41 #define AMR_USE_16BIT_TABLES 
  120     for (i = 0; i < 4; i++)
 
  159     for (i = 0; i < 9; i++)
 
  160         isf_q[i]      = 
dico1_isf[ind[0]][i]      * (1.0f / (1 << 15));
 
  162     for (i = 0; i < 7; i++)
 
  163         isf_q[i + 9]  = 
dico2_isf[ind[1]][i]      * (1.0f / (1 << 15));
 
  165     for (i = 0; i < 5; i++)
 
  168     for (i = 0; i < 4; i++)
 
  171     for (i = 0; i < 7; i++)
 
  185     for (i = 0; i < 9; i++)
 
  186         isf_q[i]       = 
dico1_isf[ind[0]][i]  * (1.0f / (1 << 15));
 
  188     for (i = 0; i < 7; i++)
 
  189         isf_q[i + 9]   = 
dico2_isf[ind[1]][i]  * (1.0f / (1 << 15));
 
  191     for (i = 0; i < 3; i++)
 
  192         isf_q[i]      += 
dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
 
  194     for (i = 0; i < 3; i++)
 
  195         isf_q[i + 3]  += 
dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
 
  197     for (i = 0; i < 3; i++)
 
  198         isf_q[i + 6]  += 
dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
 
  200     for (i = 0; i < 3; i++)
 
  201         isf_q[i + 9]  += 
dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
 
  203     for (i = 0; i < 4; i++)
 
  204         isf_q[i + 12] += 
dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
 
  221         isf_q[i] += 
isf_mean[i] * (1.0f / (1 << 15));
 
  238     for (k = 0; k < 3; k++) {
 
  241             isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
 
  257                                   uint8_t *base_lag_int, 
int subframe)
 
  259     if (subframe == 0 || subframe == 2) {
 
  260         if (pitch_index < 376) {
 
  261             *lag_int  = (pitch_index + 137) >> 2;
 
  262             *lag_frac = pitch_index - (*lag_int << 2) + 136;
 
  263         } 
else if (pitch_index < 440) {
 
  264             *lag_int  = (pitch_index + 257 - 376) >> 1;
 
  265             *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
 
  268             *lag_int  = pitch_index - 280;
 
  272         *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
 
  278         *lag_int  = (pitch_index + 1) >> 2;
 
  279         *lag_frac = pitch_index - (*lag_int << 2);
 
  280         *lag_int += *base_lag_int;
 
  292     if (subframe == 0 || (subframe == 2 && mode != 
MODE_6k60)) {
 
  293         if (pitch_index < 116) {
 
  294             *lag_int  = (pitch_index + 69) >> 1;
 
  295             *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
 
  297             *lag_int  = pitch_index - 24;
 
  301         *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
 
  304         *lag_int  = (pitch_index + 1) >> 1;
 
  305         *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
 
  306         *lag_int += *base_lag_int;
 
  322     int pitch_lag_int, pitch_lag_frac;
 
  335     pitch_lag_int += pitch_lag_frac > 0;
 
  340                           exc + 1 - pitch_lag_int,
 
  342                           pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
 
  347     if (amr_subframe->
ltp) {
 
  351             ctx->
pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
 
  353         memcpy(exc, ctx->
pitch_vector, AMRWB_SFR_SIZE * 
sizeof(
float));
 
  358 #define BIT_STR(x,lsb,len) av_mod_uintp2((x) >> (lsb), (len)) 
  361 #define BIT_POS(x, p) (((x) >> (p)) & 1) 
  378     int pos = 
BIT_STR(code, 0, m) + off; 
 
  380     out[0] = 
BIT_POS(code, m) ? -pos : pos;
 
  385     int pos0 = 
BIT_STR(code, m, m) + off;
 
  386     int pos1 = 
BIT_STR(code, 0, m) + off;
 
  388     out[0] = 
BIT_POS(code, 2*m) ? -pos0 : pos0;
 
