FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
evrcdec.c
Go to the documentation of this file.
1 /*
2  * Enhanced Variable Rate Codec, Service Option 3 decoder
3  * Copyright (c) 2013 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Enhanced Variable Rate Codec, Service Option 3 decoder
25  * @author Paul B Mahol
26  */
27 
28 #include "libavutil/mathematics.h"
29 #include "libavutil/opt.h"
30 #include "avcodec.h"
31 #include "internal.h"
32 #include "get_bits.h"
33 #include "evrcdata.h"
34 #include "acelp_vectors.h"
35 #include "lsp.h"
36 
37 #define MIN_LSP_SEP (0.05 / (2.0 * M_PI))
38 #define MIN_DELAY 20
39 #define MAX_DELAY 120
40 #define NB_SUBFRAMES 3
41 #define SUBFRAME_SIZE 54
42 #define FILTER_ORDER 10
43 #define ACB_SIZE 128
44 
45 typedef enum {
46  RATE_ERRS = -1,
53 
54 /**
55  * EVRC-A unpacked data frame
56  */
57 typedef struct EVRCAFrame {
58  uint8_t lpc_flag; ///< spectral change indicator
59  uint16_t lsp[4]; ///< index into LSP codebook
60  uint8_t pitch_delay; ///< pitch delay for entire frame
61  uint8_t delay_diff; ///< delay difference for entire frame
62  uint8_t acb_gain[3]; ///< adaptive codebook gain
63  uint16_t fcb_shape[3][4]; ///< fixed codebook shape
64  uint8_t fcb_gain[3]; ///< fixed codebook gain index
65  uint8_t energy_gain; ///< frame energy gain index
66  uint8_t tty; ///< tty baud rate bit
67 } EVRCAFrame;
68 
69 typedef struct EVRCContext {
70  AVClass *class;
71 
73 
78 
85  float pitch_delay;
87  float avg_acb_gain; ///< average adaptive codebook gain
88  float avg_fcb_gain; ///< average fixed codebook gain
93  float fade_scale;
94  float last;
95 
99 } EVRCContext;
100 
101 /**
102  * Frame unpacking for RATE_FULL, RATE_HALF and RATE_QUANT
103  *
104  * @param e the context
105  *
106  * TIA/IS-127 Table 4.21-1
107  */
108 static void unpack_frame(EVRCContext *e)
109 {
110  EVRCAFrame *frame = &e->frame;
111  GetBitContext *gb = &e->gb;
112 
113  switch (e->bitrate) {
114  case RATE_FULL:
115  frame->lpc_flag = get_bits1(gb);
116  frame->lsp[0] = get_bits(gb, 6);
117  frame->lsp[1] = get_bits(gb, 6);
118  frame->lsp[2] = get_bits(gb, 9);
119  frame->lsp[3] = get_bits(gb, 7);
120  frame->pitch_delay = get_bits(gb, 7);
121  frame->delay_diff = get_bits(gb, 5);
122  frame->acb_gain[0] = get_bits(gb, 3);
123  frame->fcb_shape[0][0] = get_bits(gb, 8);
124  frame->fcb_shape[0][1] = get_bits(gb, 8);
125  frame->fcb_shape[0][2] = get_bits(gb, 8);
126  frame->fcb_shape[0][3] = get_bits(gb, 11);
127  frame->fcb_gain[0] = get_bits(gb, 5);
128  frame->acb_gain[1] = get_bits(gb, 3);
129  frame->fcb_shape[1][0] = get_bits(gb, 8);
130  frame->fcb_shape[1][1] = get_bits(gb, 8);
131  frame->fcb_shape[1][2] = get_bits(gb, 8);
132  frame->fcb_shape[1][3] = get_bits(gb, 11);
133  frame->fcb_gain [1] = get_bits(gb, 5);
134  frame->acb_gain [2] = get_bits(gb, 3);
135  frame->fcb_shape[2][0] = get_bits(gb, 8);
136  frame->fcb_shape[2][1] = get_bits(gb, 8);
137  frame->fcb_shape[2][2] = get_bits(gb, 8);
138  frame->fcb_shape[2][3] = get_bits(gb, 11);
139  frame->fcb_gain [2] = get_bits(gb, 5);
140  frame->tty = get_bits1(gb);
141  break;
142  case RATE_HALF:
143  frame->lsp [0] = get_bits(gb, 7);
144  frame->lsp [1] = get_bits(gb, 7);
145  frame->lsp [2] = get_bits(gb, 8);
146  frame->pitch_delay = get_bits(gb, 7);
147  frame->acb_gain [0] = get_bits(gb, 3);
148  frame->fcb_shape[0][0] = get_bits(gb, 10);
149  frame->fcb_gain [0] = get_bits(gb, 4);
150  frame->acb_gain [1] = get_bits(gb, 3);
151  frame->fcb_shape[1][0] = get_bits(gb, 10);
152  frame->fcb_gain [1] = get_bits(gb, 4);
153  frame->acb_gain [2] = get_bits(gb, 3);
154  frame->fcb_shape[2][0] = get_bits(gb, 10);
155  frame->fcb_gain [2] = get_bits(gb, 4);
156  break;
157  case RATE_QUANT:
158  frame->lsp [0] = get_bits(gb, 4);
159  frame->lsp [1] = get_bits(gb, 4);
160  frame->energy_gain = get_bits(gb, 8);
161  break;
162  }
163 }
164 
165 static evrc_packet_rate buf_size2bitrate(const int buf_size)
166 {
167  switch (buf_size) {
168  case 23: return RATE_FULL;
169  case 11: return RATE_HALF;
170  case 6: return RATE_QUARTER;
171  case 3: return RATE_QUANT;
172  case 1: return SILENCE;
173  }
174 
175  return RATE_ERRS;
176 }
177 
178 /**
179  * Determine the bitrate from the frame size and/or the first byte of the frame.
