_fail;
1910 
1911  /* group 4 AC histograms */
1912  if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1913  &s->huffman_table[i + 16 * 4][0][1], 8, 4,
1914  &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
1915  goto vlc_fail;
1916  }
1917  }
1918 
1920  &superblock_run_length_vlc_table[0][1], 4, 2,
1921  &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1922 
1923  init_vlc(&s->fragment_run_length_vlc, 5, 30,
1924  &fragment_run_length_vlc_table[0][1], 4, 2,
1925  &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1926 
1927  init_vlc(&s->mode_code_vlc, 3, 8,
1928  &mode_code_vlc_table[0][1], 2, 1,
1929  &mode_code_vlc_table[0][0], 2, 1, 0);
1930 
1931  init_vlc(&s->motion_vector_vlc, 6, 63,
1932  &motion_vector_vlc_table[0][1], 2, 1,
1933  &motion_vector_vlc_table[0][0], 2, 1, 0);
1934 
1935  return allocate_tables(avctx);
1936 
1937 vlc_fail:
1938  av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1939  return -1;
1940 }
1941 
1942 /// Release and shuffle frames after decode finishes
1943 static int update_frames(AVCodecContext *avctx)
1944 {
1945  Vp3DecodeContext *s = avctx->priv_data;
1946  int ret = 0;
1947 
1948  /* shuffle frames (last = current) */
1951  if (ret < 0)
1952  goto fail;
1953 
1954  if (s->keyframe) {
1957  }
1958 
1959 fail:
1961  return ret;
1962 }
1963 
1965 {
1967  if (src->f->data[0])
1968  return ff_thread_ref_frame(dst, src);
1969  return 0;
1970 }
1971 
1973 {
1974  int ret;
1975  if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
1976  (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
1977  (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
1978  return ret;
1979  return 0;
1980 }
1981 
1982 #if HAVE_THREADS
1983 static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
1984 {
1985  Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
1986  int qps_changed = 0, i, err;
1987 
1988 #define copy_fields(to, from, start_field, end_field) \
1989  memcpy(&to->start_field, &from->start_field, \
1990  (char *) &to->end_field - (char *) &to->start_field)
1991 
1992  if (!s1->current_frame.f->data[0] ||
1993  s->width != s1->width || s->height != s1->height) {
1994  if (s != s1)
1995  ref_frames(s, s1);
1996  return -1;
1997  }
1998 
1999  if (s != s1) {
2000  if (!s->current_frame.f)
2001  return AVERROR(ENOMEM);
2002  // init tables if the first frame hasn't been decoded
2003  if (!s->current_frame.f->data[0]) {
2004  int y_fragment_count, c_fragment_count;
2005  s->avctx = dst;
2006  err = allocate_tables(dst);
2007  if (err)
2008  return err;
2009  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
2010  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
2011  memcpy(s->motion_val[0], s1->motion_val[0],
2012  y_fragment_count * sizeof(*s->motion_val[0]));
2013  memcpy(s->motion_val[1], s1->motion_val[1],
2014  c_fragment_count * sizeof(*s->motion_val[1]));
2015  }
2016 
2017  // copy previous frame data
2018  if ((err = ref_frames(s, s1)) < 0)
2019  return err;
2020 
2021  s->keyframe = s1->keyframe;
2022 
2023  // copy qscale data if necessary
2024  for (i = 0; i < 3; i++) {
2025  if (s->qps[i] != s1->qps[1]) {
2026  qps_changed = 1;
2027  memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
2028  }
2029  }
2030 
2031  if (s->qps[0] != s1->qps[0])
2032  memcpy(&s->bounding_values_array, &s1->bounding_values_array,
2033  sizeof(s->bounding_values_array));
2034 
2035  if (qps_changed)
2036  copy_fields(s, s1, qps, superblock_count);
2037 #undef copy_fields
2038  }
2039 
2040  return update_frames(dst);
2041 }
2042 #endif
2043 
2045  void *data, int *got_frame,
2046  AVPacket *avpkt)
2047 {
2048  AVFrame *frame = data;
2049  const uint8_t *buf = avpkt->data;
2050  int buf_size = avpkt->size;
2051  Vp3DecodeContext *s = avctx->priv_data;
2052  GetBitContext gb;
2053  int i, ret;
2054 
2055  if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
2056  return ret;
2057 
2058 #if CONFIG_THEORA_DECODER
2059  if (s->theora && get_bits1(&gb)) {
2060  int type = get_bits(&gb, 7);
2061  skip_bits_long(&gb, 6*8); /* "theora" */
2062 
2064  av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2065  return AVERROR_PATCHWELCOME;
2066  }
2067  if (type == 0) {
2068  vp3_decode_end(avctx);
2069  ret = theora_decode_header(avctx, &gb);
2070 
2071  if (ret >= 0)
2072  ret = vp3_decode_init(avctx);
2073  if (ret < 0) {
2074  vp3_decode_end(avctx);
2075  return ret;
2076  }
2077  return buf_size;
2078  } else if (type == 2) {
2079  vp3_decode_end(avctx);
