FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hevcpred_template.c
Go to the documentation of this file.
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include "libavutil/pixdesc.h"
24 
25 #include "bit_depth_template.c"
26 #include "hevcpred.h"
27 
28 #define POS(x, y) src[(x) + stride * (y)]
29 
30 static av_always_inline void FUNC(intra_pred)(HEVCContext *s, int x0, int y0,
31  int log2_size, int c_idx)
32 {
33 #define PU(x) \
34  ((x) >> s->ps.sps->log2_min_pu_size)
35 #define MVF(x, y) \
36  (s->ref->tab_mvf[(x) + (y) * min_pu_width])
37 #define MVF_PU(x, y) \
38  MVF(PU(x0 + ((x) * (1 << hshift))), PU(y0 + ((y) * (1 << vshift))))
39 #define IS_INTRA(x, y) \
40  (MVF_PU(x, y).pred_flag == PF_INTRA)
41 #define MIN_TB_ADDR_ZS(x, y) \
42  s->ps.pps->min_tb_addr_zs[(y) * (s->ps.sps->tb_mask+2) + (x)]
43 #define EXTEND(ptr, val, len) \
44 do { \
45  pixel4 pix = PIXEL_SPLAT_X4(val); \
46  for (i = 0; i < (len); i += 4) \
47  AV_WN4P(ptr + i, pix); \
48 } while (0)
49 
50 #define EXTEND_RIGHT_CIP(ptr, start, length) \
51  for (i = start; i < (start) + (length); i += 4) \
52  if (!IS_INTRA(i, -1)) \
53  AV_WN4P(&ptr[i], a); \
54  else \
55  a = PIXEL_SPLAT_X4(ptr[i+3])
56 #define EXTEND_LEFT_CIP(ptr, start, length) \
57  for (i = start; i > (start) - (length); i--) \
58  if (!IS_INTRA(i - 1, -1)) \
59  ptr[i - 1] = ptr[i]
60 #define EXTEND_UP_CIP(ptr, start, length) \
61  for (i = (start); i > (start) - (length); i -= 4) \
62  if (!IS_INTRA(-1, i - 3)) \
63  AV_WN4P(&ptr[i - 3], a); \
64  else \
65  a = PIXEL_SPLAT_X4(ptr[i - 3])
66 #define EXTEND_DOWN_CIP(ptr, start, length) \
67  for (i = start; i < (start) + (length); i += 4) \
68  if (!IS_INTRA(-1, i)) \
69  AV_WN4P(&ptr[i], a); \
70  else \
71  a = PIXEL_SPLAT_X4(ptr[i + 3])
72 
73  HEVCLocalContext *lc = s->HEVClc;
74  int i;
75  int hshift = s->ps.sps->hshift[c_idx];
76  int vshift = s->ps.sps->vshift[c_idx];
77  int size = (1 << log2_size);
78  int size_in_luma_h = size << hshift;
79  int size_in_tbs_h = size_in_luma_h >> s->ps.sps->log2_min_tb_size;
80  int size_in_luma_v = size << vshift;
81  int size_in_tbs_v = size_in_luma_v >> s->ps.sps->log2_min_tb_size;
82  int x = x0 >> hshift;
83  int y = y0 >> vshift;
84  int x_tb = (x0 >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask;
85  int y_tb = (y0 >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask;
86 
87  int cur_tb_addr = MIN_TB_ADDR_ZS(x_tb, y_tb);
88 
89  ptrdiff_t stride = s->frame->linesize[c_idx] / sizeof(pixel);
90  pixel *src = (pixel*)s->frame->data[c_idx] + x + y * stride;
91 
92  int min_pu_width = s->ps.sps->min_pu_width;
93 
94  enum IntraPredMode mode = c_idx ? lc->tu.intra_pred_mode_c :
95  lc->tu.intra_pred_mode;
96  pixel4 a;
97  pixel left_array[2 * MAX_TB_SIZE + 1];
98  pixel filtered_left_array[2 * MAX_TB_SIZE + 1];