180  *
181  * @param avctx the AV codec context
182  * @param buf_size length of the buffer
183  * @param buf the bufffer
184  *
185  * @return the bitrate on success,
186  * RATE_ERRS if the bitrate cannot be satisfactorily determined
187  */
189  int *buf_size,
190  const uint8_t **buf)
191 {
192  evrc_packet_rate bitrate;
193 
194  if ((bitrate = buf_size2bitrate(*buf_size)) >= 0) {
195  if (bitrate > **buf) {
196  EVRCContext *e = avctx->priv_data;
197  if (!e->warned_buf_mismatch_bitrate) {
198  av_log(avctx, AV_LOG_WARNING,
199  "Claimed bitrate and buffer size mismatch.\n");
201  }
202  bitrate = **buf;
203  } else if (bitrate < **buf) {
204  av_log(avctx, AV_LOG_ERROR,
205  "Buffer is too small for the claimed bitrate.\n");
206  return RATE_ERRS;
207  }
208  (*buf)++;
209  *buf_size -= 1;
210  } else if ((bitrate = buf_size2bitrate(*buf_size + 1)) >= 0) {
211  av_log(avctx, AV_LOG_DEBUG,
212  "Bitrate byte is missing, guessing the bitrate from packet size.\n");
213  } else
214  return RATE_ERRS;
215 
216  return bitrate;
217 }
218 
220  const char *message)
221 {
222  av_log(avctx, AV_LOG_WARNING, "Frame #%d, %s\n",
223  avctx->frame_number, message);
224 }
225 
226 /**
227  * Initialize the speech codec according to the specification.
228  *
229  * TIA/IS-127 5.2
230  */
232 {
233  EVRCContext *e = avctx->priv_data;
234  int i, n, idx = 0;
235  float denom = 2.0 / (2.0 * 8.0 + 1.0);
236 
237  avctx->channels = 1;
239  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
240 
241  for (i = 0; i < FILTER_ORDER; i++) {
242  e->prev_lspf[i] = (i + 1) * 0.048;
243  e->synthesis[i] = 0.0;
244  }
245 
246  for (i = 0; i < ACB_SIZE; i++)
247  e->pitch[i] = e->pitch_back[i] = 0.0;
248 
250  e->prev_pitch_delay = 40.0;
251  e->fade_scale = 1.0;
252  e->prev_error_flag = 0;
253  e->avg_acb_gain = e->avg_fcb_gain = 0.0;
254 
255  for (i = 0; i < 8; i++) {
256  float tt = ((float)i - 8.0 / 2.0) / 8.0;
257 
258  for (n = -8; n <= 8; n++, idx++) {
259  float arg1 = M_PI * 0.9 * (tt - n);
260  float arg2 = M_PI * (tt - n);
261 
262  e->interpolation_coeffs[idx] = 0.9;
263  if (arg1)
264  e->interpolation_coeffs[idx] *= (0.54 + 0.46 * cos(arg2 * denom)) *
265  sin(arg1) / arg1;
266  }
267  }
268 
269  return 0;
270 }
271 
272 /**
273  * Decode the 10 vector quantized line spectral pair frequencies from the LSP
274  * transmission codes of any bitrate and check for badly received packets.
275  *
276  * @param e the context
277  *
278  * @return 0 on success, -1 if the packet is badly received
279  *
280  * TIA/IS-127 5.2.1, 5.7.1
281  */
282 static int decode_lspf(EVRCContext *e)
283 {
284  const float * const *codebooks = evrc_lspq_codebooks[e->bitrate];
285  int i, j, k = 0;
286 
287  for (i = 0; i < evrc_lspq_nb_codebooks[e->bitrate]; i++) {
289  const float *codebook = codebooks[i];
290 
291  for (j = 0; j < row_size; j++)
292  e->lspf[k++] = codebook[e->frame.lsp[i] * row_size + j];
293  }
294 
295  // check for monotonic LSPs
296  for (i = 1; i < FILTER_ORDER; i++)
297  if (e->lspf[i] <= e->lspf[i - 1])
298  return -1;
299 
300  // check for minimum separation of LSPs at the splits
301  for (i = 0, k = 0; i < evrc_lspq_nb_codebooks[e->bitrate] - 1; i++) {
303  if (e->lspf[k] - e->lspf[k - 1] <= MIN_LSP_SEP)
304  return -1;
305  }
306 
307  return 0;
308 }
309 
310 /*
311  * Interpolation of LSP parameters.
312  *
313  * TIA/IS-127 5.2.3.1, 5.7.3.2
314  */
315 static void interpolate_lsp(float *ilsp, const float *lsp,
316  const float *prev, int index)
317 {
318  static const float lsp_interpolation_factors[] = { 0.1667, 0.5, 0.8333 };
319  ff_weighted_vector_sumf(ilsp, prev, lsp,
320  1.0 - lsp_interpolation_factors[index],
321  lsp_interpolation_factors[index], FILTER_ORDER);
322 }
323 
324 /*
325  * Reconstruction of the delay contour.