2080  ret = theora_decode_tables(avctx, &gb);
2081  if (ret >= 0)
2082  ret = vp3_decode_init(avctx);
2083  if (ret < 0) {
2084  vp3_decode_end(avctx);
2085  return ret;
2086  }
2087  return buf_size;
2088  }
2089 
2090  av_log(avctx, AV_LOG_ERROR,
2091  "Header packet passed to frame decoder, skipping\n");
2092  return -1;
2093  }
2094 #endif
2095 
2096  s->keyframe = !get_bits1(&gb);
2097  if (!s->all_fragments) {
2098  av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
2099  return -1;
2100  }
2101  if (!s->theora)
2102  skip_bits(&gb, 1);
2103  for (i = 0; i < 3; i++)
2104  s->last_qps[i] = s->qps[i];
2105 
2106  s->nqps = 0;
2107  do {
2108  s->qps[s->nqps++] = get_bits(&gb, 6);
2109  } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
2110  for (i = s->nqps; i < 3; i++)
2111  s->qps[i] = -1;
2112 
2113  if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2114  av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2115  s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
2116 
2117  s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2118  avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
2119  : AVDISCARD_NONKEY);
2120 
2121  if (s->qps[0] != s->last_qps[0])
2122  init_loop_filter(s);
2123 
2124  for (i = 0; i < s->nqps; i++)
2125  // reinit all dequantizers if the first one changed, because
2126  // the DC of the first quantizer must be used for all matrices
2127  if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2128  init_dequantizer(s, i);
2129 
2130  if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2131  return buf_size;
2132 
2135  s->current_frame.f->key_frame = s->keyframe;
2137  goto error;
2138 
2139  if (!s->edge_emu_buffer)
2141 
2142  if (s->keyframe) {
2143  if (!s->theora) {
2144  skip_bits(&gb, 4); /* width code */
2145  skip_bits(&gb, 4); /* height code */
2146  if (s->version) {
2147  s->version = get_bits(&gb, 5);
2148  if (avctx->frame_number == 0)
2150  "VP version: %d\n", s->version);
2151  }
2152  }
2153  if (s->version || s->theora) {
2154  if (get_bits1(&gb))
2156  "Warning, unsupported keyframe coding type?!\n");
2157  skip_bits(&gb, 2); /* reserved? */
2158  }
2159  } else {
2160  if (!s->golden_frame.f->data[0]) {
2162  "vp3: first frame not a keyframe\n");
2163 
2165  if (ff_thread_get_buffer(avctx, &s->golden_frame,
2167  goto error;
2169  if ((ret = ff_thread_ref_frame(&s->last_frame,
2170  &s->golden_frame)) < 0)
2171  goto error;
2172  ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2173  }
2174  }
2175 
2176  memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2177  ff_thread_finish_setup(avctx);
2178 
2179  if (unpack_superblocks(s, &gb)) {
2180  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2181  goto error;
2182  }
2183  if (unpack_modes(s, &gb)) {
2184  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2185  goto error;
2186  }
2187  if (unpack_vectors(s, &gb)) {
2188  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2189  goto error;
2190  }
2191  if (unpack_block_qpis(s, &gb)) {
2192  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2193  goto error;
2194  }
2195  if (unpack_dct_coeffs(s, &gb)) {
2196  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2197  goto error;
2198  }
2199 
2200  for (i = 0; i < 3; i++) {
2201  int height = s->height >> (i && s->chroma_y_shift);
2202  if (s->flipped_image)
2203  s->data_offset[i] = 0;
2204  else
2205  s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
2206  }
2207 
2208  s->last_slice_end = 0;
2209  for (i = 0; i < s->c_superblock_height; i++)
2210  render_slice(s, i);
2211 
2212  // filter the last row
2213  for (i = 0; i < 3; i++) {
2214  int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
2215  apply_loop_filter(s, i, row, row + 1);
2216  }
2217  vp3_draw_horiz_band(s, s->height);
2218 
2219  /* output frame, offset as needed */
2220  if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2221  return ret;
2222 
2223  frame->crop_left = s->offset_x;
2224  frame->crop_right = avctx->coded_width - avctx->width - s->offset_x;
2225  frame->crop_top = s->offset_y;
2226  frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y;
2227 
2228  *got_frame = 1;
2229 
2230  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
2231  ret = update_frames(avctx);
2232  if (ret < 0)
2233  return ret;
2234  }
2235 
2236  return buf_size;
2237 
2238 error:
2239  ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2240 
2241  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
