FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dither.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
3  *
4  * Triangular with Noise Shaping is based on opusfile.
5  * Copyright (c) 1994-2012 by the Xiph.Org Foundation and contributors
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * Dithered Audio Sample Quantization
27  *
28  * Converts from dbl, flt, or s32 to s16 using dithering.
29  */
30 
31 #include <math.h>
32 #include <stdint.h>
33 
34 #include "libavutil/attributes.h"
35 #include "libavutil/common.h"
36 #include "libavutil/lfg.h"
37 #include "libavutil/mem.h"
38 #include "libavutil/samplefmt.h"
39 #include "audio_convert.h"
40 #include "dither.h"
41 #include "internal.h"
42 
43 typedef struct DitherState {
44  int mute;
45  unsigned int seed;
47  float *noise_buf;
50  float dither_a[4];
51  float dither_b[4];
52 } DitherState;
53 
54 struct DitherContext {
57  int apply_map;
59 
60  int mute_dither_threshold; // threshold for disabling dither
61  int mute_reset_threshold; // threshold for resetting noise shaping
62  const float *ns_coef_b; // noise shaping coeffs
63  const float *ns_coef_a; // noise shaping coeffs
64 
65  int channels;
66  DitherState *state; // dither states for each channel
67 
68  AudioData *flt_data; // input data in fltp
69  AudioData *s16_data; // dithered output in s16p
70  AudioConvert *ac_in; // converter for input to fltp
71  AudioConvert *ac_out; // converter for s16p to s16 (if needed)
72 
73  void (*quantize)(int16_t *dst, const float *src, float *dither, int len);
75 };
76 
77 /* mute threshold, in seconds */
78 #define MUTE_THRESHOLD_SEC 0.000333
79 
80 /* scale factor for 16-bit output.
81  The signal is attenuated slightly to avoid clipping */
82 #define S16_SCALE 32753.0f
83 
84 /* scale to convert lfg from INT_MIN/INT_MAX to -0.5/0.5 */
85 #define LFG_SCALE (1.0f / (2.0f * INT32_MAX))
86 
87 /* noise shaping coefficients */
88 
89 static const float ns_48_coef_b[4] = {
90  2.2374f, -0.7339f, -0.1251f, -0.6033f
91 };
92 
93 static const float ns_48_coef_a[4] = {
94  0.9030f, 0.0116f, -0.5853f, -0.2571f
95 };
96 
97 static const float ns_44_coef_b[4] = {
98  2.2061f, -0.4707f, -0.2534f, -0.6213f
99 };
100 
101 static const float ns_44_coef_a[4] = {
102  1.0587f, 0.0676f, -0.6054f, -0.2738f
103 };
104 
105 static void dither_int_to_float_rectangular_c(float *dst, int *src, int len)
106 {
107  int i;
108  for (i = 0; i < len; i++)
109  dst[i] = src[i] * LFG_SCALE;
110 }
111 
112 static void dither_int_to_float_triangular_c(float *dst, int *src0, int len)
113 {
114  int i;
115  int *src1 = src0 + len;
116 
117  for (i = 0; i < len; i++) {
118  float r = src0[i] * LFG_SCALE;
119  r += src1[i] * LFG_SCALE;
120  dst[i] = r;
121  }
122 }
123 
124 static void quantize_c(int16_t *dst, const float *src, float *dither, int len)
125 {
126  int i;
127  for (i = 0; i < len; i++)
128  dst[i] = av_clip_int16(lrintf(src[i] * S16_SCALE + dither[i]));
129 }
130 
131 #define SQRT_1_6 0.40824829046386301723f
132 
133 static void dither_highpass_filter(float *src, int len)
134 {
135  int i;
136 
137  /* filter is from libswresample in FFmpeg */
138  for (i = 0; i < len - 2; i++)
139  src[i] = (-src[i] + 2 * src[i + 1] - src[i + 2]) * SQRT_1_6;
140 }
141 
143  int min_samples)
144 {
145  int i;
146  int nb_samples = FFALIGN(min_samples, 16) + 16;
147  int buf_samples = nb_samples *
148  (c->method == AV_RESAMPLE_DITHER_RECTANGULAR ? 1 : 2);
149  unsigned int *noise_buf_ui;
150 
151  av_freep(&state->noise_buf);
152  state->noise_buf_size = state->noise_buf_ptr = 0;
153 
154  state->noise_buf = av_malloc(buf_samples * sizeof(*state->noise_buf));
155  if (!state->noise_buf)
156  return AVERROR(ENOMEM);