326  *
327  * TIA/IS-127 5.2.2.3.2
328  */
329 static void interpolate_delay(float *dst, float current, float prev, int index)
330 {
331  static const float d_interpolation_factors[] = { 0, 0.3313, 0.6625, 1, 1 };
332  dst[0] = (1.0 - d_interpolation_factors[index ]) * prev
333  + d_interpolation_factors[index ] * current;
334  dst[1] = (1.0 - d_interpolation_factors[index + 1]) * prev
335  + d_interpolation_factors[index + 1] * current;
336  dst[2] = (1.0 - d_interpolation_factors[index + 2]) * prev
337  + d_interpolation_factors[index + 2] * current;
338 }
339 
340 /*
341  * Convert the quantized, interpolated line spectral frequencies,
342  * to prediction coefficients.
343  *
344  * TIA/IS-127 5.2.3.2, 4.7.2.2
345  */
346 static void decode_predictor_coeffs(const float *ilspf, float *ilpc)
347 {
348  double lsp[FILTER_ORDER];
349  float a[FILTER_ORDER / 2 + 1], b[FILTER_ORDER / 2 + 1];
350  float a1[FILTER_ORDER / 2] = { 0 };
351  float a2[FILTER_ORDER / 2] = { 0 };
352  float b1[FILTER_ORDER / 2] = { 0 };
353  float b2[FILTER_ORDER / 2] = { 0 };
354  int i, k;
355 
356  ff_acelp_lsf2lspd(lsp, ilspf, FILTER_ORDER);
357 
358  for (k = 0; k <= FILTER_ORDER; k++) {
359  a[0] = k < 2 ? 0.25 : 0;
360  b[0] = k < 2 ? k < 1 ? 0.25 : -0.25 : 0;
361 
362  for (i = 0; i < FILTER_ORDER / 2; i++) {
363  a[i + 1] = a[i] - 2 * lsp[i * 2 ] * a1[i] + a2[i];
364  b[i + 1] = b[i] - 2 * lsp[i * 2 + 1] * b1[i] + b2[i];
365  a2[i] = a1[i];
366  a1[i] = a[i];
367  b2[i] = b1[i];
368  b1[i] = b[i];
369  }
370 
371  if (k)
372  ilpc[k - 1] = 2.0 * (a[FILTER_ORDER / 2] + b[FILTER_ORDER / 2]);
373  }
374 }
375 
376 static void bl_intrp(EVRCContext *e, float *ex, float delay)
377 {
378  float *f;
379  int offset, i, coef_idx;
380  int16_t t;
381 
382  offset = lrintf(delay);
383 
384  t = (offset - delay + 0.5) * 8.0 + 0.5;
385  if (t == 8) {
386  t = 0;
387  offset--;
388  }
389 
390  f = ex - offset - 8;
391 
392  coef_idx = t * (2 * 8 + 1);
393 
394  ex[0] = 0.0;
395  for (i = 0; i < 2 * 8 + 1; i++)
396  ex[0] += e->interpolation_coeffs[coef_idx + i] * f[i];
397 }
398 
399 /*
400  * Adaptive codebook excitation.
401  *
402  * TIA/IS-127 5.2.2.3.3, 4.12.5.2
403  */
404 static void acb_excitation(EVRCContext *e, float *excitation, float gain,
405  const float delay[3], int length)
406 {
407  float denom, locdelay, dpr, invl;
408  int i;
409 
410  invl = 1.0 / ((float) length);
411  dpr = length;
412 
413  /* first at-most extra samples */
414  denom = (delay[1] - delay[0]) * invl;
415  for (i = 0; i < dpr; i++) {
416  locdelay = delay[0] + i * denom;
417  bl_intrp(e, excitation + i, locdelay);
418  }
419 
420  denom = (delay[2] - delay[1]) * invl;
421  /* interpolation */
422  for (i = dpr; i < dpr + 10; i++) {
423  locdelay = delay[1] + (i - dpr) * denom;
424  bl_intrp(e, excitation + i, locdelay);
425  }
426 
427  for (i = 0; i < length; i++)
428  excitation[i] *= gain;
429 }
430 
431 static void decode_8_pulses_35bits(const uint16_t *fixed_index, float *cod)
432 {
433  int i, pos1, pos2, offset;
434 
435  offset = (fixed_index[3] >> 9) & 3;
436 
437  for (i = 0; i < 3; i++) {
438  pos1 = ((fixed_index[i] & 0x7f) / 11) * 5 + ((i + offset) % 5);
439  pos2 = ((fixed_index[i] & 0x7f) % 11) * 5 + ((i + offset) % 5);
440 
441  cod[pos1] = (fixed_index[i] & 0x80) ? -1.0 : 1.0;
442 
443  if (pos2 < pos1)
444  cod[pos2] = -cod[pos1];
445  else
446  cod[pos2] += cod[pos1];
447  }
448 
449  pos1 = ((fixed_index[3] & 0x7f) / 11) * 5 + ((3 + offset) % 5);
450  pos2 = ((fixed_index[3] & 0x7f) % 11) * 5 + ((4 + offset) % 5);
451 
452  cod[pos1] = (fixed_index[3] & 0x100) ? -1.0 : 1.0;
453  cod[pos2] = (fixed_index[3] & 0x80 ) ? -1.0 : 1.0;
454 }
455 
456 static void decode_3_pulses_10bits(uint16_t fixed_index, float *cod)
457 {
458  float sign;
459  int pos;
460 
461  sign = (fixed_index & 0x200) ? -1.0 : 1.0;
462 
463  pos = ((fixed_index & 0x7) * 7) + 4;
464  cod[pos] += sign;
465  pos = (((fixed_index >> 3) & 0x7) * 7) + 2;
466  cod[pos] -= sign;
467  pos = (((fixed_index >> 6) & 0x7) * 7);
468  cod[pos] += sign;
469 }
470 
471 /*
472  * Reconstruction of ACELP fixed codebook excitation for full and half rate.
