FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aacsbr_template.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * Fixed point code
7  * Copyright (c) 2013
8  * MIPS Technologies, Inc., California.
9  *
10  * This file is part of FFmpeg.
11  *
12  * FFmpeg is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * FFmpeg is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with FFmpeg; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  */
26 
27 /**
28  * @file
29  * AAC Spectral Band Replication decoding functions
30  * @author Robert Swain ( rob opendot cl )
31  * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32  * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33  */
34 
35 #include "libavutil/qsort.h"
36 
37 static av_cold void aacsbr_tableinit(void)
38 {
39  int n;
40  for (n = 1; n < 320; n++)
41  sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
44 
45  for (n = 0; n < 320; n++)
47 }
48 
50 {
51  static const struct {
52  const void *sbr_codes, *sbr_bits;
53  const unsigned int table_size, elem_size;
54  } sbr_tmp[] = {
55  SBR_VLC_ROW(t_huffman_env_1_5dB),
56  SBR_VLC_ROW(f_huffman_env_1_5dB),
57  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
58  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
59  SBR_VLC_ROW(t_huffman_env_3_0dB),
60  SBR_VLC_ROW(f_huffman_env_3_0dB),
61  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
62  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
63  SBR_VLC_ROW(t_huffman_noise_3_0dB),
64  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
65  };
66 
67  // SBR VLC table initialization
68  SBR_INIT_VLC_STATIC(0, 1098);
69  SBR_INIT_VLC_STATIC(1, 1092);
70  SBR_INIT_VLC_STATIC(2, 768);
71  SBR_INIT_VLC_STATIC(3, 1026);
72  SBR_INIT_VLC_STATIC(4, 1058);
73  SBR_INIT_VLC_STATIC(5, 1052);
74  SBR_INIT_VLC_STATIC(6, 544);
75  SBR_INIT_VLC_STATIC(7, 544);
76  SBR_INIT_VLC_STATIC(8, 592);
77  SBR_INIT_VLC_STATIC(9, 512);
78 
80 
82 }
83 
84 /** Places SBR in pure upsampling mode. */
86  sbr->start = 0;
87  sbr->ready_for_dequant = 0;
88  // Init defults used in pure upsampling mode
89  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
90  sbr->m[1] = 0;
91  // Reset values for first SBR header
92  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
93  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
94 }
95 
97 {
98  if(sbr->mdct.mdct_bits)
99  return;
100  sbr->kx[0] = sbr->kx[1];
101  sbr->id_aac = id_aac;
102  sbr_turnoff(sbr);
103  sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
104  sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
105  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
106  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
107  * and scale back down at synthesis. */
108  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
109  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
110  AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
111  AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
112  aacsbr_func_ptr_init(&sbr->c);
113 }
114 
116 {
117  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
118  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
119 }
120 
121 static int qsort_comparison_function_int16(const void *a, const void *b)
122 {
123  return *(const int16_t *)a - *(const int16_t *)b;
124 }
125 
126 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
127 {
128  int i;
129  for (i = 0; i <= last_el; i++)
130  if (table[i] == needle)
131  return 1;
132  return 0;
133 }
134 
135 /// Limiter Frequency Band Table (14496-3 sp04 p198)
137 {
138  int k;
139  if (sbr->bs_limiter_bands > 0) {
140  static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
141  Q23(1.18509277094158210129f), //2^(0.49/2)
142  Q23(1.11987160404675912501f) }; //2^(0.49/3)
143  const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
144  int16_t patch_borders[7];
145  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
146 
147  patch_borders[0] = sbr->kx[1];
148  for (k = 1; k <= sbr->num_patches; k++)
149  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
150 
151  memcpy(sbr->f_tablelim, sbr->f_tablelow,
152  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
153  if (sbr->num_patches > 1)
154  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
155  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
156 
157  AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
158  uint16_t,
160 
161  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
162  while (out < sbr->f_tablelim + sbr->n_lim) {
163 #if USE_FIXED
164  if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
165 #else
166  if (*in >= *out * lim_bands_per_octave_warped) {
167 #endif /* USE_FIXED */
168  *++out = *in++;
169  } else if (*in == *out ||
170  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
171  in++;
172  sbr->n_lim--;
173  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
174  *out = *in++;
175  sbr->n_lim--;
176  } else {
177  *++out = *in++;
178  }
179  }
180  } else {
181  sbr->f_tablelim[0] = sbr->f_tablelow[0];
182  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
183  sbr->n_lim = 1;
184  }
185 }
186 
188 {
189  unsigned int cnt = get_bits_count(gb);
190  uint8_t bs_header_extra_1;
191  uint8_t bs_header_extra_2;
192  int old_bs_limiter_bands = sbr->bs_limiter_bands;
193  SpectrumParameters old_spectrum_params;
194 
195  sbr->start = 1;
196  sbr->ready_for_dequant = 0;
197 
198  // Save last spectrum parameters variables to compare to new ones
199  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
200 
201  sbr->bs_amp_res_header = get_bits1(gb);
202  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
203  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
204  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
205  skip_bits(gb, 2); // bs_reserved
206 
207  bs_header_extra_1 = get_bits1(gb);
208  bs_header_extra_2 = get_bits1(gb);
209 
210  if (bs_header_extra_1) {
211  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
214  } else {
218  }
219 
220  // Check if spectrum parameters changed
221  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
222  sbr->reset = 1;
223 
224  if (bs_header_extra_2) {
225  sbr->bs_limiter_bands = get_bits(gb, 2);
226  sbr->bs_limiter_gains = get_bits(gb, 2);
227  sbr->bs_interpol_freq = get_bits1(gb);
228  sbr->bs_smoothing_mode = get_bits1(gb);
229  } else {
230  sbr->bs_limiter_bands = 2;
231  sbr->bs_limiter_gains = 2;
232  sbr->bs_interpol_freq = 1;
233  sbr->bs_smoothing_mode = 1;
234  }
235 
236  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
237  sbr_make_f_tablelim(sbr);
238 
239  return get_bits_count(gb) - cnt;
240 }
241 
242 static int array_min_int16(const int16_t *array, int nel)
243 {
244  int i, min = array[0];
245  for (i = 1; i < nel; i++)
246  min = FFMIN(array[i], min);
247  return min;
248 }
249 
250 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
251 {
252  // Requirements (14496-3 sp04 p205)
253  if (n_master <= 0) {
254  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
255  return -1;
256  }
257  if (bs_xover_band >= n_master) {
258  av_log(avctx, AV_LOG_ERROR,
259  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
260  bs_xover_band);
261  return -1;
262  }
263  return 0;
264 }
265 
266 /// Master Frequency Band Table (14496-3 sp04 p194)
268  SpectrumParameters *spectrum)
269 {
270  unsigned int temp, max_qmf_subbands = 0;
271  unsigned int start_min, stop_min;
272  int k;
273  const int8_t *sbr_offset_ptr;
274  int16_t stop_dk[13];
275 
276  switch (sbr->sample_rate) {
277  case 16000:
278  sbr_offset_ptr = sbr_offset[0];
279  break;
280  case 22050:
281  sbr_offset_ptr = sbr_offset[1];
282  break;
283  case 24000:
284  sbr_offset_ptr = sbr_offset[2];
285  break;
286  case 32000:
287  sbr_offset_ptr = sbr_offset[3];
288  break;
289  case 44100: case 48000: case 64000:
290  sbr_offset_ptr = sbr_offset[4];
291  break;
292  case 88200: case 96000: case 128000: case 176400: case 192000:
293  sbr_offset_ptr = sbr_offset[5];
294  break;
295  default:
297  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
298  return -1;
299  }
300 
301  if (sbr->sample_rate < 32000) {
302  temp = 3000;
303  } else if (sbr->sample_rate < 64000) {
304  temp = 4000;
305  } else
306  temp = 5000;
307 
308  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
309  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
310 
311  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
312 
313  if (spectrum->bs_stop_freq < 14) {
314  sbr->k[2] = stop_min;
315  make_bands(stop_dk, stop_min, 64, 13);
316  AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
317  for (k = 0; k < spectrum->bs_stop_freq; k++)
318  sbr->k[2] += stop_dk[k];
319  } else if (spectrum->bs_stop_freq == 14) {
320  sbr->k[2] = 2*sbr->k[0];
321  } else if (spectrum->bs_stop_freq == 15) {
322  sbr->k[2] = 3*sbr->k[0];
323  } else {
325  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
326  return -1;
327  }
328  sbr->k[2] = FFMIN(64, sbr->k[2]);
329 
330  // Requirements (14496-3 sp04 p205)
331  if (sbr->sample_rate <= 32000) {
332  max_qmf_subbands = 48;
333  } else if (sbr->sample_rate == 44100) {
334  max_qmf_subbands = 35;
335  } else if (sbr->sample_rate >= 48000)
336  max_qmf_subbands = 32;
337  else
338  av_assert0(0);
339 
340  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
342  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
343  return -1;
344  }
345 
346  if (!spectrum->bs_freq_scale) {
347  int dk, k2diff;
348 
349  dk = spectrum->bs_alter_scale + 1;
350  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
352  return -1;
353 
354  for (k = 1; k <= sbr->n_master; k++)
355  sbr->f_master[k] = dk;
356 
357  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
358  if (k2diff < 0) {
359  sbr->f_master[1]--;
360  sbr->f_master[2]-= (k2diff < -1);
361  } else if (k2diff) {
362  sbr->f_master[sbr->n_master]++;
363  }
364 
365  sbr->f_master[0] = sbr->k[0];
366  for (k = 1; k <= sbr->n_master; k++)
367  sbr->f_master[k] += sbr->f_master[k - 1];
368 
369  } else {
370  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
371  int two_regions, num_bands_0;
372  int vdk0_max, vdk1_min;
373  int16_t vk0[49];
374 #if USE_FIXED
375  int tmp, nz = 0;
376 #endif /* USE_FIXED */
377 
378  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
379  two_regions = 1;
380  sbr->k[1] = 2 * sbr->k[0];
381  } else {
382  two_regions = 0;
383  sbr->k[1] = sbr->k[2];
384  }
385 
386 #if USE_FIXED
387  tmp = (sbr->k[1] << 23) / sbr->k[0];
388  while (tmp < 0x40000000) {
389  tmp <<= 1;
390  nz++;
391  }
392  tmp = fixed_log(tmp - 0x80000000);
393  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
394  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
395  num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
396 #else
397  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
398 #endif /* USE_FIXED */
399 
400  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
401  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
402  return -1;
403  }
404 
405  vk0[0] = 0;
406 
407  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
408 
409  AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
410  vdk0_max = vk0[num_bands_0];
411 
412  vk0[0] = sbr->k[0];
413  for (k = 1; k <= num_bands_0; k++) {
414  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
415  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
416  return -1;
417  }
418  vk0[k] += vk0[k-1];
419  }
420 
421  if (two_regions) {
422  int16_t vk1[49];
423 #if USE_FIXED
424  int num_bands_1;
425 
426  tmp = (sbr->k[2] << 23) / sbr->k[1];
427  nz = 0;
428  while (tmp < 0x40000000) {
429  tmp <<= 1;
430  nz++;
431  }
432  tmp = fixed_log(tmp - 0x80000000);
433  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
434  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
435  if (spectrum->bs_alter_scale)
436  tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
437  num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
438 #else
439  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
440  : 1.0f; // bs_alter_scale = {0,1}
441  int num_bands_1 = lrintf(half_bands * invwarp *
442  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
443 #endif /* USE_FIXED */
444  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
445 
446  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
447 
448  if (vdk1_min < vdk0_max) {
449  int change;
450  AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
451  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
452  vk1[1] += change;
453  vk1[num_bands_1] -= change;
454  }
455 
456  AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
457 
458  vk1[0] = sbr->k[1];
459  for (k = 1; k <= num_bands_1; k++) {
460  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
461  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
462  return -1;
463  }
464  vk1[k] += vk1[k-1];
465  }
466 
467  sbr->n_master = num_bands_0 + num_bands_1;
469  return -1;
470  memcpy(&sbr->f_master[0], vk0,
471  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
472  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
473  num_bands_1 * sizeof(sbr->f_master[0]));
474 
475  } else {
476  sbr->n_master = num_bands_0;
478  return -1;
479  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
480  }
481  }
482 
483  return 0;
484 }
485 
486 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
488 {
489  int i, k, last_k = -1, last_msb = -1, sb = 0;
490  int msb = sbr->k[0];
491  int usb = sbr->kx[1];
492  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
493 
494  sbr->num_patches = 0;
495 
496  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
497  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
498  } else
499  k = sbr->n_master;
500 
501  do {
502  int odd = 0;
503  if (k == last_k && msb == last_msb) {
504  av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
505  return AVERROR_INVALIDDATA;
506  }
507  last_k = k;
508  last_msb = msb;
509  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
510  sb = sbr->f_master[i];
511  odd = (sb + sbr->k[0]) & 1;
512  }
513 
514  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
515  // After this check the final number of patches can still be six which is
516  // illegal however the Coding Technologies decoder check stream has a final
517  // count of 6 patches
518  if (sbr->num_patches > 5) {
519  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
520  return -1;
521  }
522 
523  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
524  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
525 
526  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
527  usb = sb;
528  msb = sb;
529  sbr->num_patches++;
530  } else
531  msb = sbr->kx[1];
532 
533  if (sbr->f_master[k] - sb < 3)
534  k = sbr->n_master;
535  } while (sb != sbr->kx[1] + sbr->m[1]);
536 
537  if (sbr->num_patches > 1 &&
538  sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
539  sbr->num_patches--;
540 
541  return 0;
542 }
543 
544 /// Derived Frequency Band Tables (14496-3 sp04 p197)
546 {
547  int k, temp;
548 #if USE_FIXED
549  int nz = 0;
550 #endif /* USE_FIXED */
551 
552  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
553  sbr->n[0] = (sbr->n[1] + 1) >> 1;
554 
555  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
556  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
557  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
558  sbr->kx[1] = sbr->f_tablehigh[0];
559 
560  // Requirements (14496-3 sp04 p205)
561  if (sbr->kx[1] + sbr->m[1] > 64) {
563  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
564  return -1;
565  }
566  if (sbr->kx[1] > 32) {