99  pixel top_array[2 * MAX_TB_SIZE + 1];
100  pixel filtered_top_array[2 * MAX_TB_SIZE + 1];
101 
102  pixel *left = left_array + 1;
103  pixel *top = top_array + 1;
104  pixel *filtered_left = filtered_left_array + 1;
105  pixel *filtered_top = filtered_top_array + 1;
106  int cand_bottom_left = lc->na.cand_bottom_left && cur_tb_addr > MIN_TB_ADDR_ZS( x_tb - 1, (y_tb + size_in_tbs_v) & s->ps.sps->tb_mask);
107  int cand_left = lc->na.cand_left;
108  int cand_up_left = lc->na.cand_up_left;
109  int cand_up = lc->na.cand_up;
110  int cand_up_right = lc->na.cand_up_right && cur_tb_addr > MIN_TB_ADDR_ZS((x_tb + size_in_tbs_h) & s->ps.sps->tb_mask, y_tb - 1);
111 
112  int bottom_left_size = (FFMIN(y0 + 2 * size_in_luma_v, s->ps.sps->height) -
113  (y0 + size_in_luma_v)) >> vshift;
114  int top_right_size = (FFMIN(x0 + 2 * size_in_luma_h, s->ps.sps->width) -
115  (x0 + size_in_luma_h)) >> hshift;
116 
117  if (s->ps.pps->constrained_intra_pred_flag == 1) {
118  int size_in_luma_pu_v = PU(size_in_luma_v);
119  int size_in_luma_pu_h = PU(size_in_luma_h);
120  int on_pu_edge_x = !av_mod_uintp2(x0, s->ps.sps->log2_min_pu_size);
121  int on_pu_edge_y = !av_mod_uintp2(y0, s->ps.sps->log2_min_pu_size);
122  if (!size_in_luma_pu_h)
123  size_in_luma_pu_h++;
124  if (cand_bottom_left == 1 && on_pu_edge_x) {
125  int x_left_pu = PU(x0 - 1);
126  int y_bottom_pu = PU(y0 + size_in_luma_v);
127  int max = FFMIN(size_in_luma_pu_v, s->ps.sps->min_pu_height - y_bottom_pu);
128  cand_bottom_left = 0;
129  for (i = 0; i < max; i += 2)
130  cand_bottom_left |= (MVF(x_left_pu, y_bottom_pu + i).pred_flag == PF_INTRA);
131  }
132  if (cand_left == 1 && on_pu_edge_x) {
133  int x_left_pu = PU(x0 - 1);
134  int y_left_pu = PU(y0);
135  int max = FFMIN(size_in_luma_pu_v, s->ps.sps->min_pu_height - y_left_pu);
136  cand_left = 0;
137  for (i = 0; i < max; i += 2)
138  cand_left |= (MVF(x_left_pu, y_left_pu + i).pred_flag == PF_INTRA);
139  }
140  if (cand_up_left == 1) {
141  int x_left_pu = PU(x0 - 1);
142  int y_top_pu = PU(y0 - 1);
143  cand_up_left = MVF(x_left_pu, y_top_pu).pred_flag == PF_INTRA;
144  }
145  if (cand_up == 1 && on_pu_edge_y) {
146  int x_top_pu = PU(x0);
147  int y_top_pu = PU(y0 - 1);
148  int max = FFMIN(size_in_luma_pu_h, s->ps.sps->min_pu_width - x_top_pu);
149  cand_up = 0;
150  for (i = 0; i < max; i += 2)
151  cand_up |= (MVF(x_top_pu + i, y_top_pu).pred_flag == PF_INTRA);
152  }
153  if (cand_up_right == 1 && on_pu_edge_y) {
154  int y_top_pu = PU(y0 - 1);
155  int x_right_pu = PU(x0 + size_in_luma_h);
156  int max = FFMIN(size_in_luma_pu_h, s->ps.sps->min_pu_width - x_right_pu);
157  cand_up_right = 0;
158  for (i = 0; i < max; i += 2)
159  cand_up_right |= (MVF(x_right_pu + i, y_top_pu).pred_flag == PF_INTRA);
160  }
161  memset(left, 128, 2 * MAX_TB_SIZE*sizeof(pixel));
