51 #define MIN_CHANNELS 1
52 #define MAX_CHANNELS 8
53 #define MAX_JS_PAIRS 8 / 2
55 #define JOINT_STEREO 0x12
58 #define SAMPLES_PER_FRAME 1024
140 for (i = 0; i < 128; i++)
141 FFSWAP(
float, input[i], input[255 - i]);
158 uint32_t *output = (uint32_t *)out;
160 off = (intptr_t)input & 3;
161 buf = (
const uint32_t *)(input - off);
163 c =
av_be2ne32((0x537F6103U >> (off * 8)) | (0x537F6103U << (32 - (off * 8))));
167 for (i = 0; i < bytes / 4; i++)
168 output[i] = c ^ buf[i];
182 for (i = 0, j = 255; i < 128; i++, j--) {
183 float wi = sin(((i + 0.5) / 256.0 - 0.5) *
M_PI) + 1.0;
184 float wj = sin(((j + 0.5) / 256.0 - 0.5) *
M_PI) + 1.0;
185 float w = 0.5 * (wi * wi + wj * wj);
213 int coding_flag,
int *mantissas,
216 int i, code, huff_symb;
221 if (coding_flag != 0) {
226 for (i = 0; i < num_codes; i++) {
234 for (i = 0; i < num_codes; i++) {
246 for (i = 0; i < num_codes; i++) {
247 huff_symb =
get_vlc2(gb, spectral_coeff_tab[selector-1].
table,
248 spectral_coeff_tab[selector-1].bits, 3);
250 code = huff_symb >> 1;
256 for (i = 0; i < num_codes; i++) {
257 huff_symb =
get_vlc2(gb, spectral_coeff_tab[selector - 1].
table,
258 spectral_coeff_tab[selector - 1].bits, 3);
273 int num_subbands, coding_mode, i, j, first, last, subband_size;
274 int subband_vlc_index[32], sf_index[32];
282 for (i = 0; i <= num_subbands; i++)
283 subband_vlc_index[i] =
get_bits(gb, 3);
286 for (i = 0; i <= num_subbands; i++) {
287 if (subband_vlc_index[i] != 0)
291 for (i = 0; i <= num_subbands; i++) {
295 subband_size = last - first;
297 if (subband_vlc_index[i] != 0) {
302 mantissas, subband_size);
309 for (j = 0; first < last; first++, j++)
310 output[first] = mantissas[j] * scale_factor;
313 memset(output + first, 0, subband_size *
sizeof(*output));
333 int nb_components, coding_mode_selector, coding_mode;
334 int band_flags[4], mantissa[8];
335 int component_count = 0;
340 if (nb_components == 0)
343 coding_mode_selector =
get_bits(gb, 2);
344 if (coding_mode_selector == 2)
347 coding_mode = coding_mode_selector & 1;
349 for (i = 0; i < nb_components; i++) {
350 int coded_values_per_component, quant_step_index;
352 for (b = 0; b <= num_bands; b++)
355 coded_values_per_component =
get_bits(gb, 3);
358 if (quant_step_index <= 1)
361 if (coding_mode_selector == 3)
364 for (b = 0; b < (num_bands + 1) * 4; b++) {
365 int coded_components;
367 if (band_flags[b >> 2] == 0)
372 for (c = 0; c < coded_components; c++) {
374 int sf_index, coded_values, max_coded_values;
378 if (component_count >= 64)
384 coded_values = coded_values_per_component + 1;
385 coded_values =
FFMIN(max_coded_values, coded_values);
391 mantissa, coded_values);
396 for (m = 0; m < coded_values; m++)
397 cmp->
coef[m] = mantissa[m] * scale_factor;
404 return component_count;
421 for (b = 0; b <= num_bands; b++) {
429 if (j && loc[j] <= loc[j - 1])
436 gain[b].num_points = 0;
452 int i, j, last_pos = -1;
453 float *input, *output;
455 for (i = 0; i < num_components; i++) {
456 last_pos =
FFMAX(components[i].pos + components[i].num_coefs, last_pos);
457 input = components[i].