  389     out[1] = 
BIT_POS(code, 2*m) ? -pos1 : pos1;
 
  390     out[1] = pos0 > pos1 ? -out[1] : out[1];
 
  395     int half_2p = 
BIT_POS(code, 2*m - 1) << (m - 1);
 
  398                     m - 1, off + half_2p);
 
  404     int half_4p, subhalf_2p;
 
  405     int b_offset = 1 << (m - 1);
 
  407     switch (
BIT_STR(code, 4*m - 2, 2)) { 
 
  409         half_4p = 
BIT_POS(code, 4*m - 3) << (m - 1); 
 
  410         subhalf_2p = 
BIT_POS(code, 2*m - 3) << (m - 2);
 
  413                         m - 2, off + half_4p + subhalf_2p);
 
  415                         m - 1, off + half_4p);
 
  421                         m - 1, off + b_offset);
 
  427                         m - 1, off + b_offset);
 
  433                         m - 1, off + b_offset);
 
  440     int half_3p = 
BIT_POS(code, 5*m - 1) << (m - 1);
 
  443                     m - 1, off + half_3p);
 
  450     int b_offset = 1 << (m - 1);
 
  452     int half_more  = 
BIT_POS(code, 6*m - 5) << (m - 1);
 
  453     int half_other = b_offset - half_more;
 
  455     switch (
BIT_STR(code, 6*m - 4, 2)) { 
 
  458                         m - 1, off + half_more);
 
  460                         m - 1, off + half_more);
 
  464                         m - 1, off + half_other);
 
  466                         m - 1, off + half_more);
 
  470                         m - 1, off + half_other);
 
  472                         m - 1, off + half_more);
 
  478                         m - 1, off + b_offset);
 
  493                                 const uint16_t *pulse_lo, 
const enum Mode mode)
 
  498     int spacing = (mode == 
MODE_6k60) ? 2 : 4;
 
  503         for (i = 0; i < 2; i++)
 
  507         for (i = 0; i < 4; i++)
 
  511         for (i = 0; i < 4; i++)
 
  515         for (i = 0; i < 2; i++)
 
  517         for (i = 2; i < 4; i++)
 
  521         for (i = 0; i < 4; i++)
 
  525         for (i = 0; i < 4; i++)
 
  527                            ((int) pulse_hi[i] << 14), 4, 1);
 
  530         for (i = 0; i < 2; i++)
 
  532                            ((int) pulse_hi[i] << 10), 4, 1);
 
  533         for (i = 2; i < 4; i++)
 
  535                            ((int) pulse_hi[i] << 14), 4, 1);
 
  539         for (i = 0; i < 4; i++)
 
  541                            ((int) pulse_hi[i] << 11), 4, 1);
 
  547     for (i = 0; i < 4; i++)
 
  549             int pos = (
FFABS(sig_pos[i][j]) - 1) * spacing + i;
 
  551             fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
 
  564                          float *fixed_gain_factor, 
float *pitch_gain)
 
  569     *pitch_gain        = gains[0] * (1.0f / (1 << 14));
 
  570     *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
 
  587         fixed_vector[i] -= fixed_vector[i - 1] * ctx->
tilt_coef;
 
  591         fixed_vector[i] += fixed_vector[i - ctx->
pitch_lag_int] * 0.85;
 
  604                           float *f_vector, 
float f_gain,
 
  607     double p_ener = (double) ctx->
dot_productf(p_vector, p_vector,
 
  610     double f_ener = (double) ctx->
dot_productf(f_vector, f_vector,
 
  614     return (p_ener - f_ener) / (p_ener + f_ener);
 
  628                               float *fixed_vector, 
float *
buf)
 
  644         if (ir_filter_nr < 2)
 
  649         for (i = 0; i < 6; i++)
 
  665     if (ir_filter_nr < 2) {
 
  697         acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
 
  701     return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
 
  716                             float voice_fac,  
float stab_fac)
 