567  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
568  return -1;
569  }
570 
571  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
572  temp = sbr->n[1] & 1;
573  for (k = 1; k <= sbr->n[0]; k++)
574  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
575 #if USE_FIXED
576  temp = (sbr->k[2] << 23) / sbr->kx[1];
577  while (temp < 0x40000000) {
578  temp <<= 1;
579  nz++;
580  }
581  temp = fixed_log(temp - 0x80000000);
582  temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
583  temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
584 
585  sbr->n_q = (temp + 0x400000) >> 23;
586  if (sbr->n_q < 1)
587  sbr->n_q = 1;
588 #else
590  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
591 #endif /* USE_FIXED */
592 
593  if (sbr->n_q > 5) {
594  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
595  return -1;
596  }
597 
598  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
599  temp = 0;
600  for (k = 1; k <= sbr->n_q; k++) {
601  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
602  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
603  }
604 
605  if (sbr_hf_calc_npatches(ac, sbr) < 0)
606  return -1;
607 
608  sbr_make_f_tablelim(sbr);
609 
610  sbr->data[0].f_indexnoise = 0;
611  sbr->data[1].f_indexnoise = 0;
612 
613  return 0;
614 }
615 
617  int elements)
618 {
619  int i;
620  for (i = 0; i < elements; i++) {
621  vec[i] = get_bits1(gb);
622  }
623 }
624 
625 /** ceil(log2(index+1)) */
626 static const int8_t ceil_log2[] = {
627  0, 1, 2, 2, 3, 3,
628 };
629 
631  GetBitContext *gb, SBRData *ch_data)
632 {
633  int i;
634  int bs_pointer = 0;
635  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
636  int abs_bord_trail = 16;
637  int num_rel_lead, num_rel_trail;
638  unsigned bs_num_env_old = ch_data->bs_num_env;
639  int bs_frame_class, bs_num_env;
640 
641  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
642  ch_data->bs_amp_res = sbr->bs_amp_res_header;
643  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
644 
645  switch (bs_frame_class = get_bits(gb, 2)) {
646  case FIXFIX:
647  bs_num_env = 1 << get_bits(gb, 2);
648  if (bs_num_env > 4) {
650  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
651  bs_num_env);
652  return -1;
653  }
654  ch_data->bs_num_env = bs_num_env;
655  num_rel_lead = ch_data->bs_num_env - 1;
656  if (ch_data->bs_num_env == 1)
657  ch_data->bs_amp_res = 0;
658 
659 
660  ch_data->t_env[0] = 0;
661  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
662 
663  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
664  ch_data->bs_num_env;
665  for (i = 0; i < num_rel_lead; i++)
666  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
667 
668  ch_data->bs_freq_res[1] = get_bits1(gb);
669  for (i = 1; i < ch_data->bs_num_env; i++)
670  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
671  break;
672  case FIXVAR:
673  abs_bord_trail += get_bits(gb, 2);
674  num_rel_trail = get_bits(gb, 2);
675  ch_data->bs_num_env = num_rel_trail + 1;
676  ch_data->t_env[0] = 0;
677  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
678 
679  for (i = 0; i < num_rel_trail; i++)
680  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
681  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
682 
683  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
684 
685  for (i = 0; i < ch_data->bs_num_env; i++)
686  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
687  break;
688  case VARFIX:
689  ch_data->t_env[0] = get_bits(gb, 2);
690  num_rel_lead = get_bits(gb, 2);
691  ch_data->bs_num_env = num_rel_lead + 1;
692  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
693 
694  for (i = 0; i < num_rel_lead; i++)
695  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
696 
697  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
698 
699  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
700  break;
701  case VARVAR:
702  ch_data->t_env[0] = get_bits(gb, 2);
703  abs_bord_trail += get_bits(gb, 2);
704  num_rel_lead = get_bits(gb, 2);
705  num_rel_trail = get_bits(gb, 2);
706  bs_num_env = num_rel_lead + num_rel_trail + 1;
707 
708  if (bs_num_env > 5) {
710  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
711  bs_num_env);
712  return -1;
713  }
714  ch_data->bs_num_env = bs_num_env;
715 
716  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
717 
718  for (i = 0; i < num_rel_lead; i++)
719  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
720  for (i = 0; i < num_rel_trail; i++)
721  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
722  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
723 
724  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
725 
726  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
727  break;
728  }
729  ch_data->bs_frame_class = bs_frame_class;
730 
731  av_assert0(bs_pointer >= 0);
732  if (bs_pointer > ch_data->bs_num_env + 1) {
734  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
735  bs_pointer);
736  return -1;
737  }
738 
739  for (i = 1; i <= ch_data->bs_num_env; i++) {
740  if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
741  av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
742  return -1;
743  }
744  }
745 
746  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
747 
748  ch_data->t_q[0] = ch_data->t_env[0];
749  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
750  if (ch_data->bs_num_noise > 1) {
751  int idx;
752  if (ch_data->bs_frame_class == FIXFIX) {
753  idx = ch_data->bs_num_env >> 1;
754  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
755  idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
756  } else { // VARFIX
757  if (!bs_pointer)
758  idx = 1;
759  else if (bs_pointer == 1)
760  idx = ch_data->bs_num_env - 1;
761  else // bs_pointer > 1
762  idx = bs_pointer - 1;
763  }
764  ch_data->t_q[1] = ch_data->t_env[idx];
765  }
766 
767  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
768  ch_data->e_a[1] = -1;
769  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
770  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
771  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
772  ch_data->e_a[1] = bs_pointer - 1;
773 
774  return 0;
775 }
776 
777 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
778  //These variables are saved from the previous frame rather than copied
779  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
780  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
781  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
782 
783  //These variables are read from the bitstream and therefore copied
784  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
785  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
786  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
787  dst->bs_num_env = src->bs_num_env;
788  dst->bs_amp_res = src->bs_amp_res;
789  dst->bs_num_noise = src->bs_num_noise;
790  dst->bs_frame_class = src->bs_frame_class;
791  dst->e_a[1] = src->e_a[1];
792 }
793 
794 /// Read how the envelope and noise floor data is delta coded
796  SBRData *ch_data)
797 {
798  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
799  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
800 }
801 
802 /// Read inverse filtering data
804  SBRData *ch_data)
805 {
806  int i;
807 
808  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
809  for (i = 0; i < sbr->n_q; i++)
810  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
811 }
812 
814  SBRData *ch_data, int ch)
815 {
816  int bits;
817  int i, j, k;
818  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
819  int t_lav, f_lav;
820  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
821  const int odd = sbr->n[1] & 1;
822 
823  if (sbr->bs_coupling && ch) {
824  if (ch_data->bs_amp_res) {
825  bits = 5;
830  } else {
831  bits = 6;
836  }
837  } else {
838  if (ch_data->bs_amp_res) {