2243 
2244  return -1;
2245 }
2246 
2248 {
2249  Vp3DecodeContext *s = avctx->priv_data;
2250 
2251  if (get_bits1(gb)) {
2252  int token;
2253  if (s->entries >= 32) { /* overflow */
2254  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2255  return -1;
2256  }
2257  token = get_bits(gb, 5);
2258  ff_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
2259  s->hti, s->hbits, token, s->entries, s->huff_code_size);
2260  s->huffman_table[s->hti][token][0] = s->hbits;
2261  s->huffman_table[s->hti][token][1] = s->huff_code_size;
2262  s->entries++;
2263  } else {
2264  if (s->huff_code_size >= 32) { /* overflow */
2265  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2266  return -1;
2267  }
2268  s->huff_code_size++;
2269  s->hbits <<= 1;
2270  if (read_huffman_tree(avctx, gb))
2271  return -1;
2272  s->hbits |= 1;
2273  if (read_huffman_tree(avctx, gb))
2274  return -1;
2275  s->hbits >>= 1;
2276  s->huff_code_size--;
2277  }
2278  return 0;
2279 }
2280 
2281 #if HAVE_THREADS
2282 static int vp3_init_thread_copy(AVCodecContext *avctx)
2283 {
2284  Vp3DecodeContext *s = avctx->priv_data;
2285 
2286  s->superblock_coding = NULL;
2287  s->all_fragments = NULL;
2288  s->coded_fragment_list[0] = NULL;
2289  s-> kf_coded_fragment_list= NULL;
2291  s->dct_tokens_base = NULL;
2293  s->macroblock_coding = NULL;
2294  s->motion_val[0] = NULL;
2295  s->motion_val[1] = NULL;
2296  s->edge_emu_buffer = NULL;
2297 
2298  return init_frames(s);
2299 }
2300 #endif
2301 
2302 #if CONFIG_THEORA_DECODER
2303 static const enum AVPixelFormat theora_pix_fmts[4] = {
2305 };
2306 
2307 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2308 {
2309  Vp3DecodeContext *s = avctx->priv_data;
2310  int visible_width, visible_height, colorspace;
2311  uint8_t offset_x = 0, offset_y = 0;
2312  int ret;
2313  AVRational fps, aspect;
2314 
2315  s->theora_header = 0;
2316  s->theora = get_bits_long(gb, 24);
2317  av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2318 
2319  /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
2320  * but previous versions have the image flipped relative to vp3 */
2321  if (s->theora < 0x030200) {
2322  s->flipped_image = 1;
2323  av_log(avctx, AV_LOG_DEBUG,
2324  "Old (<alpha3) Theora bitstream, flipped image\n");
2325  }
2326 
2327  visible_width =
2328  s->width = get_bits(gb, 16) << 4;
2329  visible_height =
2330  s->height = get_bits(gb, 16) << 4;
2331 
2332  if (s->theora >= 0x030200) {
2333  visible_width = get_bits_long(gb, 24);
2334  visible_height = get_bits_long(gb, 24);
2335 
2336  offset_x = get_bits(gb, 8); /* offset x */
2337  offset_y = get_bits(gb, 8); /* offset y, from bottom */
2338  }
2339 
2340  /* sanity check */
2341  if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
2342  visible_width + offset_x > s->width ||
2343  visible_height + offset_y > s->height) {
2344  av_log(avctx, AV_LOG_ERROR,
2345  "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
2346  visible_width, visible_height, offset_x, offset_y,
2347  s->width, s->height);
2348  return AVERROR_INVALIDDATA;
2349  }
2350 
2351  fps.num = get_bits_long(gb, 32);
2352  fps.den = get_bits_long(gb, 32);
2353  if (fps.num && fps.den) {
2354  if (fps.num < 0 || fps.den < 0) {
2355  av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
2356  return AVERROR_INVALIDDATA;
2357  }
2358  av_reduce(&avctx->framerate.den, &avctx->framerate.num,
2359  fps.den, fps.num, 1 << 30);
2360  }
2361 
2362  aspect.num = get_bits_long(gb, 24);
2363  aspect.den = get_bits_long(gb, 24);
2364  if (aspect.num && aspect.den) {
2366  &avctx->sample_aspect_ratio.den,
2367  aspect.num, aspect.den, 1 << 30);
2368  ff_set_sar(avctx, avctx->sample_aspect_ratio);
2369  }
2370 
2371  if (s->theora < 0x030200)
2372  skip_bits(gb, 5); /* keyframe frequency force */
2373  colorspace = get_bits(gb, 8);
2374  skip_bits(gb, 24); /* bitrate */
2375 
2376  skip_bits(gb, 6); /* quality hint */
2377 
2378  if (s->theora >= 0x030200) {
2379  skip_bits(gb, 5); /* keyframe frequency force */
2380  avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2381  if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
2382  av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
2383  return AVERROR_INVALIDDATA;
2384  }
2385  skip_bits(gb, 3); /* reserved */
2386  } else
2387  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2388 
2389  ret = ff_set_dimensions(avctx, s->width, s->height);
2390  if (ret < 0)
2391  return ret;