  718     float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
 
  724     if (fixed_gain < *prev_tr_gain) {
 
  725         g0 = 
FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
 
  726                      (6226 * (1.0f / (1 << 15)))); 
 
  728         g0 = 
FFMAX(*prev_tr_gain, fixed_gain *
 
  729                     (27536 * (1.0f / (1 << 15)))); 
 
  733     return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
 
  745     float cpe  = 0.125 * (1 + voice_fac);
 
  746     float last = fixed_vector[0]; 
 
  748     fixed_vector[0] -= cpe * fixed_vector[1];
 
  751         float cur = fixed_vector[i];
 
  753         fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
 
  757     fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
 
  771                       float fixed_gain, 
const float *fixed_vector,
 
  791                                                 energy, AMRWB_SFR_SIZE);
 
  811     out[0] = in[0] + m * mem[0];
 
  814          out[i] = in[i] + out[i - 1] * m;
 
  816     mem[0] = out[AMRWB_SFR_SIZE - 1];
 
  832     int int_part = 0, frac_part;
 
  835     for (j = 0; j < o_size / 5; j++) {
 
  836         out[i] = in[int_part];
 
  840         for (k = 1; k < 5; k++) {
 
  873     return av_clipf((1.0 - 
FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
 
  886                                  const float *synth_exc, 
float hb_gain)
 
  897                                             energy * hb_gain * hb_gain,
 
  909     for (i = 7; i < 
LP_ORDER - 2; i++) {
 
  910         float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
 
  925     float diff_isf[
LP_ORDER - 2], diff_mean;
 
  928     int i, j, i_max_corr;
 
  930     isf[LP_ORDER_16k - 1] = isf[
LP_ORDER - 1];
 
  934         diff_isf[i] = isf[i + 1] - isf[i];
 
  937     for (i = 2; i < LP_ORDER - 2; i++)
 
  938         diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
 
  942     for (i = 0; i < 3; i++) {
 
  945         if (corr_lag[i] > corr_lag[i_max_corr])
 
  950     for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
 
  951         isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
 
  952                             - isf[i - 2 - i_max_corr];
 
  955     est   = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
 
  956     scale = 0.5 * (
FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
 
  957             (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
 
  959     for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
 
  960         diff_isf[j] = scale * (isf[i] - isf[i - 1]);
 
  963     for (i = 1; i < LP_ORDER_16k - 
LP_ORDER; i++)
 
  964         if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
 
  965             if (diff_isf[i] > diff_isf[i - 1]) {
 
  966                 diff_isf[i - 1] = 5.0 - diff_isf[i];
 
  968                 diff_isf[i] = 5.0 - diff_isf[i - 1];
 
  971     for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
 
  972         isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
 
  975     for (i = 0; i < LP_ORDER_16k - 1; i++)
 
  993     for (i = 0; i < 
size; i++) {
 
  994         out[i] = lpc[i] * fac;
 
 1011                          const float *exc, 
const float *isf, 
const float *isf_past)
 
 1050 #ifndef hb_fir_filter 
 1057     memcpy(data, 
mem, HB_FIR_SIZE * 
sizeof(
float));
 
 1063             out[i] += data[i + j] * fir_coef[j];
 
 1066     memcpy(
mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * 
sizeof(
float));
 
 1090                               int *got_frame_ptr, 
AVPacket *avpkt)
 
 1096     int buf_size       = avpkt->
size;
 
 1097     int expected_fr_size, header_size;
 
 1100     float fixed_gain_factor;                 
 
 1101     float *synth_fixed_vector;               
 
 1102     float synth_fixed_gain;                  
 
 1103     float voice_fac, stab_fac;               
 
 1114     buf_out = (
float *)frame->
data[0];
 
 1124     if (buf_size < expected_fr_size) {
 
 1126             "Frame too small (%d bytes). Truncated file?\n", buf_size);
 
 1164     for (sub = 0; sub < 4; sub++)
 