839  bits = 6;
844  } else {
845  bits = 7;
850  }
851  }
852 
853  for (i = 0; i < ch_data->bs_num_env; i++) {
854  if (ch_data->bs_df_env[i]) {
855  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
856  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
857  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
858  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
859  if (ch_data->env_facs_q[i + 1][j] > 127U) {
860  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
861  return AVERROR_INVALIDDATA;
862  }
863  }
864  } else if (ch_data->bs_freq_res[i + 1]) {
865  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
866  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
867  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
868  if (ch_data->env_facs_q[i + 1][j] > 127U) {
869  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
870  return AVERROR_INVALIDDATA;
871  }
872  }
873  } else {
874  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
875  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
876  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
877  if (ch_data->env_facs_q[i + 1][j] > 127U) {
878  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
879  return AVERROR_INVALIDDATA;
880  }
881  }
882  }
883  } else {
884  ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
885  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
886  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
887  if (ch_data->env_facs_q[i + 1][j] > 127U) {
888  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
889  return AVERROR_INVALIDDATA;
890  }
891  }
892  }
893  }
894 
895  //assign 0th elements of env_facs_q from last elements
896  memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
897  sizeof(ch_data->env_facs_q[0]));
898 
899  return 0;
900 }
901 
903  SBRData *ch_data, int ch)
904 {
905  int i, j;
906  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
907  int t_lav, f_lav;
908  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
909 
910  if (sbr->bs_coupling && ch) {
915  } else {
920  }
921 
922  for (i = 0; i < ch_data->bs_num_noise; i++) {
923  if (ch_data->bs_df_noise[i]) {
924  for (j = 0; j < sbr->n_q; j++) {
925  ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
926  if (ch_data->noise_facs_q[i + 1][j] > 30U) {
927  av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
928  return AVERROR_INVALIDDATA;
929  }
930  }
931  } else {
932  ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
933  for (j = 1; j < sbr->n_q; j++) {
934  ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
935  if (ch_data->noise_facs_q[i + 1][j] > 30U) {
936  av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
937  return AVERROR_INVALIDDATA;
938  }
939  }
940  }
941  }
942 
943  //assign 0th elements of noise_facs_q from last elements
944  memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
945  sizeof(ch_data->noise_facs_q[0]));
946  return 0;
947 }
948 
950  GetBitContext *gb,
951  int bs_extension_id, int *num_bits_left)
952 {
953  switch (bs_extension_id) {
954  case EXTENSION_ID_PS:
955  if (!ac->oc[1].m4ac.ps) {
956  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
957  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
958  *num_bits_left = 0;
959  } else {
960  *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
962  }
963  break;
964  default:
965  // some files contain 0-padding
966  if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
967  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
968  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
969  *num_bits_left = 0;
970  break;
971  }
972 }
973 
976  GetBitContext *gb)
977 {
978  int ret;
979 
980  if (get_bits1(gb)) // bs_data_extra
981  skip_bits(gb, 4); // bs_reserved
982 
983  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
984  return -1;
985  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
986  read_sbr_invf(sbr, gb, &sbr->data[0]);
987  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
988  return ret;
989  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
990  return ret;
991 
992  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
993  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
994 
995  return 0;
996 }
997 
1000  GetBitContext *gb)
1001 {
1002  int ret;
1003 
1004  if (get_bits1(gb)) // bs_data_extra
1005  skip_bits(gb, 8); // bs_reserved
1006 
1007  if ((sbr->bs_coupling = get_bits1(gb))) {
1008  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
1009  return -1;
1010  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
1011  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1012  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1013  read_sbr_invf(sbr, gb, &sbr->data[0]);
1014  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1015  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1016  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1017  return ret;
1018  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1019  return ret;
1020  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1021  return ret;
1022  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1023  return ret;
1024  } else {
1025  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1026  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1027  return -1;
1028  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1029  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1030  read_sbr_invf(sbr, gb, &sbr->data[0]);
1031  read_sbr_invf(sbr, gb, &sbr->data[1]);
1032  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1033  return ret;
1034  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1035  return ret;
1036  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1037  return ret;
1038  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1039  return ret;
1040  }
1041 
1042  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1043  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1044  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1045  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1046 
1047  return 0;
1048 }
1049 
1050 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1051  GetBitContext *gb, int id_aac)
1052 {
1053  unsigned int cnt = get_bits_count(gb);
1054 
1055  sbr->id_aac = id_aac;
1056  sbr->ready_for_dequant = 1;
1057 
1058  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1059  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1060  sbr_turnoff(sbr);
1061  return get_bits_count(gb) - cnt;
1062  }
1063  } else if (id_aac == TYPE_CPE) {
1064  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1065  sbr_turnoff(sbr);
1066  return get_bits_count(gb) - cnt;
1067  }
1068  } else {
1069  av_log(ac->avctx, AV_LOG_ERROR,
1070  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1071  sbr_turnoff(sbr);
1072  return get_bits_count(gb) - cnt;
1073  }
1074  if (get_bits1(gb)) { // bs_extended_data
1075  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1076  if (num_bits_left == 15)
1077  num_bits_left += get_bits(gb, 8); // bs_esc_count
1078 
1079  num_bits_left <<= 3;
1080  while (num_bits_left > 7) {
1081  num_bits_left -= 2;
1082  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1083  }
1084  if (num_bits_left < 0) {
1085  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1086  }
1087  if (num_bits_left > 0)
1088  skip_bits(gb, num_bits_left);
1089  }
1090 
1091  return get_bits_count(gb) - cnt;
1092 }
1093 
1095 {
1096  int err;
1097  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1098  if (err >= 0)
1099  err = sbr_make_f_derived(ac, sbr);
1100  if (err < 0) {
1101  av_log(ac->avctx, AV_LOG_ERROR,
1102  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1103  sbr_turnoff(sbr);
1104  }
1105 }
1106 
1107 /**
1108  * Decode Spectral Band Replication extension data; reference: table 4.55.