157  state->noise_buf_size = FFALIGN(min_samples, 16);
158  noise_buf_ui = (unsigned int *)state->noise_buf;
159 
160  av_lfg_init(&state->lfg, state->seed);
161  for (i = 0; i < buf_samples; i++)
162  noise_buf_ui[i] = av_lfg_get(&state->lfg);
163 
164  c->ddsp.dither_int_to_float(state->noise_buf, noise_buf_ui, nb_samples);
165 
167  dither_highpass_filter(state->noise_buf, nb_samples);
168 
169  return 0;
170 }
171 
173  int16_t *dst, const float *src,
174  int nb_samples)
175 {
176  int i, j;
177  float *dither = &state->noise_buf[state->noise_buf_ptr];
178 
179  if (state->mute > c->mute_reset_threshold)
180  memset(state->dither_a, 0, sizeof(state->dither_a));
181 
182  for (i = 0; i < nb_samples; i++) {
183  float err = 0;
184  float sample = src[i] * S16_SCALE;
185 
186  for (j = 0; j < 4; j++) {
187  err += c->ns_coef_b[j] * state->dither_b[j] -
188  c->ns_coef_a[j] * state->dither_a[j];
189  }
190  for (j = 3; j > 0; j--) {
191  state->dither_a[j] = state->dither_a[j - 1];
192  state->dither_b[j] = state->dither_b[j - 1];
193  }
194  state->dither_a[0] = err;
195  sample -= err;
196 
197  if (state->mute > c->mute_dither_threshold) {
198  dst[i] = av_clip_int16(lrintf(sample));
199  state->dither_b[0] = 0;
200  } else {
201  dst[i] = av_clip_int16(lrintf(sample + dither[i]));
202  state->dither_b[0] = av_clipf(dst[i] - sample, -1.5f, 1.5f);
203  }
204 
205  state->mute++;
206  if (src[i])
207  state->mute = 0;
208  }
209 }
210 
211 static int convert_samples(DitherContext *c, int16_t **dst, float * const *src,
212  int channels, int nb_samples)
213 {
214  int ch, ret;
215  int aligned_samples = FFALIGN(nb_samples, 16);
216 
217  for (ch = 0; ch < channels; ch++) {
218  DitherState *state = &c->state[ch];
219 
220  if (state->noise_buf_size < aligned_samples) {
221  ret = generate_dither_noise(c, state, nb_samples);
222  if (ret < 0)
223  return ret;
224  } else if (state->noise_buf_size - state->noise_buf_ptr < aligned_samples) {
225  state->noise_buf_ptr = 0;
226  }
227 
229  quantize_triangular_ns(c, state, dst[ch], src[ch], nb_samples);
230  } else {
231  c->quantize(dst[ch], src[ch],
232  &state->noise_buf[state->noise_buf_ptr],
233  FFALIGN(nb_samples, c->samples_align));
234  }
235 
236  state->noise_buf_ptr += aligned_samples;
237  }
238 
239  return 0;
240 }
241 
243 {
244  int ret;
245  AudioData *flt_data;
246 
247  /* output directly to dst if it is planar */
248  if (dst->sample_fmt == AV_SAMPLE_FMT_S16P)
249  c->s16_data = dst;
250  else {
251  /* make sure s16_data is large enough for the output */
252  ret = ff_audio_data_realloc(c->s16_data, src->nb_samples);
253  if (ret < 0)
254  return ret;
255  }
256 
257  if (src->sample_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) {
258  /* make sure flt_data is large enough for the input */
259  ret = ff_audio_data_realloc(c->flt_data, src->nb_samples);
260  if (ret < 0)
261  return ret;
262  flt_data = c->flt_data;
263  }
264 
265  if (src->sample_fmt != AV_SAMPLE_FMT_FLTP) {
266  /* convert input samples to fltp and scale to s16 range */
267  ret = ff_audio_convert(c->ac_in, flt_data, src);
268  if (ret < 0)
269  return ret;
270  } else if (c->apply_map) {
271  ret = ff_audio_data_copy(flt_data, src, c->ch_map_info);
272  if (ret < 0)
273  return ret;
274  } else {
275  flt_data = src;
276  }
277 
278  /* check alignment and padding constraints */
280  int ptr_align = FFMIN(flt_data->ptr_align, c->s16_data->ptr_align);
281  int samples_align = FFMIN(flt_data->samples_align, c->s16_data->samples_align);
282  int aligned_len = FFALIGN(src->nb_samples, c->ddsp.samples_align);
283 
284  if (!(ptr_align % c->ddsp.ptr_align) && samples_align >= aligned_len) {
285  c->quantize = c->ddsp.quantize;