473  *
474  * TIA/IS-127 5.2.3.7
475  */
476 static void fcb_excitation(EVRCContext *e, const uint16_t *codebook,
477  float *excitation, float pitch_gain,
478  int pitch_lag, int subframe_size)
479 {
480  int i;
481 
482  if (e->bitrate == RATE_FULL)
483  decode_8_pulses_35bits(codebook, excitation);
484  else
485  decode_3_pulses_10bits(*codebook, excitation);
486 
487  pitch_gain = av_clipf(pitch_gain, 0.2, 0.9);
488 
489  for (i = pitch_lag; i < subframe_size; i++)
490  excitation[i] += pitch_gain * excitation[i - pitch_lag];
491 }
492 
493 /**
494  * Synthesis of the decoder output signal.
495  *
496  * param[in] in input signal
497  * param[in] filter_coeffs LPC coefficients
498  * param[in/out] memory synthesis filter memory
499  * param buffer_length amount of data to process
500  * param[out] samples output samples
501  *
502  * TIA/IS-127 5.2.3.15, 5.7.3.4
503  */
504 static void synthesis_filter(const float *in, const float *filter_coeffs,
505  float *memory, int buffer_length, float *samples)
506 {
507  int i, j;
508 
509  for (i = 0; i < buffer_length; i++) {
510  samples[i] = in[i];
511  for (j = FILTER_ORDER - 1; j > 0; j--) {
512  samples[i] -= filter_coeffs[j] * memory[j];
513  memory[j] = memory[j - 1];
514  }
515  samples[i] -= filter_coeffs[0] * memory[0];
516  memory[0] = samples[i];
517  }
518 }
519 
520 static void bandwidth_expansion(float *coeff, const float *inbuf, float gamma)
521 {
522  double fac = gamma;
523  int i;
524 
525  for (i = 0; i < FILTER_ORDER; i++) {
526  coeff[i] = inbuf[i] * fac;
527  fac *= gamma;
528  }
529 }
530 
531 static void residual_filter(float *output, const float *input,
532  const float *coef, float *memory, int length)
533 {
534  float sum;
535  int i, j;
536 
537  for (i = 0; i < length; i++) {
538  sum = input[i];
539 
540  for (j = FILTER_ORDER - 1; j > 0; j--) {
541  sum += coef[j] * memory[j];
542  memory[j] = memory[j - 1];
543  }
544  sum += coef[0] * memory[0];
545  memory[0] = input[i];
546  output[i] = sum;
547  }
548 }
549 
550 /*
551  * TIA/IS-127 Table 5.9.1-1.
552  */
553 static const struct PfCoeff {
554  float tilt;
555  float ltgain;
556  float p1;
557  float p2;
558 } postfilter_coeffs[5] = {
559  { 0.0 , 0.0 , 0.0 , 0.0 },
560  { 0.0 , 0.0 , 0.57, 0.57 },
561  { 0.0 , 0.0 , 0.0 , 0.0 },
562  { 0.35, 0.50, 0.50, 0.75 },
563  { 0.20, 0.50, 0.57, 0.75 },
564 };
565 
566 /*
567  * Adaptive postfilter.
568  *
569  * TIA/IS-127 5.9
570  */
571 static void postfilter(EVRCContext *e, float *in, const float *coeff,
572  float *out, int idx, const struct PfCoeff *pfc,
573  int length)
574 {
575  float wcoef1[FILTER_ORDER], wcoef2[FILTER_ORDER],
576  scratch[SUBFRAME_SIZE], temp[SUBFRAME_SIZE],
578  float sum1 = 0.0, sum2 = 0.0, gamma, gain;
579  float tilt = pfc->tilt;
580  int i, n, best;
581 
582  bandwidth_expansion(wcoef1, coeff, pfc->p1);
583  bandwidth_expansion(wcoef2, coeff, pfc->p2);
584 
585  /* Tilt compensation filter, TIA/IS-127 5.9.1 */
586  for (i = 0; i < length - 1; i++)
587  sum2 += in[i] * in[i + 1];
588  if (sum2 < 0.0)
589  tilt = 0.0;
590 
591  for (i = 0; i < length; i++) {
592  scratch[i] = in[i] - tilt * e->last;
593  e->last = in[i];
594  }
595 
596  /* Short term residual filter, TIA/IS-127 5.9.2 */
597  residual_filter(&e->postfilter_residual[ACB_SIZE], scratch, wcoef1, e->postfilter_fir, length);
598 
599  /* Long term postfilter */
600  best = idx;
601  for (i = FFMIN(MIN_DELAY, idx - 3); i <= FFMAX(MAX_DELAY, idx + 3); i++) {
602  for (n = ACB_SIZE, sum2 = 0; n < ACB_SIZE + length; n++)
603  sum2 += e->postfilter_residual[n] * e->postfilter_residual[n - i];
604  if (sum2 > sum1) {
605  sum1 = sum2;
606  best = i;
607  }
608  }
609 
610  for (i = ACB_SIZE, sum1 = 0; i < ACB_SIZE + length; i++)
611  sum1 += e->postfilter_residual[i - best] * e->postfilter_residual[i - best];
612  for (i = ACB_SIZE, sum2 = 0; i < ACB_SIZE + length; i++)
613  sum2 += e->postfilter_residual[i] * e->postfilter_residual[i - best];
614 
615  if (sum2 * sum1 == 0 || e->bitrate == RATE_QUANT) {
616  memcpy(temp, e->postfilter_residual + ACB_SIZE, length * sizeof(float));
617  } else {
618  gamma = sum2 / sum1;
619  if (gamma < 0.5)
