31 if (!num_reuse_blocks)
34 for (i = 0; i < nb_coefs; i++) {
37 for (blk = 0; blk < num_reuse_blocks; blk++) {
39 if (next_exp < min_exp)
50 for (i = 0; i <
len; i++)
58 uint32_t *src32 = (uint32_t *)src;
59 const uint32_t
mask = ~(((1 <<
shift) - 1) << 16);
62 for (i = 0; i <
len; i += 8) {
63 src32[i ] = (src32[i ] <<
shift) & mask;
64 src32[i+1] = (src32[i+1] <<
shift) & mask;
65 src32[i+2] = (src32[i+2] <<
shift) & mask;
66 src32[i+3] = (src32[i+3] <<
shift) & mask;
67 src32[i+4] = (src32[i+4] <<
shift) & mask;
68 src32[i+5] = (src32[i+5] <<
shift) & mask;
69 src32[i+6] = (src32[i+6] <<
shift) & mask;
70 src32[i+7] = (src32[i+7] <<
shift) & mask;
92 const float scale = 1 << 24;
94 *dst++ =
lrintf(*src++ * scale);
95 *dst++ =
lrintf(*src++ * scale);
96 *dst++ =
lrintf(*src++ * scale);
97 *dst++ =
lrintf(*src++ * scale);
98 *dst++ =
lrintf(*src++ * scale);
99 *dst++ =
lrintf(*src++ * scale);
100 *dst++ =
lrintf(*src++ * scale);
101 *dst++ =
lrintf(*src++ * scale);
108 int snr_offset,
int floor,
111 int bin,
band, band_end;
114 if (snr_offset == -960) {
122 int m = (
FFMAX(mask[band] - snr_offset - floor, 0) & 0x1FE0) + floor;
124 band_end =
FFMIN(band_end, end);
126 for (; bin < band_end; bin++) {
127 int address = av_clip_uintp2((psd[bin] - m) >> 5, 6);
128 bap[bin] = bap_tab[address];
130 }
while (end > band_end);
137 mant_cnt[bap[
len]]++;
141 0, 0, 0, 3, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
151 bits += (mant_cnt[
blk][1] / 3) * 5;
154 bits += ((mant_cnt[
blk][2] / 3) + (mant_cnt[blk][4] >> 1)) * 7;
156 bits += mant_cnt[
blk][3] * 3;
158 for (bap = 5; bap < 16; bap++)
168 for (i = 0; i < nb_coefs; i++) {
169 int v = abs(coef[i]);
170 exp[i] = v ? 23 -
av_log2(v) : 24;
181 sum[0] = sum[1] = sum[2] = sum[3] = 0;
183 for (i = 0; i <
len; i++) {
188 MAC64(sum[0], lt, lt);
189 MAC64(sum[1], rt, rt);
190 MAC64(sum[2], md, md);
191 MAC64(sum[3], sd, sd);
202 sum[0] = sum[1] = sum[2] = sum[3] = 0;
204 for (i = 0; i <
len; i++) {
221 float front_mix = matrix[0][0];
222 float center_mix = matrix[0][1];
223 float surround_mix = matrix[0][3];
225 for (i = 0; i <
len; i++) {
226 v0 = samples[0][i] * front_mix +
227 samples[1][i] * center_mix +
228 samples[3][i] * surround_mix;
230 v1 = samples[1][i] * center_mix +
231 samples[2][i] * front_mix +
232 samples[4][i] * surround_mix;
243 float front_mix = matrix[0][0];
244 float center_mix = matrix[0][1];
245 float surround_mix = matrix[0][3];
247 for (i = 0; i <
len; i++) {
248 samples[0][i] = samples[0][i] * front_mix +
249 samples[1][i] * center_mix +
250 samples[2][i] * front_mix +
251 samples[3][i] * surround_mix +
252 samples[4][i] * surround_mix;
257 int out_ch,
int in_ch,
int len)
263 for (i = 0; i <
len; i++) {
265 for (j = 0; j < in_ch; j++) {
266 v0 += samples[j][i] * matrix[0][j];
267 v1 += samples[j][i] * matrix[1][j];
272 }