287  } else {
288  c->quantize = quantize_c;
289  c->samples_align = 1;
290  }
291  }
292 
293  ret = convert_samples(c, (int16_t **)c->s16_data->data,
294  (float * const *)flt_data->data, src->channels,
295  src->nb_samples);
296  if (ret < 0)
297  return ret;
298 
299  c->s16_data->nb_samples = src->nb_samples;
300 
301  /* interleave output to dst if needed */
302  if (dst->sample_fmt == AV_SAMPLE_FMT_S16) {
303  ret = ff_audio_convert(c->ac_out, dst, c->s16_data);
304  if (ret < 0)
305  return ret;
306  } else
307  c->s16_data = NULL;
308 
309  return 0;
310 }
311 
313 {
314  DitherContext *c = *cp;
315  int ch;
316 
317  if (!c)
318  return;
323  for (ch = 0; ch < c->channels; ch++)
324  av_free(c->state[ch].noise_buf);
325  av_free(c->state);
326  av_freep(cp);
327 }
328 
330  enum AVResampleDitherMethod method)
331 {
332  ddsp->quantize = quantize_c;
333  ddsp->ptr_align = 1;
334  ddsp->samples_align = 1;
335 
336  if (method == AV_RESAMPLE_DITHER_RECTANGULAR)
338  else
340 
341  if (ARCH_X86)
342  ff_dither_init_x86(ddsp, method);
343 }
344 
346  enum AVSampleFormat out_fmt,
347  enum AVSampleFormat in_fmt,
348  int channels, int sample_rate, int apply_map)
349 {
350  AVLFG seed_gen;
351  DitherContext *c;
352  int ch;
353 
355  av_get_bytes_per_sample(in_fmt) <= 2) {
356  av_log(avr, AV_LOG_ERROR, "dithering %s to %s is not supported\n",
358  return NULL;
359  }
360 
361  c = av_mallocz(sizeof(*c));
362  if (!c)
363  return NULL;
364 
365  c->apply_map = apply_map;
366  if (apply_map)
367  c->ch_map_info = &avr->ch_map_info;
368 
370  sample_rate != 48000 && sample_rate != 44100) {
371  av_log(avr, AV_LOG_WARNING, "sample rate must be 48000 or 44100 Hz "
372  "for triangular_ns dither. using triangular_hp instead.\n");
374  }
375  c->method = avr->dither_method;
376  dither_init(&c->ddsp, c->method);
377 
379  if (sample_rate == 48000) {
380  c->ns_coef_b = ns_48_coef_b;
381  c->ns_coef_a = ns_48_coef_a;
382  } else {
383  c->ns_coef_b = ns_44_coef_b;
384  c->ns_coef_a = ns_44_coef_a;
385  }
386  }
387 
388  /* Either s16 or s16p output format is allowed, but s16p is used
389  internally, so we need to use a temp buffer and interleave if the output
390  format is s16 */
391  if (out_fmt != AV_SAMPLE_FMT_S16P) {
392  c->s16_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_S16P,
393  "dither s16 buffer");
394  if (!c->s16_data)
395  goto fail;
396 
398  channels, sample_rate, 0);
399  if (!c->ac_out)
400  goto fail;
401  }
402 
403  if (in_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) {
404  c->flt_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_FLTP,
405  "dither flt buffer");
406  if (!c->flt_data)
407  goto fail;
408  }
409  if (in_fmt != AV_SAMPLE_FMT_FLTP) {
411  channels, sample_rate, c->apply_map);
412  if (!c->ac_in)
413  goto fail;
414  }
415 
416  c->state = av_mallocz(channels * sizeof(*c->state));
417  if (!c->state)
418  goto fail;
419  c->channels = channels;
420 
421  /* calculate thresholds for turning off dithering during periods of
422  silence to avoid replacing digital silence with quiet dither noise */
423  c->mute_dither_threshold = lrintf(sample_rate * MUTE_THRESHOLD_SEC);
425 
426  /* initialize dither states */
427  av_lfg_init(&seed_gen, 0xC0FFEE);
428  for (ch = 0; ch < channels; ch++) {
429  DitherState *state = &c->state[ch];
430  state->mute = c->mute_reset_threshold + 1;
431  state->seed = av_lfg_get(&seed_gen);
432  generate_dither_noise(c, state, FFMAX(32768, sample_rate / 2));
433  }
434 
435  return c;
436 
437 fail:
438  ff_dither_free(&c);
439  return NULL;
440 }
float * noise_buf
Definition: dither.c:47
AV_RESAMPLE_DITHER_TRIANGULAR_HP
Triangular Dither with High Pass.