162  memset(top , 128, 2 * MAX_TB_SIZE*sizeof(pixel));
163  top[-1] = 128;
164  }
165  if (cand_up_left) {
166  left[-1] = POS(-1, -1);
167  top[-1] = left[-1];
168  }
169  if (cand_up)
170  memcpy(top, src - stride, size * sizeof(pixel));
171  if (cand_up_right) {
172  memcpy(top + size, src - stride + size, size * sizeof(pixel));
173  EXTEND(top + size + top_right_size, POS(size + top_right_size - 1, -1),
174  size - top_right_size);
175  }
176  if (cand_left)
177  for (i = 0; i < size; i++)
178  left[i] = POS(-1, i);
179  if (cand_bottom_left) {
180  for (i = size; i < size + bottom_left_size; i++)
181  left[i] = POS(-1, i);
182  EXTEND(left + size + bottom_left_size, POS(-1, size + bottom_left_size - 1),
183  size - bottom_left_size);
184  }
185 
186  if (s->ps.pps->constrained_intra_pred_flag == 1) {
187  if (cand_bottom_left || cand_left || cand_up_left || cand_up || cand_up_right) {
188  int size_max_x = x0 + ((2 * size) << hshift) < s->ps.sps->width ?
189  2 * size : (s->ps.sps->width - x0) >> hshift;
190  int size_max_y = y0 + ((2 * size) << vshift) < s->ps.sps->height ?
191  2 * size : (s->ps.sps->height - y0) >> vshift;
192  int j = size + (cand_bottom_left? bottom_left_size: 0) -1;
193  if (!cand_up_right) {
194  size_max_x = x0 + ((size) << hshift) < s->ps.sps->width ?
195  size : (s->ps.sps->width - x0) >> hshift;
196  }
197  if (!cand_bottom_left) {
198  size_max_y = y0 + (( size) << vshift) < s->ps.sps->height ?
199  size : (s->ps.sps->height - y0) >> vshift;
200  }
201  if (cand_bottom_left || cand_left || cand_up_left) {
202  while (j > -1 && !IS_INTRA(-1, j))
203  j--;
204  if (!IS_INTRA(-1, j)) {
205  j = 0;
206  while (j < size_max_x && !IS_INTRA(j, -1))
207  j++;
208  EXTEND_LEFT_CIP(top, j, j + 1);
209  left[-1] = top[-1];
210  }
211  } else {
212  j = 0;
213  while (j < size_max_x && !IS_INTRA(j, -1))
214  j++;
215  if (j > 0)
216  if (x0 > 0) {
217  EXTEND_LEFT_CIP(top, j, j + 1);
218  } else {
219  EXTEND_LEFT_CIP(top, j, j);
220  top[-1] = top[0];
221  }
222  left[-1] = top[-1];
223  }
224  left[-1] = top[-1];
225  if (cand_bottom_left || cand_left) {
226  a = PIXEL_SPLAT_X4(left[-1]);
227  EXTEND_DOWN_CIP(left, 0, size_max_y);
228  }
229  if (!cand_left)
230  EXTEND(left, left[-1], size);
231  if (!cand_bottom_left)
232  EXTEND(left + size, left[size - 1], size);
233  if (x0 != 0 && y0 != 0) {
234  a = PIXEL_SPLAT_X4(left[size_max_y - 1]);
235  EXTEND_UP_CIP(left, size_max_y - 1, size_max_y);
236  if (!IS_INTRA(-1, - 1))
237  left[-1] = left[0];
238  } else if (x0 == 0) {
239  EXTEND(left, 0, size_max_y);
240  } else {
241  a = PIXEL_SPLAT_X4(left[size_max_y - 1]);
242  EXTEND_UP_CIP(left, size_max_y - 1, size_max_y);
243  }
244  top[-1] = left[-1];
245  if (y0 != 0) {
246  a = PIXEL_SPLAT_X4(left[-1]);
247  EXTEND_RIGHT_CIP(top, 0, size_max_x);
248  }
249  }
250  }