1109  *
1110  * @param crc flag indicating the presence of CRC checksum
1111  * @param cnt length of TYPE_FIL syntactic element in bytes
1112  *
1113  * @return Returns number of bytes consumed from the TYPE_FIL element.
1114  */
1116  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1117 {
1118  unsigned int num_sbr_bits = 0, num_align_bits;
1119  unsigned bytes_read;
1120  GetBitContext gbc = *gb_host, *gb = &gbc;
1121  skip_bits_long(gb_host, cnt*8 - 4);
1122 
1123  sbr->reset = 0;
1124 
1125  if (!sbr->sample_rate)
1126  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1127  if (!ac->oc[1].m4ac.ext_sample_rate)
1128  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1129 
1130  if (crc) {
1131  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1132  num_sbr_bits += 10;
1133  }
1134 
1135  //Save some state from the previous frame.
1136  sbr->kx[0] = sbr->kx[1];
1137  sbr->m[0] = sbr->m[1];
1138  sbr->kx_and_m_pushed = 1;
1139 
1140  num_sbr_bits++;
1141  if (get_bits1(gb)) // bs_header_flag
1142  num_sbr_bits += read_sbr_header(sbr, gb);
1143 
1144  if (sbr->reset)
1145  sbr_reset(ac, sbr);
1146 
1147  if (sbr->start)
1148  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1149 
1150  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1151  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1152 
1153  if (bytes_read > cnt) {
1154  av_log(ac->avctx, AV_LOG_ERROR,
1155  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1156  sbr_turnoff(sbr);
1157  }
1158  return cnt;
1159 }
1160 
1161 /**
1162  * Analysis QMF Bank (14496-3 sp04 p206)
1163  *
1164  * @param x pointer to the beginning of the first sample window
1165  * @param W array of complex-valued samples split into subbands
1166  */
1167 #ifndef sbr_qmf_analysis
1168 #if USE_FIXED
1169 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1170 #else
1172 #endif /* USE_FIXED */
1173  SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1174  INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1175 {
1176  int i;
1177 #if USE_FIXED
1178  int j;
1179 #endif
1180  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1181  memcpy(x+288, in, 1024*sizeof(x[0]));
1182  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1183  // are not supported
1184  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1185  sbrdsp->sum64x5(z);
1186  sbrdsp->qmf_pre_shuffle(z);
1187 #if USE_FIXED
1188  for (j = 64; j < 128; j++) {
1189  if (z[j] > 1<<24) {
1191  "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1192  z[j], 1<<24);
1193  z[j] = 1<<24;
1194  } else if (z[j] < -(1<<24)) {
1196  "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1197  z[j], -(1<<24));
1198  z[j] = -(1<<24);
1199  }
1200  }
1201 #endif
1202  mdct->imdct_half(mdct, z, z+64);
1203  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1204  x += 32;
1205  }
1206 }
1207 #endif
1208 
1209 /**
1210  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1211  * (14496-3 sp04 p206)
1212  */
1213 #ifndef sbr_qmf_synthesis
1214 static void sbr_qmf_synthesis(FFTContext *mdct,
1215 #if USE_FIXED
1216  SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1217 #else
1218  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1219 #endif /* USE_FIXED */
1220  INTFLOAT *out, INTFLOAT X[2][38][64],
1221  INTFLOAT mdct_buf[2][64],
1222  INTFLOAT *v0, int *v_off, const unsigned int div)
1223 {
1224  int i, n;
1225  const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1226  const int step = 128 >> div;
1227  INTFLOAT *v;
1228  for (i = 0; i < 32; i++) {
1229  if (*v_off < step) {
1230  int saved_samples = (1280 - 128) >> div;
1231  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1232  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1233  } else {
1234  *v_off -= step;
1235  }
1236  v = v0 + *v_off;
1237  if (div) {
1238  for (n = 0; n < 32; n++) {
1239  X[0][i][ n] = -X[0][i][n];
1240  X[0][i][32+n] = X[1][i][31-n];
1241  }
1242  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1243  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1244  } else {
1245  sbrdsp->neg_odd_64(X[1][i]);
1246  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1247  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1248  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1249  }
1250  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1251  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1252  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1253  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1254  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1255  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1256  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1257  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1258  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1259  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1260  out += 64 >> div;
1261  }
1262 }
1263 #endif
1264 
1265 /// Generate the subband filtered lowband
1267  INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1268  int buf_idx)
1269 {
1270  int i, k;
1271  const int t_HFGen = 8;
1272  const int i_f = 32;
1273  memset(X_low, 0, 32*sizeof(*X_low));
1274  for (k = 0; k < sbr->kx[1]; k++) {
1275  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1276  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1277  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1278  }
1279  }
1280  buf_idx = 1-buf_idx;
1281  for (k = 0; k < sbr->kx[0]; k++) {
1282  for (i = 0; i < t_HFGen; i++) {
1283  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1284  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1285  }
1286  }
1287  return 0;
1288 }
1289 
1290 /// High Frequency Generator (14496-3 sp04 p215)
1292  INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1293  const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1294  const INTFLOAT bw_array[5], const uint8_t *t_env,
1295  int bs_num_env)
1296 {
1297  int j, x;
1298  int g = 0;
1299  int k = sbr->kx[1];
1300  for (j = 0; j < sbr->num_patches; j++) {
1301  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1302  const int p = sbr->patch_start_subband[j] + x;
1303  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1304  g++;
1305  g--;
1306 
1307  if (g < 0) {
1308  av_log(ac->avctx, AV_LOG_ERROR,
1309  "ERROR : no subband found for frequency %d\n", k);
1310  return -1;
1311  }
1312 
1313  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1314  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1315  alpha0[p], alpha1[p], bw_array[g],
1316  2 * t_env[0], 2 * t_env[bs_num_env]);
1317  }
1318  }
1319  if (k < sbr->m[1] + sbr->kx[1])
1320  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1321 
1322  return 0;
1323 }
1324 
1325 /// Generate the subband filtered lowband
1326 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1327  const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1328  const INTFLOAT X_low[32][40][2], int ch)
1329 {
1330  int k, i;
1331  const int i_f = 32;
1332  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1333  memset(X, 0, 2*sizeof(*X));
1334  for (k = 0; k < sbr->kx[0]; k++) {
1335  for (i = 0; i < i_Temp; i++) {
1336  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1337  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1338  }
1339  }
1340  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1341  for (i = 0; i < i_Temp; i++) {
1342  X[0][i][k] = Y0[i + i_f][k][0];
1343  X[1][i][k] = Y0[i + i_f][k][1];
1344  }
1345  }
1346 
1347  for (k = 0; k < sbr->kx[1]; k++) {
1348  for (i = i_Temp; i < 38; i++) {
1349  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1350  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1351  }
1352  }
1353  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1354  for (i = i_Temp; i < i_f; i++) {
1355  X[0][i][k] = Y1[i][k][0];
1356  X[1][i][k] = Y1[i][k][1];
1357  }
1358  }
1359  return 0;
1360 }
1361 
1362 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1363  * (14496-3 sp04 p217)
1364  */
1366  SBRData *ch_data, int e_a[2])