coef;
458 output = &spectrum[components[i].
pos];
460 for (j = 0; j < components[i].num_coefs; j++)
461 output[j] += input[j];
467 #define INTERPOLATE(old, new, nsample) \
468 ((old) + (nsample) * 0.125 * ((new) - (old)))
473 int i, nsample, band;
474 float mc1_l, mc1_r, mc2_l, mc2_r;
476 for (i = 0, band = 0; band < 4 * 256; band += 256, i++) {
477 int s1 = prev_code[i];
478 int s2 = curr_code[i];
489 for (; nsample < band + 8; nsample++) {
490 float c1 = su1[nsample];
491 float c2 = su2[nsample];
492 c2 = c1 *
INTERPOLATE(mc1_l, mc2_l, nsample - band) +
495 su2[nsample] = c1 * 2.0 -
c2;
502 for (; nsample < band + 256; nsample++) {
503 float c1 = su1[nsample];
504 float c2 = su2[nsample];
505 su1[nsample] = c2 * 2.0;
506 su2[nsample] = (c1 -
c2) * 2.0;
510 for (; nsample < band + 256; nsample++) {
511 float c1 = su1[nsample];
512 float c2 = su2[nsample];
513 su1[nsample] = (c1 +
c2) * 2.0;
514 su2[nsample] = c2 * -2.0;
519 for (; nsample < band + 256; nsample++) {
520 float c1 = su1[nsample];
521 float c2 = su2[nsample];
522 su1[nsample] = c1 +
c2;
523 su2[nsample] = c1 -
c2;
538 ch[0] = (index & 7) / 7.0;
539 ch[1] = sqrt(2 - ch[0] * ch[0]);
541 FFSWAP(
float, ch[0], ch[1]);
551 if (p3[1] != 7 || p3[3] != 7) {
555 for (band = 256; band < 4 * 256; band += 256) {
556 for (nsample = band; nsample < band + 8; nsample++) {
557 su1[nsample] *=
INTERPOLATE(w[0][0], w[0][1], nsample - band);
558 su2[nsample] *=
INTERPOLATE(w[1][0], w[1][1], nsample - band);
560 for(; nsample < band + 256; nsample++) {
561 su1[nsample] *= w[1][0];
562 su2[nsample] *= w[1][1];
578 int channel_num,
int coding_mode)
580 int band, ret, num_subbands, last_tonal, num_bands;
584 if (coding_mode ==
JOINT_STEREO && (channel_num % 2) == 1) {
619 num_bands =
FFMAX((last_tonal + 256) >> 8, num_bands);
623 for (band = 0; band < 4; band++) {
625 if (band <= num_bands)
634 256, &output[band * 256]);
656 int js_pair, js_block_align;
660 for (ch = 0; ch < avctx->
channels; ch = ch + 2) {
662 js_databuf = databuf + js_pair * js_block_align;
666 js_databuf, js_block_align * 8);
679 for (i = 0; i < js_block_align / 2; i++, ptr1++, ptr2--)
682 const uint8_t *ptr2 = js_databuf + js_block_align - 1;
683 for (i = 0; i < js_block_align; i++)
689 for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
690 if (i >= js_block_align)
707 for (i = 0; i < 4; i++) {
729 for (i = 0; i < avctx->
channels; i++) {
743 for (i = 0; i < avctx->
channels; i++) {
744 float *p1 = out_samples[i];
745 float *p2 = p1 + 256;
746 float *p3 = p2 + 256;
747 float *p4 = p3 + 256;
757 int size,
float **out_samples)
766 for (i = 0; i < avctx->
channels; i++) {
777 for (i = 0; i < avctx->
channels; i++) {
778 float *p1 = out_samples[i];
779 float *p2 = p1 + 256;
780 float *p3 = p2 + 256;
781 float *p4 = p3 + 256;
791 int *got_frame_ptr,
AVPacket *avpkt)
795 int buf_size = avpkt->
size;
800 if (buf_size < avctx->block_align) {
802 "Frame too small (%d bytes). Truncated file?\n", buf_size);
831 int *got_frame_ptr,
AVPacket *avpkt)
860 for (i = 0; i < 7; i++) {
872 static int static_init_done;
874 int version, delay, samples_per_frame, frame_factor;
883 if (!static_init_done)
885 static_init_done = 1;
896 bytestream_get_le16(&edata_ptr));
900 bytestream_get_le16(&edata_ptr));
901 frame_factor = bytestream_get_le16(&edata_ptr);
903 bytestream_get_le16(&edata_ptr));
922 version = bytestream_get_be32(&edata_ptr);
923 samples_per_frame = bytestream_get_be16(&edata_ptr);
924 delay = bytestream_get_be16(&edata_ptr);
947 if (delay != 0x88E) {
993 for (i = 0; i < 4; i++) {
1028 .long_name =
NULL_IF_CONFIG_SMALL(
"ATRAC3 AL (Adaptive TRansform Acoustic Coding 3 Advanced Lossless)"),
static const uint16_t atrac3_vlc_offs[9]
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