else if (out_ch == 1) {
273 for (i = 0; i <
len; i++) {
275 for (j = 0; j < in_ch; j++)
276 v0 += samples[j][i] * matrix[0][j];
287 int16_t front_mix = matrix[0][0];
288 int16_t center_mix = matrix[0][1];
289 int16_t surround_mix = matrix[0][3];
291 for (i = 0; i <
len; i++) {
292 v0 = (int64_t)samples[0][i] * front_mix +
293 (int64_t)samples[1][i] * center_mix +
294 (int64_t)samples[3][i] * surround_mix;
296 v1 = (int64_t)samples[1][i] * center_mix +
297 (int64_t)samples[2][i] * front_mix +
298 (int64_t)samples[4][i] * surround_mix;
300 samples[0][i] = (v0+2048)>>12;
301 samples[1][i] = (v1+2048)>>12;
310 int16_t front_mix = matrix[0][0];
311 int16_t center_mix = matrix[0][1];
312 int16_t surround_mix = matrix[0][3];
314 for (i = 0; i <
len; i++) {
315 v0 = (int64_t)samples[0][i] * front_mix +
316 (int64_t)samples[1][i] * center_mix +
317 (int64_t)samples[2][i] * front_mix +
318 (int64_t)samples[3][i] * surround_mix +
319 (int64_t)samples[4][i] * surround_mix;
321 samples[0][i] = (v0+2048)>>12;
326 int out_ch,
int in_ch,
int len)
331 for (i = 0; i <
len; i++) {
333 for (j = 0; j < in_ch; j++) {
334 v0 += (int64_t)samples[j][i] * matrix[0][j];
335 v1 += (int64_t)samples[j][i] * matrix[1][j];
337 samples[0][i] = (v0+2048)>>12;
338 samples[1][i] = (v1+2048)>>12;
340 }
else if (out_ch == 1) {
341 for (i = 0; i <
len; i++) {
343 for (j = 0; j < in_ch; j++)
344 v0 += (int64_t)samples[j][i] * matrix[0][j];
345 samples[0][i] = (v0+2048)>>12;
351 int out_ch,
int in_ch,
int len)
358 if (in_ch == 5 && out_ch == 2 &&
359 !(matrix[1][0] | matrix[0][2] |
360 matrix[1][3] | matrix[0][4] |
361 (matrix[0][1] ^ matrix[1][1]) |
362 (matrix[0][0] ^ matrix[1][2]))) {
364 }
else if (in_ch == 5 && out_ch == 1 &&
365 matrix[0][0] == matrix[0][2] &&
366 matrix[0][3] == matrix[0][4]) {
383 for (i = 0; i < len2; i++) {
384 int16_t w = window[i];
385 output[i] = (
MUL16(input[i], w) + (1 << 14)) >> 15;
386 output[len-i-1] = (
MUL16(input[len-i-1], w) + (1 << 14)) >> 15;
391 int out_ch,
int in_ch,
int len)
394 int **matrix_cmp = (
int **)matrix;
400 if (in_ch == 5 && out_ch == 2 &&
401 !(matrix_cmp[1][0] | matrix_cmp[0][2] |
402 matrix_cmp[1][3] | matrix_cmp[0][4] |
403 (matrix_cmp[0][1] ^ matrix_cmp[1][1]) |
404 (matrix_cmp[0][0] ^ matrix_cmp[1][2]))) {
406 }
else if (in_ch == 5 && out_ch == 1 &&
407 matrix_cmp[0][0] == matrix_cmp[0][2] &&
408 matrix_cmp[0][3] == matrix_cmp[0][4]) {
417 c->
downmix(samples, matrix, len);
void(* ac3_rshift_int32)(int32_t *src, unsigned int len, unsigned int shift)
Right-shift each value in an array of int32_t by a specified amount.
void ff_ac3dsp_downmix(AC3DSPContext *c, float **samples, float **matrix, int out_ch, int in_ch, int len)
void(* float_to_fixed24)(int32_t *dst, const float *src, unsigned int len)
Convert an array of float in range [-1.0,1.0] to int32_t with range [-(1<<24),(1<<24)].