2392  if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) {
2393  avctx->width = visible_width;
2394  avctx->height = visible_height;
2395  // translate offsets from theora axis ([0,0] lower left)
2396  // to normal axis ([0,0] upper left)
2397  s->offset_x = offset_x;
2398  s->offset_y = s->height - visible_height - offset_y;
2399  }
2400 
2401  if (colorspace == 1)
2403  else if (colorspace == 2)
2405 
2406  if (colorspace == 1 || colorspace == 2) {
2407  avctx->colorspace = AVCOL_SPC_BT470BG;
2408  avctx->color_trc = AVCOL_TRC_BT709;
2409  }
2410 
2411  s->theora_header = 1;
2412  return 0;
2413 }
2414 
2415 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2416 {
2417  Vp3DecodeContext *s = avctx->priv_data;
2418  int i, n, matrices, inter, plane;
2419 
2420  if (!s->theora_header)
2421  return AVERROR_INVALIDDATA;
2422 
2423  if (s->theora >= 0x030200) {
2424  n = get_bits(gb, 3);
2425  /* loop filter limit values table */
2426  if (n)
2427  for (i = 0; i < 64; i++)
2428  s->filter_limit_values[i] = get_bits(gb, n);
2429  }
2430 
2431  if (s->theora >= 0x030200)
2432  n = get_bits(gb, 4) + 1;
2433  else
2434  n = 16;
2435  /* quality threshold table */
2436  for (i = 0; i < 64; i++)
2437  s->coded_ac_scale_factor[i] = get_bits(gb, n);
2438 
2439  if (s->theora >= 0x030200)
2440  n = get_bits(gb, 4) + 1;
2441  else
2442  n = 16;
2443  /* dc scale factor table */
2444  for (i = 0; i < 64; i++)
2445  s->coded_dc_scale_factor[i] = get_bits(gb, n);
2446 
2447  if (s->theora >= 0x030200)
2448  matrices = get_bits(gb, 9) + 1;
2449  else
2450  matrices = 3;
2451 
2452  if (matrices > 384) {
2453  av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2454  return -1;
2455  }
2456 
2457  for (n = 0; n < matrices; n++)
2458  for (i = 0; i < 64; i++)
2459  s->base_matrix[n][i] = get_bits(gb, 8);
2460 
2461  for (inter = 0; inter <= 1; inter++) {
2462  for (plane = 0; plane <= 2; plane++) {
2463  int newqr = 1;
2464  if (inter || plane > 0)
2465  newqr = get_bits1(gb);
2466  if (!newqr) {
2467  int qtj, plj;
2468  if (inter && get_bits1(gb)) {
2469  qtj = 0;
2470  plj = plane;
2471  } else {
2472  qtj = (3 * inter + plane - 1) / 3;
2473  plj = (plane + 2) % 3;
2474  }
2475  s->qr_count[inter][plane] = s->qr_count[qtj][plj];
2476  memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
2477  sizeof(s->qr_size[0][0]));
2478  memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
2479  sizeof(s->qr_base[0][0]));
2480  } else {
2481  int qri = 0;
2482  int qi = 0;
2483 
2484  for (;;) {
2485  i = get_bits(gb, av_log2(matrices - 1) + 1);
2486  if (i >= matrices) {
2487  av_log(avctx, AV_LOG_ERROR,
2488  "invalid base matrix index\n");
2489  return -1;
2490  }
2491  s->qr_base[inter][plane][qri] = i;
2492  if (qi >= 63)
2493  break;
2494  i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
2495  s->qr_size[inter][plane][qri++] = i;
2496  qi += i;
2497  }
2498 
2499  if (qi > 63) {
2500  av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2501  return -1;
2502  }
2503  s->qr_count[inter][plane] = qri;
2504  }
2505  }
2506  }
2507 
2508  /* Huffman tables */
2509  for (s->hti = 0; s->hti < 80; s->hti++) {
2510  s->entries = 0;
2511  s->huff_code_size = 1;
2512  if (!get_bits1(gb)) {
2513  s->hbits = 0;
2514  if (read_huffman_tree(avctx, gb))
2515  return -1;
2516  s->hbits = 1;
2517  if (read_huffman_tree(avctx, gb))
2518  return -1;
2519  }
2520  }
2521 
2522  s->theora_tables = 1;
2523 
2524  return 0;
2525 }
2526 
2527 static av_cold int theora_decode_init(AVCodecContext *avctx)
2528 {
2529  Vp3DecodeContext *s = avctx->priv_data;
2530  GetBitContext gb;
2531  int ptype;
2532  const uint8_t *header_start[3];
2533  int header_len[3];
2534  int i;
2535  int ret;
2536 
2537  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2538 
2539  s->theora = 1;
2540 
2541  if (!avctx->extradata_size) {
2542  av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2543  return -1;
2544  }
2545 
2547  42, header_start, header_len) < 0) {
2548  av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2549  return -1;
2550  }
2551 
2552  for (i = 0; i < 3; i++) {
2553  if (header_len[i] <= 0)
2554  continue;
2555  ret = init_get_bits8(&gb, header_start[i], header_len[i]);
2556  if (ret < 0)
2557  return ret;
2558 
2559  ptype = get_bits(&gb, 8);
2560 
2561  if (!(ptype & 0x80)) {
2562  av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2563 // return -1;
2564  }
2565 
2566  // FIXME: Check for this as well.