620  memcpy(temp, e->postfilter_residual + ACB_SIZE, length * sizeof(float));
621  else {
622  gamma = FFMIN(gamma, 1.0);
623 
624  for (i = 0; i < length; i++) {
625  temp[i] = e->postfilter_residual[ACB_SIZE + i] + gamma *
626  pfc->ltgain * e->postfilter_residual[ACB_SIZE + i - best];
627  }
628  }
629  }
630 
631  memcpy(scratch, temp, length * sizeof(float));
632  memcpy(mem, e->postfilter_iir, FILTER_ORDER * sizeof(float));
633  synthesis_filter(scratch, wcoef2, mem, length, scratch);
634 
635  /* Gain computation, TIA/IS-127 5.9.4-2 */
636  for (i = 0, sum1 = 0, sum2 = 0; i < length; i++) {
637  sum1 += in[i] * in[i];
638  sum2 += scratch[i] * scratch[i];
639  }
640  gain = sum2 ? sqrt(sum1 / sum2) : 1.0;
641 
642  for (i = 0; i < length; i++)
643  temp[i] *= gain;
644 
645  /* Short term postfilter */
646  synthesis_filter(temp, wcoef2, e->postfilter_iir, length, out);
647 
648  memmove(e->postfilter_residual,
649  e->postfilter_residual + length, ACB_SIZE * sizeof(float));
650 }
651 
652 static void frame_erasure(EVRCContext *e, float *samples)
653 {
654  float ilspf[FILTER_ORDER], ilpc[FILTER_ORDER], idelay[NB_SUBFRAMES],
655  tmp[SUBFRAME_SIZE + 6], f;
656  int i, j;
657 
658  for (i = 0; i < FILTER_ORDER; i++) {
659  if (e->bitrate != RATE_QUANT)
660  e->lspf[i] = e->prev_lspf[i] * 0.875 + 0.125 * (i + 1) * 0.048;
661  else
662  e->lspf[i] = e->prev_lspf[i];
663  }
664 
665  if (e->prev_error_flag)
666  e->avg_acb_gain *= 0.75;
667  if (e->bitrate == RATE_FULL)
668  memcpy(e->pitch_back, e->pitch, ACB_SIZE * sizeof(float));
669  if (e->last_valid_bitrate == RATE_QUANT)
670  e->bitrate = RATE_QUANT;
671  else
672  e->bitrate = RATE_FULL;
673 
674  if (e->bitrate == RATE_FULL || e->bitrate == RATE_HALF) {
676  } else {
677  float sum = 0;
678 
679  idelay[0] = idelay[1] = idelay[2] = MIN_DELAY;
680 
681  for (i = 0; i < NB_SUBFRAMES; i++)
682  sum += evrc_energy_quant[e->prev_energy_gain][i];
683  sum /= (float) NB_SUBFRAMES;
684  sum = pow(10, sum);
685  for (i = 0; i < NB_SUBFRAMES; i++)
686  e->energy_vector[i] = sum;
687  }
688 
689  if (fabs(e->pitch_delay - e->prev_pitch_delay) > 15)
691 
692  for (i = 0; i < NB_SUBFRAMES; i++) {
693  int subframe_size = subframe_sizes[i];
694  int pitch_lag;
695 
696  interpolate_lsp(ilspf, e->lspf, e->prev_lspf, i);
697 
698  if (e->bitrate != RATE_QUANT) {
699  if (e->avg_acb_gain < 0.3) {
700  idelay[0] = estimation_delay[i];
701  idelay[1] = estimation_delay[i + 1];
702  idelay[2] = estimation_delay[i + 2];
703  } else {
705  }
706  }
707 
708  pitch_lag = lrintf((idelay[1] + idelay[0]) / 2.0);
709  decode_predictor_coeffs(ilspf, ilpc);
710 
711  if (e->bitrate != RATE_QUANT) {
712  acb_excitation(e, e->pitch + ACB_SIZE,
713  e->avg_acb_gain, idelay, subframe_size);
714  for (j = 0; j < subframe_size; j++)
715  e->pitch[ACB_SIZE + j] *= e->fade_scale;
716  e->fade_scale = FFMAX(e->fade_scale - 0.05, 0.0);
717  } else {
718  for (j = 0; j < subframe_size; j++)
719  e->pitch[ACB_SIZE + j] = e->energy_vector[i];
720  }
721 
722  memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
723 
724  if (e->bitrate != RATE_QUANT && e->avg_acb_gain < 0.4) {
725  f = 0.1 * e->avg_fcb_gain;
726  for (j = 0; j < subframe_size; j++)
727  e->pitch[ACB_SIZE + j] += f;
728  } else if (e->bitrate == RATE_QUANT) {
729  for (j = 0; j < subframe_size; j++)
730  e->pitch[ACB_SIZE + j] = e->energy_vector[i];
731  }
732 
733  synthesis_filter(e->pitch + ACB_SIZE, ilpc,
734  e->synthesis, subframe_size, tmp);
735  postfilter(e, tmp, ilpc, samples, pitch_lag,
736  &postfilter_coeffs[e->bitrate], subframe_size);
737 
738  samples += subframe_size;
739  }
740 }
741 
742 static int evrc_decode_frame(AVCodecContext *avctx, void *data,
743  int *got_frame_ptr, AVPacket *avpkt)
744 {
745  const uint8_t *buf = avpkt->data;
746  AVFrame *frame = data;
747  EVRCContext *e = avctx->priv_data;
748  int buf_size = avpkt->size;
749  float ilspf[FILTER_ORDER], ilpc[FILTER_ORDER], idelay[NB_SUBFRAMES];
750  float *samples;
751  int i, j, ret, error_flag = 0;
752 
753  frame->nb_samples = 160;
754  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
755  return ret;
756  samples = (float *)frame->data[0];
757 
758  if ((e->bitrate = determine_bitrate(avctx, &buf_size, &buf)) == RATE_ERRS) {