static int shift(int a, int b)
static void ac3_downmix_5_to_2_symmetric_c_fixed(int32_t **samples, int16_t **matrix, int len)
void(* downmix)(float **samples, float **matrix, int len)
void ff_ac3dsp_set_downmix_x86(AC3DSPContext *c)
void ff_ac3dsp_init_mips(AC3DSPContext *c, int bit_exact)
void(* sum_square_butterfly_float)(float sum[4], const float *coef0, const float *coef1, int len)
const uint8_t ff_ac3_bin_to_band_tab[253]
Map each frequency coefficient bin to the critical band that contains it.
static int ac3_max_msb_abs_int16_c(const int16_t *src, int len)
static av_cold int end(AVCodecContext *avctx)
int(* ac3_max_msb_abs_int16)(const int16_t *src, int len)
Calculate the maximum MSB of the absolute value of each element in an array of int16_t.
static void ac3_downmix_5_to_2_symmetric_c(float **samples, float **matrix, int len)
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
static void ac3_downmix_c_fixed(int32_t **samples, int16_t **matrix, int out_ch, int in_ch, int len)
void ff_ac3dsp_init_x86(AC3DSPContext *c, int bit_exact)
void ff_ac3dsp_init_arm(AC3DSPContext *c, int bit_exact)
static const uint16_t mask[17]
static void ac3_sum_square_butterfly_int32_c(int64_t sum[4], const int32_t *coef0, const int32_t *coef1, int len)
const uint8_t ff_ac3_band_start_tab[AC3_CRITICAL_BANDS+1]
Starting frequency coefficient bin for each critical band.
static int ac3_compute_mantissa_size_c(uint16_t mant_cnt[6][16])
static SDL_Window * window
av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
static void apply_window_int16_c(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
void ff_ac3dsp_downmix_fixed(AC3DSPContext *c, int32_t **samples, int16_t **matrix, int out_ch, int in_ch, int len)
void(* extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs)
void(* bit_alloc_calc_bap)(int16_t *mask, int16_t *psd, int start, int end, int snr_offset, int floor, const uint8_t *bap_tab, uint8_t *bap)
Calculate bit allocation pointers.
Libavcodec external API header.
static void ac3_update_bap_counts_c(uint16_t mant_cnt[16], uint8_t *bap, int len)
static void ac3_downmix_5_to_1_symmetric_c(float **samples, float **matrix, int len)
static void ac3_exponent_min_c(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
void(* apply_window_int16)(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
Apply symmetric window in 16-bit fixed-point.
static void ac3_rshift_int32_c(int32_t *src, unsigned int len, unsigned int shift)
static void ac3_extract_exponents_c(uint8_t *exp, int32_t *coef, int nb_coefs)
int(* compute_mantissa_size)(uint16_t mant_cnt[6][16])
Calculate the number of bits needed to encode a set of mantissas.
void(* update_bap_counts)(uint16_t mant_cnt[16], uint8_t *bap, int len)
Update bap counts using the supplied array of bap.
static void ac3_downmix_5_to_1_symmetric_c_fixed(int32_t **samples, int16_t **matrix, int len)
void(* downmix_fixed)(int32_t **samples, int16_t **matrix, int len)
const uint16_t ff_ac3_bap_bits[16]
Number of mantissa bits written for each bap value.
void(* ac3_lshift_int16)(int16_t *src, unsigned int len, unsigned int shift)
Left-shift each value in an array of int16_t by a specified amount.
void(* ac3_exponent_min)(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
Set each encoded exponent in a block to the minimum of itself and the exponents in the same frequency...
static void float_to_fixed24_c(int32_t *dst, const float *src, unsigned int len)
static void ac3_bit_alloc_calc_bap_c(int16_t *mask, int16_t *psd, int start, int end, int snr_offset, int floor, const uint8_t *bap_tab, uint8_t *bap)
void(* sum_square_butterfly_int32)(int64_t sum[4], const int32_t *coef0, const int32_t *coef1, int len)
static void ac3_downmix_c(float **samples, float **matrix, int out_ch, int in_ch, int len)
static void ac3_lshift_int16_c(int16_t *src, unsigned int len, unsigned int shift)
static void ac3_sum_square_butterfly_float_c(float sum[4], const float *coef0, const float *coef1, int len)
Common code between the AC-3 encoder and decoder.