2567  skip_bits_long(&gb, 6 * 8); /* "theora" */
2568 
2569  switch (ptype) {
2570  case 0x80:
2571  if (theora_decode_header(avctx, &gb) < 0)
2572  return -1;
2573  break;
2574  case 0x81:
2575 // FIXME: is this needed? it breaks sometimes
2576 // theora_decode_comments(avctx, gb);
2577  break;
2578  case 0x82:
2579  if (theora_decode_tables(avctx, &gb))
2580  return -1;
2581  break;
2582  default:
2583  av_log(avctx, AV_LOG_ERROR,
2584  "Unknown Theora config packet: %d\n", ptype & ~0x80);
2585  break;
2586  }
2587  if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
2588  av_log(avctx, AV_LOG_WARNING,
2589  "%d bits left in packet %X\n",
2590  8 * header_len[i] - get_bits_count(&gb), ptype);
2591  if (s->theora < 0x030200)
2592  break;
2593  }
2594 
2595  return vp3_decode_init(avctx);
2596 }
2597 
2599  .name = "theora",
2600  .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2601  .type = AVMEDIA_TYPE_VIDEO,
2602  .id = AV_CODEC_ID_THEORA,
2603  .priv_data_size = sizeof(Vp3DecodeContext),
2604  .init = theora_decode_init,
2605  .close = vp3_decode_end,
2610  .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2611  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
2612  .caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING,
2613 };
2614 #endif
2615 
2617  .name = "vp3",
2618  .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2619  .type = AVMEDIA_TYPE_VIDEO,
2620  .id = AV_CODEC_ID_VP3,
2621  .priv_data_size = sizeof(Vp3DecodeContext),
2622  .init = vp3_decode_init,
2623  .close = vp3_decode_end,
2628  .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2629  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
2630 };
int plane
Definition: avisynth_c.h:422
#define BLOCK_Y
void(* put_no_rnd_pixels_l2)(uint8_t *dst, const uint8_t *a, const uint8_t *b, ptrdiff_t stride, int h)
Copy 8xH pixels from source to destination buffer using a bilinear filter with no rounding (i...
Definition: vp3dsp.h:36
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
int last_slice_end
Definition: vp3.c:149
#define NULL
Definition: coverity.c:32
uint8_t idct_scantable[64]
Definition: vp3.c:143
AVRational framerate
Definition: avcodec.h:3056
discard all frames except keyframes
Definition: avcodec.h:802
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AV_NUM_DATA_POINTERS
Definition: frame.h:227
int16_t qmat[3][2][3][64]
qmat[qpi][is_inter][plane]
Definition: vp3.c:243
static int init_block_mapping(Vp3DecodeContext *s)
This function sets up all of the various blocks mappings: superblocks <-> fragments, macroblocks <-> fragments, superblocks <-> macroblocks.
Definition: vp3.c:341
#define SB_NOT_CODED
Definition: vp3.c:58
#define copy_fields(s, e)
static const uint8_t eob_run_base[7]
Definition: vp3data.h:201
This structure describes decoded (raw) audio or video data.
Definition: frame.h:226
#define TOKEN_EOB(eob_run)
Definition: vp3.c:211
static void render_slice(Vp3DecodeContext *s, int slice)
Definition: vp3.c:1527
#define PUR
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
int y_superblock_count
Definition: vp3.c:159
static void flush(AVCodecContext *avctx)
int bounding_values_array[256+2]
Definition: vp3.c:265
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:1721
static const int8_t vp31_intra_c_dequant[64]
Definition: vp3data.h:42
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:381
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static int init_thread_copy(AVCodecContext *avctx)
Definition: tta.c:392
uint16_t qr_base[2][3][64]
Definition: vp3.c:190
AVFrame * f
Definition: thread.h:35
else temp
Definition: vf_mcdeint.c:256
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:104
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:293
VLC mode_code_vlc
Definition: vp3.c:238
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
int y_superblock_width
Definition: vp3.c:157
static const uint16_t fragment_run_length_vlc_table[30][2]
Definition: vp3data.h:119
HpelDSPContext hdsp
Definition: vp3.c:144
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601 ...
Definition: pixfmt.h:492
#define MODE_INTER_PLUS_MV
Definition: vp3.c:69
int num
Numerator.