759  warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
760  goto erasure;
761  }
762  if (e->bitrate <= SILENCE || e->bitrate == RATE_QUARTER)
763  goto erasure;
765  && !e->prev_error_flag)
766  goto erasure;
767 
768  if ((ret = init_get_bits8(&e->gb, buf, buf_size)) < 0)
769  return ret;
770  memset(&e->frame, 0, sizeof(EVRCAFrame));
771 
772  unpack_frame(e);
773 
774  if (e->bitrate != RATE_QUANT) {
775  uint8_t *p = (uint8_t *) &e->frame;
776  for (i = 0; i < sizeof(EVRCAFrame); i++) {
777  if (p[i])
778  break;
779  }
780  if (i == sizeof(EVRCAFrame))
781  goto erasure;
782  } else if (e->frame.lsp[0] == 0xf &&
783  e->frame.lsp[1] == 0xf &&
784  e->frame.energy_gain == 0xff) {
785  goto erasure;
786  }
787 
788  if (decode_lspf(e) < 0)
789  goto erasure;
790 
791  if (e->bitrate == RATE_FULL || e->bitrate == RATE_HALF) {
792  /* Pitch delay parameter checking as per TIA/IS-127 5.1.5.1 */
794  goto erasure;
795 
797 
798  /* Delay diff parameter checking as per TIA/IS-127 5.1.5.2 */
799  if (e->frame.delay_diff) {
800  int p = e->pitch_delay - e->frame.delay_diff + 16;
801  if (p < MIN_DELAY || p > MAX_DELAY)
802  goto erasure;
803  }
804 
805  /* Delay contour reconstruction as per TIA/IS-127 5.2.2.2 */
806  if (e->frame.delay_diff &&
807  e->bitrate == RATE_FULL && e->prev_error_flag) {
808  float delay;
809 
810  memcpy(e->pitch, e->pitch_back, ACB_SIZE * sizeof(float));
811 
812  delay = e->prev_pitch_delay;
813  e->prev_pitch_delay = delay - e->frame.delay_diff + 16.0;
814 
815  if (fabs(e->pitch_delay - delay) > 15)
816  delay = e->pitch_delay;
817 
818  for (i = 0; i < NB_SUBFRAMES; i++) {
819  int subframe_size = subframe_sizes[i];
820 
821  interpolate_delay(idelay, delay, e->prev_pitch_delay, i);
822  acb_excitation(e, e->pitch + ACB_SIZE, e->avg_acb_gain, idelay, subframe_size);
823  memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
824  }
825  }
826 
827  /* Smoothing of the decoded delay as per TIA/IS-127 5.2.2.5 */
828  if (fabs(e->pitch_delay - e->prev_pitch_delay) > 15)
830 
831  e->avg_acb_gain = e->avg_fcb_gain = 0.0;
832  } else {
833  idelay[0] = idelay[1] = idelay[2] = MIN_DELAY;
834 
835  /* Decode frame energy vectors as per TIA/IS-127 5.7.2 */
836  for (i = 0; i < NB_SUBFRAMES; i++)
837  e->energy_vector[i] = pow(10, evrc_energy_quant[e->frame.energy_gain][i]);
839  }
840 
841  for (i = 0; i < NB_SUBFRAMES; i++) {
842  float tmp[SUBFRAME_SIZE + 6] = { 0 };
843  int subframe_size = subframe_sizes[i];
844  int pitch_lag;
845 
846  interpolate_lsp(ilspf, e->lspf, e->prev_lspf, i);
847 
848  if (e->bitrate != RATE_QUANT)
850 
851  pitch_lag = lrintf((idelay[1] + idelay[0]) / 2.0);
852  decode_predictor_coeffs(ilspf, ilpc);
853 
854  /* Bandwidth expansion as per TIA/IS-127 5.2.3.3 */
855  if (e->frame.lpc_flag && e->prev_error_flag)
856  bandwidth_expansion(ilpc, ilpc, 0.75);
857 
858  if (e->bitrate != RATE_QUANT) {
859  float acb_sum, f;
860 
861  f = exp((e->bitrate == RATE_HALF ? 0.5 : 0.25)
862  * (e->frame.fcb_gain[i] + 1));
863  acb_sum = pitch_gain_vq[e->frame.acb_gain[i]];
864  e->avg_acb_gain += acb_sum / NB_SUBFRAMES;
865  e->avg_fcb_gain += f / NB_SUBFRAMES;
866 
867  acb_excitation(e, e->pitch + ACB_SIZE,
868  acb_sum, idelay, subframe_size);
869  fcb_excitation(e, e->frame.fcb_shape[i], tmp,
870  acb_sum, pitch_lag, subframe_size);
871 
872  /* Total excitation generation as per TIA/IS-127 5.2.3.9 */
873  for (j = 0; j < subframe_size; j++)
874  e->pitch[ACB_SIZE + j] += f * tmp[j];
875  e->fade_scale = FFMIN(e->fade_scale + 0.2, 1.0);
876  } else {
877  for (j = 0; j < subframe_size; j++)
878  e->pitch[ACB_SIZE + j] = e->energy_vector[i];
879  }
880 
881  memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
882 
883  synthesis_filter(e->pitch + ACB_SIZE, ilpc,
884  e->synthesis, subframe_size,
885  e->postfilter ? tmp : samples);
886  if (e->postfilter)
887  postfilter(e, tmp, ilpc, samples, pitch_lag,
888  &postfilter_coeffs[e->bitrate], subframe_size);
889 
890  samples += subframe_size;
891  }
892 
893  if (error_flag) {
894 erasure:
895  error_flag = 1;
896  av_log(avctx, AV_LOG_WARNING, "frame erasure\n");
897  frame_erasure(e, samples);
898  }