Definition: avresample.h:133
Definition: lfg.h:27
float, planar
Definition: samplefmt.h:69
#define NULL
Definition: coverity.c:32
int mute
Definition: dither.c:44
void ff_dither_free(DitherContext **cp)
Free a DitherContext.
Definition: dither.c:312
int ff_audio_data_realloc(AudioData *a, int nb_samples)
Reallocate AudioData.
Definition: audio_data.c:162
static const float ns_48_coef_b[4]
Definition: dither.c:89
Audio buffer used for intermediate storage between conversion phases.
Definition: audio_data.h:37
static int generate_dither_noise(DitherContext *c, DitherState *state, int min_samples)
Definition: dither.c:142
AudioData * flt_data
Definition: dither.c:68
enum AVResampleDitherMethod method
Definition: dither.c:56
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
Memory handling functions.
AudioData * ff_audio_data_alloc(int channels, int nb_samples, enum AVSampleFormat sample_fmt, const char *name)
Allocate AudioData.
Definition: audio_data.c:119
#define LFG_SCALE
Definition: dither.c:85
channels
Definition: aptx.c:30
void(* quantize)(int16_t *dst, const float *src, float *dither, int len)
Definition: dither.c:73
static const float ns_44_coef_a[4]
Definition: dither.c:101
int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in)
Convert audio data from one sample format to another.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
#define src
Definition: vp8dsp.c:254
#define sample
unsigned int seed
Definition: dither.c:45
AudioConvert * ac_out
Definition: dither.c:71
Macro definitions for various function/variable attributes.
int nb_samples
current number of samples
Definition: audio_data.h:43
#define SQRT_1_6
Definition: dither.c:131
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
#define S16_SCALE
Definition: dither.c:82
DitherState * state
Definition: dither.c:66
static void dither_int_to_float_rectangular_c(float *dst, int *src, int len)
Definition: dither.c:105
const float * ns_coef_a
Definition: dither.c:63
#define lrintf(x)
Definition: libm_mips.h:70
int samples_align
Definition: dither.c:74
AudioConvert * ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map)
Allocate and initialize AudioConvert context for sample format conversion.
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
static int convert_samples(DitherContext *c, int16_t **dst, float *const *src, int channels, int nb_samples)
Definition: dither.c:211
static void quantize_c(int16_t *dst, const float *src, float *dither, int len)
Definition: dither.c:124
AV_RESAMPLE_DITHER_TRIANGULAR_NS
Triangular Dither with Noise Shaping.
Definition: avresample.h:133
enum AVResampleDitherMethod dither_method
dither method
Definition: internal.h:75
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int noise_buf_size
Definition: dither.c:48
int mute_reset_threshold
Definition: dither.c:61
#define AVERROR(e)
Definition: error.h:43
int ptr_align
src and dst constraints for quantize()
Definition: dither.h:40
int channels
channel count
Definition: audio_data.h:45
const char * r
Definition: vf_curves.c:111
static const uint8_t dither[8][8]
Definition: vf_fspp.c:57
int noise_buf_ptr
Definition: dither.c:49
void ff_audio_convert_free(AudioConvert **ac)
Free AudioConvert.
const char * av_get_sample_fmt_name(enum AVSampleFormat sample_fmt)
Return the name of sample_fmt, or NULL if sample_fmt is not recognized.
Definition: samplefmt.c:49
#define FFMAX(a, b)
Definition: common.h:94
DitherContext * ff_dither_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map)
Allocate and initialize a DitherContext.