This structure describes decoded (raw) audio or video data.
static void reverse_matrixing(float *su1, float *su2, int *prev_code, int *curr_code)
ptrdiff_t const GLvoid * data
uint8_t * decoded_bytes_buffer
data buffers
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int add_tonal_components(float *spectrum, int num_components, TonalComponent *components)
Combine the tonal band spectrum and regular band spectrum.
static const uint8_t clc_length_tab[8]
static av_cold int init(AVCodecContext *avctx)
static const uint8_t *const huff_codes[7]
#define SAMPLES_PER_FRAME
TonalComponent components[64]
void ff_atrac_iqmf(float *inlo, float *inhi, unsigned int nIn, float *pOut, float *delayBuf, float *temp)
Quadrature mirror synthesis filter.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
static void imlt(ATRAC3Context *q, float *input, float *output, int odd_band)
Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands caused ...
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs...
static int get_sbits(GetBitContext *s, int n)
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Macro definitions for various function/variable attributes.
int lev_code[7]
level at corresponding control point
float ff_atrac_sf_table[64]
static const uint8_t *const huff_bits[7]
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
enum AVSampleFormat sample_fmt
audio sample format
static void channel_weighting(float *su1, float *su2, int *p3)
static float mdct_window[MDCT_SIZE]
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static const int8_t mantissa_clc_tab[4]
int matrix_coeff_index_now[MAX_JS_PAIRS][4]
static const float inv_max_quant[8]
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
bitstream reader API header.
int loc_code[7]
location of gain control points
static int atrac3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
static const uint16_t table[]
static int decode_spectrum(GetBitContext *gb, float *output)
Restore the quantized band spectrum coefficients.
static int get_bits_left(GetBitContext *gb)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
#define init_vlc(vlc, nb_bits, nb_codes,bits, bits_wrap, bits_size,codes, codes_wrap, codes_size,flags)
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats and store the result in a vector of floats...
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
int matrix_coeff_index_next[MAX_JS_PAIRS][4]
int flags
AV_CODEC_FLAG_*.
const char * name
Name of the codec implementation.
Gain compensation context structure.
av_cold void ff_atrac_init_gain_compensation(AtracGCContext *gctx, int id2exp_offset, int loc_scale)
Initialize gain compensation context.
void(* imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
float spectrum[SAMPLES_PER_FRAME]
AVCodec ff_atrac3al_decoder
static const uint16_t subband_tab[33]
static int decode_frame(AVCodecContext *avctx, const uint8_t *databuf, float **out_samples)
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static void get_channel_weights(int index, int flag, float ch[2])
static const int8_t mantissa_vlc_tab[18]
float prev_frame[SAMPLES_PER_FRAME]
float imdct_buf[SAMPLES_PER_FRAME]
static int decode_bytes(const uint8_t *input, uint8_t *out, int bytes)
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
static av_always_inline int cmp(MpegEncContext *s, const int x, const int y, const int subx, const int suby, const int size, const int h, int ref_index, int src_index, me_cmp_func cmp_func, me_cmp_func chroma_cmp_func, const int flags)
compares a block (either a full macroblock or a partition thereof) against a proposed motion-compensa...
static VLC_TYPE atrac3_vlc_table[4096][2]
static int decode_gain_control(GetBitContext *gb, GainBlock *block, int num_bands)
Decode gain parameters for the coded bands.