1367 {
1368  int e, i, m;
1369 
1370  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1371  for (e = 0; e < ch_data->bs_num_env; e++) {
1372  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1373  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1374  int k;
1375 
1376  if (sbr->kx[1] != table[0]) {
1377  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1378  "Derived frequency tables were not regenerated.\n");
1379  sbr_turnoff(sbr);
1380  return AVERROR_BUG;
1381  }
1382  for (i = 0; i < ilim; i++)
1383  for (m = table[i]; m < table[i + 1]; m++)
1384  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1385 
1386  // ch_data->bs_num_noise > 1 => 2 noise floors
1387  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1388  for (i = 0; i < sbr->n_q; i++)
1389  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1390  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1391 
1392  for (i = 0; i < sbr->n[1]; i++) {
1393  if (ch_data->bs_add_harmonic_flag) {
1394  const unsigned int m_midpoint =
1395  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1396 
1397  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1398  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1399  }
1400  }
1401 
1402  for (i = 0; i < ilim; i++) {
1403  int additional_sinusoid_present = 0;
1404  for (m = table[i]; m < table[i + 1]; m++) {
1405  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1406  additional_sinusoid_present = 1;
1407  break;
1408  }
1409  }
1410  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1411  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1412  }
1413  }
1414 
1415  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1416  return 0;
1417 }
1418 
1419 /// Estimation of current envelope (14496-3 sp04 p218)
1420 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1421  SpectralBandReplication *sbr, SBRData *ch_data)
1422 {
1423  int e, m;
1424  int kx1 = sbr->kx[1];
1425 
1426  if (sbr->bs_interpol_freq) {
1427  for (e = 0; e < ch_data->bs_num_env; e++) {
1428 #if USE_FIXED
1429  const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1430 #else
1431  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1432 #endif /* USE_FIXED */
1433  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1434  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1435 
1436  for (m = 0; m < sbr->m[1]; m++) {
1437  AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1438 #if USE_FIXED
1439  e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1440 #else
1441  e_curr[e][m] = sum * recip_env_size;
1442 #endif /* USE_FIXED */
1443  }
1444  }
1445  } else {
1446  int k, p;
1447 
1448  for (e = 0; e < ch_data->bs_num_env; e++) {
1449  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1450  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1451  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1452  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1453 
1454  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1455 #if USE_FIXED
1456  SoftFloat sum = FLOAT_0;
1457  const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1458  for (k = table[p]; k < table[p + 1]; k++) {
1459  sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1460  }
1461  sum = av_mul_sf(sum, den);
1462 #else
1463  float sum = 0.0f;
1464  const int den = env_size * (table[p + 1] - table[p]);
1465 
1466  for (k = table[p]; k < table[p + 1]; k++) {
1467  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1468  }
1469  sum /= den;
1470 #endif /* USE_FIXED */
1471  for (k = table[p]; k < table[p + 1]; k++) {
1472  e_curr[e][k - kx1] = sum;
1473  }
1474  }
1475  }
1476  }
1477 }
1478 
1480  INTFLOAT* L, INTFLOAT* R)
1481 {
1482  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1483  int ch;
1484  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1485  int err;
1486 
1487  if (id_aac != sbr->id_aac) {
1488  av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1489  "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1490  sbr_turnoff(sbr);
1491  }
1492 
1493  if (sbr->start && !sbr->ready_for_dequant) {
1494  av_log(ac->avctx, AV_LOG_ERROR,
1495  "No quantized data read for sbr_dequant.\n");
1496  sbr_turnoff(sbr);
1497  }
1498 
1499  if (!sbr->kx_and_m_pushed) {
1500  sbr->kx[0] = sbr->kx[1];
1501  sbr->m[0] = sbr->m[1];
1502  } else {
1503  sbr->kx_and_m_pushed = 0;
1504  }
1505 
1506  if (sbr->start) {
1507  sbr_dequant(sbr, id_aac);
1508  sbr->ready_for_dequant = 0;
1509  }
1510  for (ch = 0; ch < nch; ch++) {
1511  /* decode channel */
1512  sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1513  (INTFLOAT*)sbr->qmf_filter_scratch,
1514  sbr->data[ch].W, sbr->data[ch].Ypos);
1515  sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1516  (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1517  sbr->data[ch].Ypos);
1518  sbr->data[ch].Ypos ^= 1;
1519  if (sbr->start) {
1520  sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1521  (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1522  sbr_chirp(sbr, &sbr->data[ch]);
1523  av_assert0(sbr->data[ch].bs_num_env > 0);
1524  sbr_hf_gen(ac, sbr, sbr->X_high,
1525  (const INTFLOAT (*)[40][2]) sbr->X_low,
1526  (const INTFLOAT (*)[2]) sbr->alpha0,
1527  (const INTFLOAT (*)[2]) sbr->alpha1,
1528  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1529  sbr->data[ch].bs_num_env);
1530 
1531  // hf_adj
1532  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1533  if (!err) {
1534  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1535  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1536  sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1537  (const INTFLOAT (*)[40][2]) sbr->X_high,
1538  sbr, &sbr->data[ch],
1539  sbr->data[ch].e_a);
1540  }
1541  }
1542 
1543  /* synthesis */
1544  sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1545  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1546  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1547  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1548  }
1549 
1550  if (ac->oc[1].m4ac.ps == 1) {
1551  if (sbr->ps.start) {
1552  AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1553  } else {
1554  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1555  }
1556  nch = 2;
1557  }
1558 
1559  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1560  L, sbr->X[0], sbr->qmf_filter_scratch,
1561  sbr->data[0].synthesis_filterbank_samples,
1562  &sbr->data[0].synthesis_filterbank_samples_offset,
1563  downsampled);
1564  if (nch == 2)
1565  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1566  R, sbr->X[1], sbr->qmf_filter_scratch,
1567  sbr->data[1].synthesis_filterbank_samples,
1568  &sbr->data[1].synthesis_filterbank_samples_offset,
1569  downsampled);
1570 }
1571 
1573 {
1574  c->sbr_lf_gen = sbr_lf_gen;
1576  c->sbr_x_gen = sbr_x_gen;
1578 
1579 #if !USE_FIXED
1580  if(ARCH_MIPS)
1582 #endif
1583 }
uint8_t s_indexmapped[8][48]
Definition: sbr.h:97
unsigned bs_add_harmonic_flag
Definition: sbr.h:68
void AAC_RENAME() ff_sbrdsp_init(SBRDSPContext *s)
static int qsort_comparison_function_int16(const void *a, const void *b)
#define NULL
Definition: coverity.c:32
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int id_aac)
static int array_min_int16(const int16_t *array, int nel)
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
Definition: aacsbr.c:276
static const int8_t vlc_sbr_lav[10]
Definition: aacsbr.h:69
unsigned bs_smoothing_mode
Definition: sbr.h:154
AVCodecContext * avctx
Definition: aac.h:295
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
AAC_FLOAT(* sum_square)(INTFLOAT(*x)[2], int n)
Definition: sbrdsp.h:30
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:381
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static void sbr_qmf_synthesis(FFTContext *mdct, SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp, INTFLOAT *out, INTFLOAT X[2][38][64], INTFLOAT mdct_buf[2][64], INTFLOAT *v0, int *v_off, const unsigned int div)
Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank (14496-3 sp04 p206) ...