251  // Infer the unavailable samples
252  if (!cand_bottom_left) {
253  if (cand_left) {
254  EXTEND(left + size, left[size - 1], size);
255  } else if (cand_up_left) {
256  EXTEND(left, left[-1], 2 * size);
257  cand_left = 1;
258  } else if (cand_up) {
259  left[-1] = top[0];
260  EXTEND(left, left[-1], 2 * size);
261  cand_up_left = 1;
262  cand_left = 1;
263  } else if (cand_up_right) {
264  EXTEND(top, top[size], size);
265  left[-1] = top[size];
266  EXTEND(left, left[-1], 2 * size);
267  cand_up = 1;
268  cand_up_left = 1;
269  cand_left = 1;
270  } else { // No samples available
271  left[-1] = (1 << (BIT_DEPTH - 1));
272  EXTEND(top, left[-1], 2 * size);
273  EXTEND(left, left[-1], 2 * size);
274  }
275  }
276 
277  if (!cand_left)
278  EXTEND(left, left[size], size);
279  if (!cand_up_left) {
280  left[-1] = left[0];
281  }
282  if (!cand_up)
283  EXTEND(top, left[-1], size);
284  if (!cand_up_right)
285  EXTEND(top + size, top[size - 1], size);
286 
287  top[-1] = left[-1];
288 
289  // Filtering process
290  if (!s->ps.sps->intra_smoothing_disabled_flag && (c_idx == 0 || s->ps.sps->chroma_format_idc == 3)) {
291  if (mode != INTRA_DC && size != 4){
292  int intra_hor_ver_dist_thresh[] = { 7, 1, 0 };
293  int min_dist_vert_hor = FFMIN(FFABS((int)(mode - 26U)),
294  FFABS((int)(mode - 10U)));
295  if (min_dist_vert_hor > intra_hor_ver_dist_thresh[log2_size - 3]) {
296  int threshold = 1 << (BIT_DEPTH - 5);
297  if (s->ps.sps->sps_strong_intra_smoothing_enable_flag && c_idx == 0 &&
298  log2_size == 5 &&
299  FFABS(top[-1] + top[63] - 2 * top[31]) < threshold &&
300  FFABS(left[-1] + left[63] - 2 * left[31]) < threshold) {
301  // We can't just overwrite values in top because it could be
302  // a pointer into src
303  filtered_top[-1] = top[-1];
304  filtered_top[63] = top[63];
305  for (i = 0; i < 63; i++)
306  filtered_top[i] = ((64 - (i + 1)) * top[-1] +
307  (i + 1) * top[63] + 32) >> 6;
308  for (i = 0; i < 63; i++)
309  left[i] = ((64 - (i + 1)) * left[-1] +
310  (i + 1) * left[63] + 32) >> 6;
311  top = filtered_top;
312  } else {
313  filtered_left[2 * size - 1] = left[2 * size - 1];
314  filtered_top[2 * size - 1] = top[2 * size - 1];
315  for (i = 2 * size - 2; i >= 0; i--)
316  filtered_left[i] = (left[i + 1] + 2 * left[i] +
317  left[i - 1] + 2) >> 2;
318  filtered_top[-1] =
319  filtered_left[-1] = (left[0] + 2 * left[-1] + top[0] + 2) >> 2;
320  for (i = 2 * size - 2; i >= 0; i--)
321  filtered_top[i] = (top[i + 1] + 2 * top[i] +
322  top[i - 1] + 2) >> 2;
323  left = filtered_left;
324  top = filtered_top;
325  }
326  }
327  }
328  }
329 
330  switch (mode) {
331  case INTRA_PLANAR:
332  s->hpc.pred_planar[log2_size - 2]((uint8_t *)src, (uint8_t *)top,
333  (uint8_t *)left, stride);
334  break;
335  case INTRA_DC:
336  s->hpc.pred_dc((uint8_t *)src, (uint8_t *)top,