 1167     for (sub = 0; sub < 4; sub++) {
 
 1195         ctx->
tilt_coef = voice_fac * 0.25 + 0.25;
 
 1206                                           voice_fac, stab_fac);
 
 1250             sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
 
 1262     return expected_fr_size;
 
AMRWBSubFrame subframe[4]
data for subframes 
 
AMRWBFrame frame
AMRWB parameters decoded from bitstream. 
 
static const int16_t dico2_isf[256][7]
 
float samples_up[UPS_MEM_SIZE+AMRWB_SFR_SIZE]
low-band samples and memory processed for upsampling 
 
#define AVERROR_INVALIDDATA
Invalid data found when processing input. 
 
AVLFG prng
random number generator for white noise excitation 
 
static const uint8_t pulses_nb_per_mode_tr[][4]
[i][j] is the number of pulses present in track j at mode i 
 
This structure describes decoded (raw) audio or video data. 
 
static const int16_t qua_gain_6b[64][2]
Tables for decoding quantized gains { pitch (Q14), fixed factor (Q11) }. 
 
ptrdiff_t const GLvoid * data
 
static const float lpf_7_coef[31]
 
float * excitation
points to current excitation in excitation_buf[] 
 
static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE+1], float mem[HB_FIR_SIZE], const float *in)
Apply a 15th order filter to high-band samples. 
 
float fixed_gain[2]
quantified fixed gains for the current and previous subframes 
 
static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index, uint8_t *base_lag_int, int subframe, enum Mode mode)
Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes. 
 
static av_cold int init(AVCodecContext *avctx)
 
float pitch_vector[AMRWB_SFR_SIZE]
adaptive codebook (pitch) vector for current subframe 
 
float prev_tr_gain
previous initial gain used by noise enhancer for threshold 
 
#define UPS_FIR_SIZE
upsampling filter size 
 
static void decode_5p_track(int *out, int code, int m, int off)
code: 5m bits 
 
ACELPFContext acelpf_ctx
context for filters for ACELP-based codecs 
 
#define AMRWB_P_DELAY_MAX
maximum pitch delay value 
 
void(* acelp_apply_order_2_transfer_function)(float *out, const float *in, const float zero_coeffs[2], const float pole_coeffs[2], float gain, float mem[2], int n)
Apply an order 2 rational transfer function in-place. 
 
static void extrapolate_isf(float isf[LP_ORDER_16k])
Extrapolate a ISF vector to the 16kHz range (20th order LP) used at mode 6k60 LP filter for the high ...
 
static void decode_6p_track(int *out, int code, int m, int off)
code: 6m-2 bits 
 
static float stability_factor(const float *isf, const float *isf_past)
Calculate a stability factor {teta} based on distance between current and past isf. 
 
static const int16_t dico24_isf[32][3]
 
static const int16_t dico23_isf[128][3]
 
static void isf_add_mean_and_past(float *isf_q, float *isf_past)
Apply mean and past ISF values using the prediction factor. 
 
float isf_past_final[LP_ORDER]
final processed ISF vector of the previous frame 
 
static const int16_t dico22_isf[128][3]
 
enum Mode fr_cur_mode
mode index of current frame 
 
static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
Spectral expand the LP coefficients using the equation: y[i] = x[i] * (gamma ** i) ...
 
uint8_t first_frame
flag active during decoding of the first frame 
 
float(* dot_productf)(const float *a, const float *b, int length)
Return the dot product. 
 
static void pitch_enhancer(float *fixed_vector, float voice_fac)
Filter the fixed_vector to emphasize the higher frequencies. 
 
float tilt_coef
{beta_1} related to the voicing of the previous subframe 
 
CELPFContext celpf_ctx
context for filters for CELP-based codecs 
 
Reference: libavcodec/amrwbdec.c. 
 
static const int16_t dico23_isf_36b[64][7]
 
static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc, const float *synth_exc, float hb_gain)
Generate the high-band excitation with the same energy from the lower one and scaled by the given gai...
 
uint16_t vq_gain
VQ adaptive and innovative gains. 
 