Definition: rational.h:59
int size
Definition: avcodec.h:1446
static const int8_t vp31_intra_y_dequant[64]
Definition: vp3data.h:29
static av_cold int init_frames(Vp3DecodeContext *s)
Definition: vp3.c:1747
int u_superblock_start
Definition: vp3.c:163
#define BLOCK_X
int av_log2(unsigned v)
Definition: intmath.c:26
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:1912
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:625
void(* v_loop_filter)(uint8_t *src, ptrdiff_t stride, int *bounding_values)
Definition: vp3dsp.h:44
static const uint8_t zero_run_base[32]
Definition: vp3data.h:208
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1743
uint8_t coding_method
Definition: vp3.c:54
static av_cold int vp3_decode_init(AVCodecContext *avctx)
Definition: vp3.c:1763
static const uint8_t coeff_get_bits[32]
Definition: vp3data.h:223
int num_kf_coded_fragment[3]
Definition: vp3.c:228
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:446
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height)
Definition: vp3.c:1200
discard all
Definition: avcodec.h:803
VLC ac_vlc_4[16]
Definition: vp3.c:234
size_t crop_bottom
Definition: frame.h:586
VLC motion_vector_vlc
Definition: vp3.c:239
static av_cold int vp3_decode_end(AVCodecContext *avctx)
Definition: vp3.c:299
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
int huff_code_size
Definition: vp3.c:261
#define src
Definition: vp8dsp.c:254
int * superblock_fragments
Definition: vp3.c:249
VLC superblock_run_length_vlc
Definition: vp3.c:236
AVCodec.
Definition: avcodec.h:3424
static const uint32_t vp31_ac_scale_factor[64]
Definition: vp3data.h:76
#define MAXIMUM_LONG_BIT_RUN
Definition: vp3.c:65
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
static const uint16_t ac_bias_3[16][32][2]
Definition: vp3data.h:2634
static const uint16_t dc_bias[16][32][2]
Definition: vp3data.h:446
Vp3Fragment * all_fragments
Definition: vp3.c:175
static void init_loop_filter(Vp3DecodeContext *s)
Definition: vp3.c:417
#define COMPATIBLE_FRAME(x)
Definition: vp3.c:1196
static int16_t block[64]
Definition: dct.c:115
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
uint8_t offset_y
Definition: vp3.c:179
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
int y_superblock_height
Definition: vp3.c:158
#define TRANSPOSE(x)
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:734
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:189
VLC ac_vlc_1[16]
Definition: vp3.c:231
#define TOKEN_ZERO_RUN(coeff, zero_run)
Definition: vp3.c:212
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:2615
size_t crop_left
Definition: frame.h:587
static int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, int plane, int inter, int16_t block[64])
Pull DCT tokens from the 64 levels to decode and dequant the coefficients for the next block in codin...
Definition: vp3.c:1417
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
unsigned int hbits
Definition: vp3.c:259
Multithreading support functions.
int macroblock_width
Definition: vp3.c:168
uint8_t idct_permutation[64]
Definition: vp3.c:142
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:443
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
Definition: vp3.c:375
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1634
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, ptrdiff_t dst_pitch, int dst_height)
Convert and output the current plane.
Definition: indeo3.c:1027
uint8_t qpi
Definition: vp3.c:55
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:253
static void vp3_decode_flush(AVCodecContext *avctx)
Definition: vp3.c:287
static AVFrame * frame
#define DC_COEFF(u)
Definition: vp3.c:1198
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:112
#define height
uint8_t * data
Definition: avcodec.h:1445
uint8_t filter_limit_values[64]
Definition: vp3.c:264
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
int ff_thread_ref_frame(ThreadFrame *dst, ThreadFrame *src)
Definition: utils.c:1794
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:119
#define ff_dlog(a,...)
bitstream reader API header.
VLC ac_vlc_2[16]
Definition: vp3.c:232
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
void ff_thread_finish_setup(AVCodecContext *avctx)
If the codec defines update_thread_context(), call this when they are ready for the next thread to st...
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:870
static const uint8_t mode_code_vlc_table[8][2]
Definition: vp3data.h:144
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
Definition: avcodec.h:2171
#define FFALIGN(x, a)
Definition: macros.h:48
#define MODE_INTRA
Definition: vp3.c:68
#define av_log(a,...)
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:1098
static const uint16_t table[]
Definition: prosumer.c:203
static const uint16_t ac_bias_1[16][32][2]
Definition: vp3data.h:1540
int height
Definition: vp3.c:136
#define U(x)
Definition: vp56_arith.h:37
static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
Definition: vp3.c:1972
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:814
static int vp3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: vp3.c:2044
static const uint8_t motion_vector_vlc_table[63][2]
Definition: vp3data.h:151
also FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
Definition: pixfmt.h:438
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define AV_CODEC_FLAG2_IGNORE_CROP
Discard cropping information from SPS.
Definition: avcodec.h:933
VP3DSPContext vp3dsp
Definition: vp3.c:146
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
int c_superblock_width
Definition: vp3.c:160
uint8_t qr_count[2][3]
Definition: vp3.c:188
int fragment_height[2]
Definition: vp3.c:173
#define init_vlc(vlc, nb_bits, nb_codes,bits, bits_wrap, bits_size,codes, codes_wrap, codes_size,flags)
Definition: vlc.h:38
int is_copy
Whether the parent AVCodecContext is a copy of the context which had init() called on it...