else temp
Definition: vf_mcdeint.c:256
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:293
const char * g
Definition: vf_curves.c:115
Definition: aac.h:56
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2], const INTFLOAT(*alpha0)[2], const INTFLOAT(*alpha1)[2], const INTFLOAT bw_array[5], const uint8_t *t_env, int bs_num_env)
High Frequency Generator (14496-3 sp04 p215)
Definition: aac.h:57
int e_a[2]
l_APrev and l_A
Definition: sbr.h:87
int AAC_RENAME() ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
Definition: aacps.c:158
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read inverse filtering data.
const char * b
Definition: vf_curves.c:116
Definition: aacsbr.h:59
AAC_SIGNE kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
Definition: sbr.h:160
uint8_t noise_facs_q[3][5]
Noise scalefactors.
Definition: sbr.h:102
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:154
void(* sbr_hf_assemble)(INTFLOAT Y1[38][64][2], const INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Definition: sbr.h:124
GLfloat v0
Definition: opengl_enc.c:107
int(* sbr_x_gen)(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Definition: sbr.h:128
Definition: aacsbr.h:61
#define FF_PROFILE_AAC_HE_V2
Definition: avcodec.h:2868
#define src
Definition: vp8dsp.c:254
uint8_t bs_xover_band
Definition: sbr.h:45
int profile
profile
Definition: avcodec.h:2859
SpectrumParameters spectrum_params
Definition: sbr.h:145
Definition: aac.h:58
Definition: aacsbr.h:60
#define USE_FIXED
Definition: aac_defines.h:25
#define AAC_RENAME_32(x)
Definition: aac_defines.h:85
int AAC_RENAME() ff_ps_apply(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
Definition: aacps.c:981
float INTFLOAT
Definition: aac_defines.h:86
static const SoftFloat FLOAT_0
0.0
Definition: softfloat.h:39
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static const int8_t sbr_offset[6][16]
Definition: aacsbrdata.h:261
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
AAC_SIGNE num_patches
Definition: sbr.h:184
uint8_t
#define av_cold
Definition: attributes.h:82
AAC_FLOAT noise_facs[3][5]
Definition: sbr.h:103
float delta
AAC_SIGNE n_lim
Number of limiter bands.
Definition: sbr.h:173
#define ENVELOPE_ADJUSTMENT_OFFSET
Definition: aacsbr.h:36
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
#define f(width, name)
Definition: cbs_vp9.c:255
Definition: aac.h:59
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
Definition: sbr.h:179
void ff_aacsbr_func_ptr_init_mips(AACSBRContext *c)
Definition: aacsbr_mips.c:611
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static INTFLOAT sbr_qmf_window_us[640]
AAC_SIGNE bs_num_noise
Definition: sbr.h:71
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
#define lrintf(x)
Definition: libm_mips.h:70
av_cold void AAC_RENAME() ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
SBRData data[2]
Definition: sbr.h:166
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
Derived Frequency Band Tables (14496-3 sp04 p197)
uint8_t bs_df_noise[2]
Definition: sbr.h:73
void(* sbr_hf_inverse_filter)(SBRDSPContext *dsp, INTFLOAT(*alpha0)[2], INTFLOAT(*alpha1)[2], const INTFLOAT X_low[32][40][2], int k0)
Definition: sbr.h:131
static int fixed_log(int x)
Definition: aacsbr_fixed.c:87
static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
#define av_log(a,...)
uint8_t patch_num_subbands[6]
Definition: sbr.h:185
static const uint16_t table[]
Definition: prosumer.c:203
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
Definition: sbr.h:181
#define SBR_INIT_VLC_STATIC(num, size)
Definition: aacsbr.h:72
#define U(x)
Definition: vp56_arith.h:37
static void copy_sbr_grid(SBRData *dst, const SBRData *src)
MPEG4AudioConfig m4ac
Definition: aac.h:124
uint8_t t_q[3]
Noise time borders.
Definition: sbr.h:109
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
Definition: sbr.h:177
#define R
Definition: huffyuvdsp.h:34
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
Definition: aacsbr.c:140
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
Definition: sbr.h:42
AAC_SIGNE k[5]
k0, k1, k2
Definition: sbr.h:157
AAC_SIGNE m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
Definition: sbr.h:162
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats and store the result in a vector of floats...
Definition: float_dsp.h:38
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
Definition: aacsbr.c:73
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, int e_a[2])
High Frequency Adjustment (14496-3 sp04 p217) and Mapping (14496-3 sp04 p217)
#define ff_mdct_init
Definition: fft.h:169
#define FFMAX(a, b)
Definition: common.h:94
av_cold void AAC_RENAME() ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
Initialize one SBR context.
unsigned bs_interpol_freq
Definition: sbr.h:153
uint8_t env_facs_q[6][48]
Envelope scalefactors.