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature. 
 
enum AVSampleFormat sample_fmt
audio sample format 
 
float lpf_7_mem[HB_FIR_SIZE]
previous values in the high-band low pass filter 
 
static int amrwb_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
 
void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order)
LSP to LP conversion (5.2.4 of AMR-WB) 
 
static const int16_t isf_mean[LP_ORDER]
Means of ISF vectors in Q15. 
 
void(* celp_lp_synthesis_filterf)(float *out, const float *filter_coeffs, const float *in, int buffer_length, int filter_length)
LP synthesis filter. 
 
Mode
Frame type (Table 1a in 3GPP TS 26.101) 
 
static const float energy_pred_fac[4]
4-tap moving average prediction coefficients in reverse order 
 
uint16_t isp_id[7]
index of ISP subvectors 
 
#define MIN_ISF_SPACING
minimum isf gap 
 
static const float hpf_31_gain
 
static const float hpf_zeros[2]
High-pass filters coefficients for 31 Hz and 400 Hz cutoff. 
 
static const float ac_inter[65]
Coefficients for FIR interpolation of excitation vector at pitch lag resulting the adaptive codebook ...
 
float bpf_6_7_mem[HB_FIR_SIZE]
previous values in the high-band band pass filter 
 
static const float bpf_6_7_coef[31]
High-band post-processing FIR filters coefficients from Q15. 
 
static void ff_amr_bit_reorder(uint16_t *out, int size, const uint8_t *data, const R_TABLE_TYPE *ord_table)
Fill the frame structure variables from bitstream by parsing the given reordering table that uses the...
 
float isf_cur[LP_ORDER]
working ISF vector from current frame 
 
static void decode_3p_track(int *out, int code, int m, int off)
code: 3m+1 bits 
 
static const float hpf_31_poles[2]
 
uint8_t prev_ir_filter_nr
previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none 
 
static float voice_factor(float *p_vector, float p_gain, float *f_vector, float f_gain, CELPMContext *ctx)
Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced). 
 
static const float isfp_inter[4]
ISF/ISP interpolation coefficients for each subframe. 
 
static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation, float fixed_gain, const float *fixed_vector, float *samples)
Conduct 16th order linear predictive coding synthesis from excitation. 
 
static void de_emphasis(float *out, float *in, float m, float mem[1])
Apply to synthesis a de-emphasis filter of the form: H(z) = 1 / (1 - m * z^-1) 
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered. 
 
static float * anti_sparseness(AMRWBContext *ctx, float *fixed_vector, float *buf)
Reduce fixed vector sparseness by smoothing with one of three IR filters, also known as "adaptive pha...
 
#define AMRWB_SFR_SIZE
samples per subframe at 12.8 kHz 
 
static void decode_1p_track(int *out, int code, int m, int off)
The next six functions decode_[i]p_track decode exactly i pulses positions and amplitudes (-1 or 1) i...
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
 
float prev_sparse_fixed_gain
previous fixed gain; used by anti-sparseness to determine "onset" 
 
float isf_q_past[LP_ORDER]
quantized ISF vector of the previous frame 
 
const char * name
Name of the codec implementation. 
 
void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in, float sum_of_squares, const int n)
Set the sum of squares of a signal by scaling. 
 
void(* weighted_vector_sumf)(float *out, const float *in_a, const float *in_b, float weight_coeff_a, float weight_coeff_b, int length)
float implementation of weighted sum of two vectors. 
 