899 
900  memcpy(e->prev_lspf, e->lspf, sizeof(e->prev_lspf));
901  e->prev_error_flag = error_flag;
902  e->last_valid_bitrate = e->bitrate;
903 
904  if (e->bitrate != RATE_QUANT)
906 
907  samples = (float *)frame->data[0];
908  for (i = 0; i < 160; i++)
909  samples[i] /= 32768;
910 
911  *got_frame_ptr = 1;
912 
913  return avpkt->size;
914 }
915 
916 #define OFFSET(x) offsetof(EVRCContext, x)
917 #define AD AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
918 
919 static const AVOption options[] = {
920  { "postfilter", "enable postfilter", OFFSET(postfilter), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, AD },
921  { NULL }
922 };
923 
924 static const AVClass evrcdec_class = {
925  .class_name = "evrc",
926  .item_name = av_default_item_name,
927  .option = options,
928  .version = LIBAVUTIL_VERSION_INT,
929 };
930 
932  .name = "evrc",
933  .long_name = NULL_IF_CONFIG_SMALL("EVRC (Enhanced Variable Rate Codec)"),
934  .type = AVMEDIA_TYPE_AUDIO,
935  .id = AV_CODEC_ID_EVRC,
936  .init = evrc_decode_init,
937  .decode = evrc_decode_frame,
938  .capabilities = AV_CODEC_CAP_DR1,
939  .priv_data_size = sizeof(EVRCContext),
940  .priv_class = &evrcdec_class,
941 };
#define NULL
Definition: coverity.c:32
Data tables for the EVRC decoder.
This structure describes decoded (raw) audio or video data.
Definition: frame.h:187
BYTE int const BYTE int int row_size
Definition: avisynth_c.h:813
static const AVClass evrcdec_class
Definition: evrcdec.c:924
uint8_t fcb_gain[3]
fixed codebook gain index
Definition: evrcdec.c:64
uint16_t lsp[4]
index into LSP codebook
Definition: evrcdec.c:59
AVOption.
Definition: opt.h:246
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:261
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define FILTER_ORDER
Definition: evrcdec.c:42
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
uint8_t prev_energy_gain
Definition: evrcdec.c:96
static evrc_packet_rate determine_bitrate(AVCodecContext *avctx, int *buf_size, const uint8_t **buf)
Determine the bitrate from the frame size and/or the first byte of the frame.
Definition: evrcdec.c:188
else temp
Definition: vf_mcdeint.c:259
#define MIN_LSP_SEP
Definition: evrcdec.c:37
void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b, float weight_coeff_a, float weight_coeff_b, int length)
float implementation of weighted sum of two vectors.
static const float *const *const evrc_lspq_codebooks[]
Definition: evrcdata.h:1454
int size
Definition: avcodec.h:1658
const char * b
Definition: vf_curves.c:113
static void fcb_excitation(EVRCContext *e, const uint16_t *codebook, float *excitation, float pitch_gain, int pitch_lag, int subframe_size)
Definition: evrcdec.c:476
#define a1
Definition: regdef.h:47
float pitch_delay
Definition: evrcdec.c:85
float energy_vector[NB_SUBFRAMES]
Definition: evrcdec.c:92
static av_cold int evrc_decode_init(AVCodecContext *avctx)
Initialize the speech codec according to the specification.
Definition: evrcdec.c:231
float avg_fcb_gain
average fixed codebook gain
Definition: evrcdec.c:88
AVCodec.
Definition: avcodec.h:3681
uint8_t warned_buf_mismatch_bitrate
Definition: evrcdec.c:98
float lspf[FILTER_ORDER]
Definition: evrcdec.c:79
uint8_t tty
tty baud rate bit
Definition: evrcdec.c:66
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
static evrc_packet_rate buf_size2bitrate(const int buf_size)
Definition: evrcdec.c:165
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2502
int mem
Definition: avisynth_c.h:821
static void interpolate_lsp(float *ilsp, const float *lsp, const float *prev, int index)
Definition: evrcdec.c:315
uint8_t
#define av_cold
Definition: attributes.h:82
AVOptions.
uint8_t lpc_flag
spectral change indicator
Definition: evrcdec.c:58
static void bl_intrp(EVRCContext *e, float *ex, float delay)
Definition: evrcdec.c:376
uint16_t fcb_shape[3][4]
fixed codebook shape
Definition: evrcdec.c:63
static AVFrame * frame
static const uint8_t *const evrc_lspq_codebooks_row_sizes[]
Definition: evrcdata.h:1488
uint8_t * data
Definition: avcodec.h:1657
static const float evrc_energy_quant[][3]
Rate 1/8 frame energy quantization.
Definition: evrcdata.h:38
float p1
Definition: evrcdec.c:556
bitstream reader API header.