337  (uint8_t *)left, stride, log2_size, c_idx);
338  break;
339  default:
340  s->hpc.pred_angular[log2_size - 2]((uint8_t *)src, (uint8_t *)top,
341  (uint8_t *)left, stride, c_idx,
342  mode);
343  break;
344  }
345 }
346 
347 #define INTRA_PRED(size) \
348 static void FUNC(intra_pred_ ## size)(HEVCContext *s, int x0, int y0, int c_idx) \
349 { \
350  FUNC(intra_pred)(s, x0, y0, size, c_idx); \
351 }
352 
353 INTRA_PRED(2)
354 INTRA_PRED(3)
355 INTRA_PRED(4)
356 INTRA_PRED(5)
357 
358 #undef INTRA_PRED
359 
360 static av_always_inline void FUNC(pred_planar)(uint8_t *_src, const uint8_t *_top,
361  const uint8_t *_left, ptrdiff_t stride,
362  int trafo_size)
363 {
364  int x, y;
365  pixel *src = (pixel *)_src;
366  const pixel *top = (const pixel *)_top;
367  const pixel *left = (const pixel *)_left;
368  int size = 1 << trafo_size;
369  for (y = 0; y < size; y++)
370  for (x = 0; x < size; x++)
371  POS(x, y) = ((size - 1 - x) * left[y] + (x + 1) * top[size] +
372  (size - 1 - y) * top[x] + (y + 1) * left[size] + size) >> (trafo_size + 1);
373 }
374 
375 #define PRED_PLANAR(size)\
376 static void FUNC(pred_planar_ ## size)(uint8_t *src, const uint8_t *top, \
377  const uint8_t *left, ptrdiff_t stride) \
378 { \
379  FUNC(pred_planar)(src, top, left, stride, size + 2); \
380 }
381 
382 PRED_PLANAR(0)
383 PRED_PLANAR(1)
384 PRED_PLANAR(2)
385 PRED_PLANAR(3)
386 
387 #undef PRED_PLANAR
388 
389 static void FUNC(pred_dc)(uint8_t *_src, const uint8_t *_top,
390  const uint8_t *_left,
391  ptrdiff_t stride, int log2_size, int c_idx)
392 {
393  int i, j, x, y;
394  int size = (1 << log2_size);
395  pixel *src = (pixel *)_src;
396  const pixel *top = (const pixel *)_top;
397  const pixel *left = (const pixel *)_left;
398  int dc = size;
399  pixel4 a;
400  for (i = 0; i < size; i++)
401  dc += left[i] + top[i];
402 
403  dc >>= log2_size + 1;
404 
405  a = PIXEL_SPLAT_X4(dc);
406 
407  for (i = 0; i < size; i++)
408  for (j = 0; j < size; j+=4)
409  AV_WN4P(&POS(j, i), a);
410 
411  if (c_idx == 0 && size < 32) {
412  POS(0, 0) = (left[0] + 2 * dc + top[0] + 2) >> 2;
413  for (x = 1; x < size; x++)
414  POS(x, 0) = (top[x] + 3 * dc + 2) >> 2;
415  for (y = 1; y < size; y++)
416  POS(0, y) = (left[y] + 3 * dc + 2) >> 2;
417  }
418 }
419 
421  const uint8_t *_top,
422  const uint8_t *_left,
423  ptrdiff_t stride, int c_idx,
424  int mode, int size)
425 {
426  int x, y;
427  pixel *src = (pixel *)_src;
428  const pixel *top = (const pixel *)_top;
429  const pixel *left = (const pixel *)_left;
430 
431  static const int intra_pred_angle[] = {
432  32, 26, 21, 17, 13, 9, 5, 2, 0, -2, -5, -9, -13, -17, -21, -26, -32,
433  -26, -21, -17, -13, -9, -5, -2, 0, 2, 5, 9, 13, 17, 21, 26, 32
434  };
435  static const int inv_angle[] = {
436  -4096, -1638, -910, -630, -482, -390, -315, -256, -315, -390, -482,