Definition: internal.h:136
#define AVERROR(e)
Definition: error.h:43
VLC ac_vlc_3[16]
Definition: vp3.c:233
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:202
#define CODING_MODE_COUNT
Definition: vp3.c:75
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2474
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:2804
static const int8_t fixed_motion_vector_table[64]
Definition: vp3data.h:189
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1613
AVCodec ff_theora_decoder
int theora
Definition: vp3.c:134
static av_cold void free_tables(AVCodecContext *avctx)
Definition: vp3.c:272
const char * name
Name of the codec implementation.
Definition: avcodec.h:3431
int theora_header
Definition: vp3.c:134
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
int qps[3]
Definition: vp3.c:152
#define fail()
Definition: checkasm.h:117
static const int ModeAlphabet[6][CODING_MODE_COUNT]
Definition: vp3.c:85
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: avcodec.h:1024
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
Definition: internal.h:66
Definition: vlc.h:26
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
Definition: internal.h:225
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
Definition: hpeldsp.c:338
static const int16_t *const coeff_tables[32]
Definition: vp3data.h:408
size_t crop_top
Definition: frame.h:585
int chroma_y_shift
Definition: vp3.c:137
int flipped_image
Definition: vp3.c:148
unsigned char * macroblock_coding
Definition: vp3.c:253
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:282
void(* h_loop_filter)(uint8_t *src, ptrdiff_t stride, int *bounding_values)
Definition: vp3dsp.h:45
static const uint8_t eob_run_get_bits[7]
Definition: vp3data.h:204
Half-pel DSP context.
Definition: hpeldsp.h:45
int fragment_width[2]
Definition: vp3.c:172
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
Definition: avcodec.h:962
void(* idct_dc_add)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:43
void(* draw_horiz_band)(struct AVCodecContext *s, const AVFrame *src, int offset[AV_NUM_DATA_POINTERS], int y, int type, int height)
If non NULL, 'draw_horiz_band' is called by the libavcodec decoder to draw a horizontal band...
Definition: avcodec.h:1768
#define SET_CHROMA_MODES
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:309
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:895
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:2796
#define FFMIN(a, b)
Definition: common.h:96
VLC fragment_run_length_vlc
Definition: vp3.c:237
#define PU
#define width
int macroblock_height
Definition: vp3.c:169
int width
picture width / height.
Definition: avcodec.h:1706
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
#define SB_PARTIALLY_CODED
Definition: vp3.c:59
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, VLC *table, int coeff_index, int plane, int eob_run)
Definition: vp3.c:966
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM
Definition: pixfmt.h:440
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
uint8_t * edge_emu_buffer
Definition: vp3.c:255
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2143
perm
Definition: f_perms.c:74
static const int8_t motion_vector_table[63]
Definition: vp3data.h:179
#define MODE_COPY
Definition: vp3.c:78
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int avpriv_split_xiph_headers(const uint8_t *extradata, int extradata_size, int first_header_size, const uint8_t *header_start[3], int header_len[3])
Split a single extradata buffer into the three headers that most Xiph codecs use. ...
Definition: xiph.c:24
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:762
static const uint16_t ac_bias_2[16][32][2]
Definition: vp3data.h:2087
int n
Definition: avisynth_c.h:684
static const uint8_t hilbert_offset[16][2]
Definition: vp3.c:123
int macroblock_count
Definition: vp3.c:167
int c_superblock_height
Definition: vp3.c:161
static void error(const char *err)
int offset_x_warned
Definition: vp3.c:180
int total_num_coded_frags
Definition: vp3.c:220
int c_superblock_count
Definition: vp3.c:162
AVCodec ff_vp3_decoder
Definition: vp3.c:2616
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
Definition: vp3.c:1350
static const int8_t transform[32][32]
Definition: hevcdsp.c:27
also ITU-R BT1361
Definition: pixfmt.h:459
Half-pel DSP functions.
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
int superblock_count
Definition: vp3.c:156
Libavcodec external API header.
int entries
Definition: vp3.c:260
static const uint16_t ac_bias_0[16][32][2]
Definition: vp3data.h:993
enum AVCodecID codec_id
Definition: avcodec.h:1543
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:257
int16_t * dct_tokens[3][64]
This is a list of all tokens in bitstream order.
Definition: vp3.c:209
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:650
int skip_loop_filter
Definition: vp3.c:150
int debug
debug
Definition: avcodec.h:2614
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
ThreadFrame current_frame
Definition: vp3.c:140
main external API structure.
Definition: avcodec.h:1533
#define RSHIFT(a, b)
Definition: common.h:54
int last_qps[3]
Definition: vp3.c:154
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
Definition: avcodec.h:1558
uint8_t qr_size[2][3][64]
Definition: vp3.c:189
op_pixels_func put_pixels_tab[4][4]
Halfpel motion compensation with rounding (a+b+1)>>1.
Definition: hpeldsp.h:56
#define PUL
static av_cold int allocate_tables(AVCodecContext *avctx)
Allocate tables for per-frame data in Vp3DecodeContext.