#define lrintf(x)
Definition: libm_mips.h:70
static const uint8_t subframe_sizes[]
Definition: evrcdata.h:1498
float last
Definition: evrcdec.c:94
#define av_log(a,...)
float pitch[ACB_SIZE+FILTER_ORDER+SUBFRAME_SIZE]
Definition: evrcdec.c:89
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint8_t prev_error_flag
Definition: evrcdec.c:97
#define ACB_SIZE
Definition: evrcdec.c:43
static const uint8_t evrc_lspq_nb_codebooks[]
Definition: evrcdata.h:1462
static void acb_excitation(EVRCContext *e, float *excitation, float gain, const float delay[3], int length)
Definition: evrcdec.c:404
float interpolation_coeffs[136]
Definition: evrcdec.c:91
av_default_item_name
float postfilter_residual[ACB_SIZE+SUBFRAME_SIZE]
Definition: evrcdec.c:84
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:179
AVCodec ff_evrc_decoder
Definition: evrcdec.c:931
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
static void unpack_frame(EVRCContext *e)
Frame unpacking for RATE_FULL, RATE_HALF and RATE_QUANT.
Definition: evrcdec.c:108
GLsizei GLsizei * length
Definition: opengl_enc.c:115
const char * name
Name of the codec implementation.
Definition: avcodec.h:3688
static int evrc_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: evrcdec.c:742
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
uint8_t acb_gain[3]
adaptive codebook gain
Definition: evrcdec.c:62
#define MAX_DELAY
Definition: evrcdec.c:39
int8_t exp
Definition: eval.c:65
static const float pitch_gain_vq[]
Definition: evrcdata.h:1496
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:2545
#define OFFSET(x)
Definition: evrcdec.c:916
float prev_pitch_delay
Definition: evrcdec.c:86
float avg_acb_gain
average adaptive codebook gain
Definition: evrcdec.c:87
#define FFMIN(a, b)
Definition: common.h:96
evrc_packet_rate
Definition: evrcdec.c:45
#define AD
Definition: evrcdec.c:917
GetBitContext gb
Definition: evrcdec.c:74
#define NB_SUBFRAMES
Definition: evrcdec.c:40
#define a2
Definition: regdef.h:48
float pitch_back[ACB_SIZE]
Definition: evrcdec.c:90
int n
Definition: avisynth_c.h:684
float prev_lspf[FILTER_ORDER]
Definition: evrcdec.c:80
static void postfilter(EVRCContext *e, float *in, const float *coeff, float *out, int idx, const struct PfCoeff *pfc, int length)
Definition: evrcdec.c:571
float postfilter_fir[FILTER_ORDER]
Definition: evrcdec.c:82
static void bandwidth_expansion(float *coeff, const float *inbuf, float gamma)
Definition: evrcdec.c:520
uint8_t pitch_delay
pitch delay for entire frame
Definition: evrcdec.c:60
static void decode_8_pulses_35bits(const uint16_t *fixed_index, float *cod)
Definition: evrcdec.c:431
uint8_t delay_diff
delay difference for entire frame
Definition: evrcdec.c:61
Libavcodec external API header.
static const float estimation_delay[]
Definition: evrcdata.h:1497
float p2
Definition: evrcdec.c:557
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:456
static const struct PfCoeff postfilter_coeffs[5]
main external API structure.
Definition: avcodec.h:1732
static void decode_3_pulses_10bits(uint16_t fixed_index, float *cod)
Definition: evrcdec.c:456
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:953
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void * buf
Definition: avisynth_c.h:690
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:313
Describe the class of an AVClass context structure.
Definition: log.h:67
int index
Definition: gxfenc.c:89
float synthesis[FILTER_ORDER]
Definition: evrcdec.c:81
static const AVOption options[]
Definition: evrcdec.c:919
void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
Floating point version of ff_acelp_lsf2lsp()
Definition: lsp.c:93
EVRCAFrame frame
Definition: evrcdec.c:77
static void synthesis_filter(const float *in, const float *filter_coeffs, float *memory, int buffer_length, float *samples)
Synthesis of the decoder output signal.
Definition: evrcdec.c:504
static void decode_predictor_coeffs(const float *ilspf, float *ilpc)
Definition: evrcdec.c:346
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:201
evrc_packet_rate last_valid_bitrate
Definition: evrcdec.c:76
static void warn_insufficient_frame_quality(AVCodecContext *avctx, const char *message)
Definition: evrcdec.c:219
float tilt
Definition: evrcdec.c:554
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:282
void * priv_data
Definition: avcodec.h:1774
int channels
number of audio channels
Definition: avcodec.h:2495
#define SUBFRAME_SIZE
Definition: evrcdec.c:41
evrc_packet_rate bitrate
Definition: evrcdec.c:75
static int decode_lspf(EVRCContext *e)
Decode the 10 vector quantized line spectral pair frequencies from the LSP transmission codes of any ...
Definition: evrcdec.c:282
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
static void frame_erasure(EVRCContext *e, float *samples)
Definition: evrcdec.c:652
uint8_t energy_gain
frame energy gain index
Definition: evrcdec.c:65
float fade_scale
Definition: evrcdec.c:93
int frame_number
Frame counter, set by libavcodec.
Definition: avcodec.h:2525
FILE * out
Definition: movenc.c:54
static void residual_filter(float *output, const float *input, const float *coef, float *memory, int length)
Definition: evrcdec.c:531
#define M_PI
Definition: mathematics.h:52
float postfilter_iir[FILTER_ORDER]
Definition: evrcdec.c:83
int postfilter
Definition: evrcdec.c:72
#define AV_CH_LAYOUT_MONO
This structure stores compressed data.
Definition: avcodec.h:1634
static void interpolate_delay(float *dst, float current, float prev, int index)
Definition: evrcdec.c:329
float ltgain
Definition: evrcdec.c:555
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:244
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:994
EVRC-A unpacked data frame.
Definition: evrcdec.c:57
#define MIN_DELAY
Definition: evrcdec.c:38
for(j=16;j >0;--j)
static uint8_t tmp[11]
Definition: aes_ctr.c:26