437  -630, -910, -1638, -4096
438  };
439 
440  int angle = intra_pred_angle[mode - 2];
441  pixel ref_array[3 * MAX_TB_SIZE + 4];
442  pixel *ref_tmp = ref_array + size;
443  const pixel *ref;
444  int last = (size * angle) >> 5;
445 
446  if (mode >= 18) {
447  ref = top - 1;
448  if (angle < 0 && last < -1) {
449  for (x = 0; x <= size; x += 4)
450  AV_WN4P(&ref_tmp[x], AV_RN4P(&top[x - 1]));
451  for (x = last; x <= -1; x++)
452  ref_tmp[x] = left[-1 + ((x * inv_angle[mode - 11] + 128) >> 8)];
453  ref = ref_tmp;
454  }
455 
456  for (y = 0; y < size; y++) {
457  int idx = ((y + 1) * angle) >> 5;
458  int fact = ((y + 1) * angle) & 31;
459  if (fact) {
460  for (x = 0; x < size; x += 4) {
461  POS(x , y) = ((32 - fact) * ref[x + idx + 1] +
462  fact * ref[x + idx + 2] + 16) >> 5;
463  POS(x + 1, y) = ((32 - fact) * ref[x + 1 + idx + 1] +
464  fact * ref[x + 1 + idx + 2] + 16) >> 5;
465  POS(x + 2, y) = ((32 - fact) * ref[x + 2 + idx + 1] +
466  fact * ref[x + 2 + idx + 2] + 16) >> 5;
467  POS(x + 3, y) = ((32 - fact) * ref[x + 3 + idx + 1] +
468  fact * ref[x + 3 + idx + 2] + 16) >> 5;
469  }
470  } else {
471  for (x = 0; x < size; x += 4)
472  AV_WN4P(&POS(x, y), AV_RN4P(&ref[x + idx + 1]));
473  }
474  }
475  if (mode == 26 && c_idx == 0 && size < 32) {
476  for (y = 0; y < size; y++)
477  POS(0, y) = av_clip_pixel(top[0] + ((left[y] - left[-1]) >> 1));
478  }
479  } else {
480  ref = left - 1;
481  if (angle < 0 && last < -1) {
482  for (x = 0; x <= size; x += 4)
483  AV_WN4P(&ref_tmp[x], AV_RN4P(&left[x - 1]));
484  for (x = last; x <= -1; x++)
485  ref_tmp[x] = top[-1 + ((x * inv_angle[mode - 11] + 128) >> 8)];
486  ref = ref_tmp;
487  }
488 
489  for (x = 0; x < size; x++) {
490  int idx = ((x + 1) * angle) >> 5;
491  int fact = ((x + 1) * angle) & 31;
492  if (fact) {
493  for (y = 0; y < size; y++) {
494  POS(x, y) = ((32 - fact) * ref[y + idx + 1] +
495  fact * ref[y + idx + 2] + 16) >> 5;
496  }
497  } else {
498  for (y = 0; y < size; y++)
499  POS(x, y) = ref[y + idx + 1];
500  }
501  }
502  if (mode == 10 && c_idx == 0 && size < 32) {
503  for (x = 0; x < size; x += 4) {
504  POS(x, 0) = av_clip_pixel(left[0] + ((top[x ] - top[-1]) >> 1));
505  POS(x + 1, 0) = av_clip_pixel(left[0] + ((top[x + 1] - top[-1]) >> 1));
506  POS(x + 2, 0) = av_clip_pixel(left[0] + ((top[x + 2] - top[-1]) >> 1));
507  POS(x + 3, 0) = av_clip_pixel(left[0] + ((top[x + 3] - top[-1]) >> 1));
508  }
509  }
510  }
511 }
512 
513 static void FUNC(pred_angular_0)(uint8_t *src, const uint8_t *top,
514  const uint8_t *left,
515  ptrdiff_t stride, int c_idx, int mode)
516 {
517  FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 2);
518 }
519 
520 static void FUNC(pred_angular_1)(uint8_t *src, const uint8_t *top,
521  const uint8_t *left,
522  ptrdiff_t stride, int c_idx, int mode)
523 {