Gain control parameters for one subband.
Libavcodec external API header.
AVSampleFormat
Audio sample formats.
static void read_quant_spectral_coeffs(GetBitContext *gb, int selector, int coding_flag, int *mantissas, int num_codes)
Mantissa decoding.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
main external API structure.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int coding_mode
stream data
Replacements for frequently missing libm functions.
static unsigned int get_bits1(GetBitContext *s)
static void skip_bits(GetBitContext *s, int n)
static av_cold int atrac3_decode_close(AVCodecContext *avctx)
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
static av_cold void init_imdct_window(void)
int num_points
number of gain control points
static av_cold int atrac3_decode_init(AVCodecContext *avctx)
static int atrac3al_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
common internal api header.
int scrambled_stream
extradata
#define INIT_VLC_USE_NEW_STATIC
static VLC spectral_coeff_tab[7]
static int al_decode_frame(AVCodecContext *avctx, const uint8_t *databuf, int size, float **out_samples)
float delay_buf1[46]
qmf delay buffers
#define AV_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
AVCodec ff_atrac3_decoder
static const float matrix_coeffs[8]
int channels
number of audio channels
VLC_TYPE(* table)[2]
code, bits
#define INTERPOLATE(old, new, nsample)
void ff_atrac_gain_compensation(AtracGCContext *gctx, float *in, float *prev, AtracGainInfo *gc_now, AtracGainInfo *gc_next, int num_samples, float *out)
Apply gain compensation and perform the MDCT overlapping part.
av_cold void ff_atrac_generate_tables(void)
Generate common tables.
static enum AVSampleFormat sample_fmts[]
static av_cold void atrac3_init_static_data(void)
int weighting_delay[MAX_JS_PAIRS][6]
static const uint8_t huff_tab_sizes[7]
#define FFSWAP(type, a, b)
int matrix_coeff_index_prev[MAX_JS_PAIRS][4]
joint-stereo related variables
ATRAC3 AKA RealAudio 8 compatible decoder data.
uint8_t ** extended_data
pointers to the data planes/channels.
This structure stores compressed data.
int nb_samples
number of audio samples (per channel) described by this frame
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
static int decode_tonal_components(GetBitContext *gb, TonalComponent *components, int num_bands)
Restore the quantized tonal components.
static int decode_channel_sound_unit(ATRAC3Context *q, GetBitContext *gb, ChannelUnit *snd, float *output, int channel_num, int coding_mode)
Decode a Sound Unit.
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(constuint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(constint16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(constint32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(constint64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(constfloat *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(constdouble *) pi *(INT64_C(1)<< 63)))#defineFMT_PAIR_FUNC(out, in) staticconv_func_type *constfmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};staticvoidcpy1(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, len);}staticvoidcpy2(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 2 *len);}staticvoidcpy4(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 4 *len);}staticvoidcpy8(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, constint *ch_map, intflags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) returnNULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) returnNULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case1:ctx->simd_f=cpy1;break;case2:ctx->simd_f=cpy2;break;case4:ctx->simd_f=cpy4;break;case8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);returnctx;}voidswri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}intswri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, intlen){intch;intoff=0;constintos=(out->planar?1:out->ch_count)*out->bps;unsignedmisaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){intplanes=in->planar?in->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){intplanes=out->planar?out->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){intplanes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
void * av_mallocz_array(size_t nmemb, size_t size)