Definition: vp3.c:1707
int data_offset[3]
Definition: vp3.c:177
void * buf
Definition: avisynth_c.h:690
size_t crop_right
Definition: frame.h:588
GLint GLenum type
Definition: opengl_enc.c:105
int extradata_size
Definition: avcodec.h:1635
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:487
int coded_height
Definition: avcodec.h:1721
op_pixels_func put_no_rnd_pixels_tab[4][4]
Halfpel motion compensation with no rounding (a+b)>>1.
Definition: hpeldsp.h:82
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:460
#define SB_FULLY_CODED
Definition: vp3.c:60
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2157
Rational number (pair of numerator and denominator).
Definition: rational.h:58
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2150
int * nkf_coded_fragment_list
Definition: vp3.c:227
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
int num_coded_frags[3][64]
number of blocks that contain DCT coefficients at the given level or higher
Definition: vp3.c:219
int keyframe
Definition: vp3.c:141
#define TOKEN_COEFF(coeff)
Definition: vp3.c:213
#define s1
Definition: regdef.h:38
#define MODE_GOLDEN_MV
Definition: vp3.c:73
static const uint8_t vp31_dc_scale_factor[64]
Definition: vp3data.h:65
int allocate_progress
Whether to allocate progress for frame threading.
Definition: internal.h:151
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:531
#define FRAGMENT_PIXELS
Definition: vp3.c:49
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
Definition: vp3.c:2247
static int update_frames(AVCodecContext *avctx)
Release and shuffle frames after decode finishes.
Definition: vp3.c:1943
static const uint16_t superblock_run_length_vlc_table[34][2]
Definition: vp3data.h:98
#define MODE_USING_GOLDEN
Definition: vp3.c:72
uint32_t huffman_table[80][32][2]
Definition: vp3.c:262
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:553
void(* idct_put)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:41
#define MODE_INTER_FOURMV
Definition: vp3.c:74
int16_t block[64]
Definition: vp3.c:147
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:240
void(* idct_add)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:42
int v_superblock_start
Definition: vp3.c:164
int version
Definition: vp3.c:135
int * coded_fragment_list[3]
Definition: vp3.c:224
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
unsigned char * superblock_coding
Definition: vp3.c:165
common internal api header.
ThreadFrame last_frame
Definition: vp3.c:139
if(ret< 0)
Definition: vf_mcdeint.c:279
int16_t * dct_tokens_base
Definition: vp3.c:210
static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
Definition: vp3.c:1964
AVCodecContext * avctx
Definition: vp3.c:133
static const int8_t vp31_inter_dequant[64]
Definition: vp3data.h:54
VideoDSPContext vdsp
Definition: vp3.c:145
uint16_t coded_dc_scale_factor[64]
Definition: vp3.c:185
int den
Denominator.
Definition: rational.h:60
Core video DSP helper functions.
uint8_t base_matrix[384][64]
Definition: vp3.c:187
int fragment_count
Definition: vp3.c:171
void * priv_data
Definition: avcodec.h:1560
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:912
int * kf_coded_fragment_list
Definition: vp3.c:226
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
Wait for the reference frame of the current fragment.
Definition: vp3.c:1504
struct AVCodecInternal * internal
Private context used for internal data.
Definition: avcodec.h:1568
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:304
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:1620
#define MODE_INTER_PRIOR_LAST
Definition: vp3.c:71
#define MODE_INTER_NO_MV
Definition: vp3.c:67
int fragment_start[3]
Definition: vp3.c:176
int theora_tables
Definition: vp3.c:134
#define av_freep(p)
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
Definition: log.h:170
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
Definition: pixfmt.h:534
#define VLC_TYPE
Definition: vlc.h:24
#define MODE_INTER_LAST_MV
Definition: vp3.c:70
ThreadFrame golden_frame
Definition: vp3.c:138
int chroma_x_shift
Definition: vp3.c:137
#define stride
av_cold void ff_vp3dsp_init(VP3DSPContext *c, int flags)
Definition: vp3dsp.c:280
static const uint8_t vp31_filter_limit_values[64]
Definition: vp3data.h:87
#define MKTAG(a, b, c, d)
Definition: common.h:366
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
This structure stores compressed data.
Definition: avcodec.h:1422
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
called when all pixels up to row y are complete
Definition: vp3.c:1462
void ff_free_vlc(VLC *vlc)
Definition: bitstream.c:354
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1144
int16_t dc
Definition: vp3.c:53
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:968
uint8_t offset_x
Definition: vp3.c:178
uint32_t coded_ac_scale_factor[64]
Definition: vp3.c:186
static const uint8_t zero_run_get_bits[32]
Definition: vp3data.h:215
Predicted.
Definition: avutil.h:275
VLC dc_vlc[16]
Definition: vp3.c:230
void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.c:191
#define PL
int8_t(*[2] motion_val)[2]
Definition: vp3.c:182