524  FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 3);
525 }
526 
527 static void FUNC(pred_angular_2)(uint8_t *src, const uint8_t *top,
528  const uint8_t *left,
529  ptrdiff_t stride, int c_idx, int mode)
530 {
531  FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 4);
532 }
533 
534 static void FUNC(pred_angular_3)(uint8_t *src, const uint8_t *top,
535  const uint8_t *left,
536  ptrdiff_t stride, int c_idx, int mode)
537 {
538  FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 5);
539 }
540 
541 #undef EXTEND_LEFT_CIP
542 #undef EXTEND_RIGHT_CIP
543 #undef EXTEND_UP_CIP
544 #undef EXTEND_DOWN_CIP
545 #undef IS_INTRA
546 #undef MVF_PU
547 #undef MVF
548 #undef PU
549 #undef EXTEND
550 #undef MIN_TB_ADDR_ZS
551 #undef POS
NeighbourAvailable na
Definition: hevcdec.h:372
#define MIN_TB_ADDR_ZS(x, y)
#define BIT_DEPTH
#define INTRA_PRED(size)
#define pixel4
#define src
Definition: vp8dsp.c:254
#define av_clip_pixel(a)
#define EXTEND_RIGHT_CIP(ptr, start, length)
uint8_t
#define EXTEND(ptr, val, len)
ptrdiff_t size
Definition: opengl_enc.c:101
static void FUNC() pred_angular_2(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
#define U(x)
Definition: vp56_arith.h:37
static void FUNC() pred_angular_3(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
#define FUNC(a)
#define PRED_PLANAR(size)
#define AV_WN4P
int intra_pred_mode
Definition: hevcdec.h:291
#define FFMIN(a, b)
Definition: common.h:96
static void FUNC() pred_dc(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int log2_size, int c_idx)
#define EXTEND_DOWN_CIP(ptr, start, length)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int intra_pred_mode_c
Definition: hevcdec.h:292
#define PU(x)
static av_always_inline void FUNC() intra_pred(HEVCContext *s, int x0, int y0, int log2_size, int c_idx)
IntraPredMode
Definition: hevcdec.h:173
TransformUnit tu
Definition: hevcdec.h:355
#define POS(x, y)
uint8_t pixel
Definition: tiny_ssim.c:42
#define MAX_TB_SIZE
Definition: hevcdec.h:51
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
#define MVF(x, y)
#define EXTEND_UP_CIP(ptr, start, length)
static av_always_inline void FUNC() pred_planar(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int trafo_size)
#define IS_INTRA(x, y)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
#define EXTEND_LEFT_CIP(ptr, start, length)
#define av_always_inline
Definition: attributes.h:39
#define stride
static void FUNC() pred_angular_1(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
static av_always_inline void FUNC() pred_angular(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int c_idx, int mode, int size)
mode
Use these values in ebur128_init (or'ed).
Definition: ebur128.h:83
static void FUNC() pred_angular_0(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
#define PIXEL_SPLAT_X4(x)
#define AV_RN4P