Definition: sbr.h:99
#define AAC_RENAME(x)
Definition: aac_defines.h:84
unsigned f_indexnoise
Definition: sbr.h:110
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
Definition: sbr.h:107
static int read_sbr_channel_pair_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
Definition: fft.h:88
unsigned bs_amp_res
Definition: sbr.h:76
#define FFMIN(a, b)
Definition: common.h:96
uint8_t bs_freq_scale
Definition: sbr.h:51
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
static const ElemCat * elements[ELEMENT_COUNT]
Definition: signature.h:566
unsigned bs_limiter_gains
Definition: sbr.h:152
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
static const int CONST_RECIP_LN2
Definition: aacsbr_fixed.c:78
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x, INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
Analysis QMF Bank (14496-3 sp04 p206)
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:443
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
Definition: sbr.h:198
float AAC_FLOAT
Definition: aac_defines.h:90
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
Definition: sbr.h:202
static void aacsbr_func_ptr_init(AACSBRContext *c)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:762
static int in_table_int16(const int16_t *table, int last_el, int16_t needle)
static void sbr_env_estimate(AAC_FLOAT(*e_curr)[48], INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data)
Estimation of current envelope (14496-3 sp04 p218)
int n
Definition: avisynth_c.h:684
uint8_t bs_freq_res[7]
Definition: sbr.h:70
av_cold void AAC_RENAME() ff_ps_init(void)
Definition: aacps.c:1011
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Generate the subband filtered lowband.
#define L(x)
Definition: vp56_arith.h:36
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
Definition: aacsbr.c:219
AAC_SIGNE bs_num_env
Definition: sbr.h:69
static void sbr_turnoff(SpectralBandReplication *sbr)
Places SBR in pure upsampling mode.
#define SBR_SYNTHESIS_BUF_SIZE
Definition: sbr.h:57
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
Definition: sbr.h:200
static const int8_t ceil_log2[]
ceil(log2(index+1))
void(* hf_gen)(INTFLOAT(*X_high)[2], const INTFLOAT(*X_low)[2], const INTFLOAT alpha0[2], const INTFLOAT alpha1[2], INTFLOAT bw, int start, int end)
Definition: sbrdsp.h:37
void AAC_RENAME() ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, INTFLOAT *L, INTFLOAT *R)
Apply one SBR element to one AAC element.
int AAC_RENAME() ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb_host, int crc, int cnt, int id_aac)
Decode Spectral Band Replication extension data; reference: table 4.55.
main external API structure.
Definition: avcodec.h:1533
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read how the envelope and noise floor data is delta coded.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:108
void(* vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len)
Calculate the entry wise product of two vectors of floats, add a third vector of floats and store the...
Definition: float_dsp.h:137
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:487
static const int CONST_076923
Definition: aacsbr_fixed.c:79
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:460
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, int elements)
#define W(a, i, v)
Definition: jpegls.h:124
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int bs_extension_id, int *num_bits_left)
static int read_sbr_single_channel_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, SpectrumParameters *spectrum)
Master Frequency Band Table (14496-3 sp04 p194)
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
Definition: aacsbr.c:195
av_cold void AAC_RENAME() ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:1043
AAC_FLOAT env_facs[6][48]
Definition: sbr.h:100
uint8_t bs_noise_bands
Definition: sbr.h:53
main AAC context
Definition: aac.h:293
AAC_SIGNE n_master
The number of frequency bands in f_master.
Definition: sbr.h:165
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
Limiter Frequency Band Table (14496-3 sp04 p198)
uint8_t bs_stop_freq
Definition: sbr.h:44
uint16_t f_master[49]
The master QMF frequency grouping.
Definition: sbr.h:175
uint8_t bs_invf_mode[2][5]
Definition: sbr.h:74
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:162
static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Generate the subband filtered lowband.
OutputConfiguration oc[2]
Definition: aac.h:356
int(* sbr_lf_gen)(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Definition: sbr.h:121
int
if(ret< 0)
Definition: vf_mcdeint.c:279
static av_cold void aacsbr_tableinit(void)
#define log2f(x)
Definition: libm.h:409
#define ff_mdct_end
Definition: fft.h:170
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:102
static double c[64]
uint8_t patch_start_subband[6]
Definition: sbr.h:186
uint8_t t_env[8]
Envelope time borders.
Definition: sbr.h:105
aacsbr functions pointers
Definition: sbr.h:120
static INTFLOAT sbr_qmf_window_ds[320]
< window coefficients for analysis/synthesis QMF banks
Definition: aacsbr.h:62
uint16_t f_tablelim[30]
Frequency borders for the limiter.
Definition: sbr.h:183
Spectral Band Replication per channel data.
Definition: sbr.h:62
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
Definition: aacsbr.c:54
#define SBR_VLC_ROW(name)
Definition: aacsbr.h:78
unsigned bs_limiter_bands
Definition: sbr.h:151
uint8_t bs_alter_scale
Definition: sbr.h:52
unsigned bs_frame_class
Definition: sbr.h:67
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
uint8_t bs_df_env[5]
Definition: sbr.h:72
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
SBRDSPContext dsp
Definition: sbr.h:213
FILE * out
Definition: movenc.c:54
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
Definition: softfloat.h:185
#define Q23(x)
Definition: aac_defines.h:94
#define av_always_inline
Definition: attributes.h:39
static int array[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:106
#define VLC_TYPE
Definition: vlc.h:24
int ps
-1 implicit, 1 presence
Definition: mpeg4audio.h:44
static VLC vlc_sbr[10]
Definition: aacsbr.c:51
AAC_SIGNE n_q
Number of noise floor bands.
Definition: sbr.h:171
unsigned bs_coupling
Definition: sbr.h:156
Spectral Band Replication.
Definition: sbr.h:139
static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
float min
av_cold void AAC_RENAME() ff_aac_sbr_init(void)
Initialize SBR.
uint8_t bs_add_harmonic[48]
Definition: sbr.h:75
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
PSContext ps
Definition: sbr.h:167
uint8_t bs_start_freq
Definition: sbr.h:43
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
Definition: sbr.h:169
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(constuint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(constint16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(constint32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(constint64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(constfloat *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(constdouble *) pi *(INT64_C(1)<< 63)))#defineFMT_PAIR_FUNC(out, in) staticconv_func_type *constfmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};staticvoidcpy1(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, len);}staticvoidcpy2(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 2 *len);}staticvoidcpy4(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 4 *len);}staticvoidcpy8(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, constint *ch_map, intflags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) returnNULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) returnNULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case1:ctx->simd_f=cpy1;break;case2:ctx->simd_f=cpy2;break;case4:ctx->simd_f=cpy4;break;case8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);returnctx;}voidswri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}intswri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, intlen){intch;intoff=0;constintos=(out->planar?1:out->ch_count)*out->bps;unsignedmisaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){intplanes=in->planar?in->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){intplanes=out->planar?out->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){intplanes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
static uint8_t tmp[11]
Definition: aes_ctr.c:26