Definition: dither.c:345
#define fail()
Definition: checkasm.h:116
int channels
Definition: dither.c:65
AudioConvert * ac_in
Definition: dither.c:70
DitherDSPContext ddsp
Definition: dither.c:55
#define FFMIN(a, b)
Definition: common.h:96
int ff_convert_dither(DitherContext *c, AudioData *dst, AudioData *src)
Convert audio sample format with dithering.
Definition: dither.c:242
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
static struct @271 state
ChannelMapInfo ch_map_info
Definition: internal.h:107
const float * ns_coef_b
Definition: dither.c:62
static const float ns_48_coef_a[4]
Definition: dither.c:93
static const float ns_44_coef_b[4]
Definition: dither.c:97
int samples_align
len constraints for quantize()
Definition: dither.h:41
int mute_dither_threshold
Definition: dither.c:60
#define src1
Definition: h264pred.c:139
sample_rate
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
AVLFG lfg
Definition: dither.c:46
uint8_t * data[AVRESAMPLE_MAX_CHANNELS]
data plane pointers
Definition: audio_data.h:39
static void dither_highpass_filter(float *src, int len)
Definition: dither.c:133
enum attribute_deprecated AVResampleDitherMethod
Definition: avresample.h:132
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
Definition: lfg.h:47
static void quantize_triangular_ns(DitherContext *c, DitherState *state, int16_t *dst, const float *src, int nb_samples)
Definition: dither.c:172
#define src0
Definition: h264pred.c:138
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
Definition: lfg.c:32
static void dither_int_to_float_triangular_c(float *dst, int *src0, int len)
Definition: dither.c:112
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
int samples_align
allocated samples alignment
Definition: audio_data.h:54
int ff_audio_data_copy(AudioData *dst, AudioData *src, ChannelMapInfo *map)
Copy data from one AudioData to another.
Definition: audio_data.c:225
static av_cold void dither_init(DitherDSPContext *ddsp, enum AVResampleDitherMethod method)
Definition: dither.c:329
common internal and external API header
enum AVSampleFormat av_get_packed_sample_fmt(enum AVSampleFormat sample_fmt)
Get the packed alternative form of the given sample format.
Definition: samplefmt.c:75
AudioData * s16_data
Definition: dither.c:69
signed 16 bits
Definition: samplefmt.h:61
static double c[64]
float dither_a[4]
Definition: dither.c:50
AV_RESAMPLE_DITHER_RECTANGULAR
Rectangular Dither.
Definition: avresample.h:133
int apply_map
Definition: dither.c:57
#define av_free(p)
int len
void(* dither_int_to_float)(float *dst, int *src0, int len)
Convert dither noise from int to float with triangular distribution.
Definition: dither.h:54
enum AVSampleFormat sample_fmt
sample format
Definition: audio_data.h:44
#define av_freep(p)
void ff_audio_data_free(AudioData **a)
Free AudioData.
Definition: audio_data.c:217
signed 16 bits, planar
Definition: samplefmt.h:67
void ff_dither_init_x86(DitherDSPContext *ddsp, enum AVResampleDitherMethod method)
Definition: dither_init.c:34
int ptr_align
minimum data pointer alignment
Definition: audio_data.h:53
ChannelMapInfo * ch_map_info
Definition: dither.c:58
void(* quantize)(int16_t *dst, const float *src, float *dither, int len)
Convert samples from flt to s16 with added dither noise.
Definition: dither.h:38
float dither_b[4]
Definition: dither.c:51
#define MUTE_THRESHOLD_SEC
Definition: dither.c:78
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(constuint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(constint16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(constint32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(constint64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(constfloat *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(constdouble *) pi *(INT64_C(1)<< 63)))#defineFMT_PAIR_FUNC(out, in) staticconv_func_type *constfmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};staticvoidcpy1(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, len);}staticvoidcpy2(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 2 *len);}staticvoidcpy4(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 4 *len);}staticvoidcpy8(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, constint *ch_map, intflags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) returnNULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) returnNULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case1:ctx->simd_f=cpy1;break;case2:ctx->simd_f=cpy2;break;case4:ctx->simd_f=cpy4;break;case8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);returnctx;}voidswri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}intswri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, intlen){intch;intoff=0;constintos=(out->planar?1:out->ch_count)*out->bps;unsignedmisaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){intplanes=in->planar?in->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){intplanes=out->planar?out->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){intplanes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56