ACELPVContext acelpv_ctx
context for vector operations for ACELP-based codecs 
 
static const int16_t dico21_isf_36b[128][5]
 
uint64_t channel_layout
Audio channel layout. 
 
static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using a FIR interpolation filter. 
 
static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
Interpolate the fourth ISP vector from current and past frames to obtain an ISP vector for each subfr...
 
static void decode_pitch_vector(AMRWBContext *ctx, const AMRWBSubFrame *amr_subframe, const int subframe)
Find the pitch vector by interpolating the past excitation at the pitch delay, which is obtained in t...
 
audio channel layout utility functions 
 
#define MIN_ENERGY
Initial energy in dB. 
 
float demph_mem[1]
previous value in the de-emphasis filter 
 
double isp_sub4_past[LP_ORDER]
ISP vector for the 4th subframe of the previous frame. 
 
static const int16_t dico21_isf[64][3]
 
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
 
uint16_t pul_il[4]
LSBs part of codebook index. 
 
static av_always_inline av_const float truncf(float x)
 
static const int16_t dico25_isf[32][4]
 
float samples_az[LP_ORDER+AMRWB_SFR_SIZE]
low-band samples and memory from synthesis at 12.8kHz 
 
float prediction_error[4]
quantified prediction errors {20log10(^gamma_gc)} for previous four subframes 
 
static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples, const float *exc, const float *isf, const float *isf_past)
Conduct 20th order linear predictive coding synthesis for the high frequency band excitation at 16kHz...
 
static void decode_2p_track(int *out, int code, int m, int off)
code: 2m+1 bits 
 
float lp_coef[4][LP_ORDER]
Linear Prediction Coefficients from ISP vector. 
 
float pitch_gain[6]
quantified pitch gains for the current and previous five subframes 
 
#define LP_ORDER
linear predictive coding filter order 
 
static const uint16_t * amr_bit_orderings_by_mode[]
Reordering array addresses for each mode. 
 
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome. 
 
uint16_t pul_ih[4]
MSBs part of codebook index (high modes only) 
 
static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode). 
 
uint16_t vad
voice activity detection flag 
 
Libavcodec external API header. 
 
AVSampleFormat
Audio sample formats. 
 
void ff_celp_circ_addf(float *out, const float *in, const float *lagged, int lag, float fac, int n)
Add an array to a rotated array. 
 
#define LP_ORDER_16k
lpc filter order at 16kHz 
 
uint16_t adap
adaptive codebook index 
 
int sample_rate
samples per second 
 
main external API structure. 
 
static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi, const uint16_t *pulse_lo, const enum Mode mode)
Decode the algebraic codebook index to pulse positions and signs, then construct the algebraic codebo...
 
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame. 
 
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
 
void ff_celp_math_init(CELPMContext *c)
Initialize CELPMContext. 
 
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG. 
 
float excitation_buf[AMRWB_P_DELAY_MAX+LP_ORDER+2+AMRWB_SFR_SIZE]
current excitation and all necessary excitation history 
 
static const float hpf_400_poles[2]
 
static av_cold int amrwb_decode_init(AVCodecContext *avctx)
 
void ff_celp_filter_init(CELPFContext *c)
Initialize CELPFContext. 
 
static const int16_t qua_gain_7b[128][2]
 
static const float hpf_400_gain
 
void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
Floating point version of ff_acelp_lsf2lsp() 
 
uint8_t pitch_lag_int
integer part of pitch lag of the previous subframe 
 
static float noise_enhancer(float fixed_gain, float *prev_tr_gain, float voice_fac, float stab_fac)
Apply a non-linear fixed gain smoothing in order to reduce fluctuation in the energy of excitation...
 
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
 
static float auto_correlation(float *diff_isf, float mean, int lag)
Calculate the auto-correlation for the ISF difference vector. 
 
static void update_sub_state(AMRWBContext *ctx)
Update context state before the next subframe. 
 
static const float *const ir_filters_lookup[2]
 
void ff_acelp_vectors_init(ACELPVContext *c)
Initialize ACELPVContext. 
 
#define AMRWB_SFR_SIZE_16k
samples per subframe at 16 kHz 
 
static const uint16_t cf_sizes_wb[]
Core frame sizes in each mode. 
 
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature. 
 
uint8_t fr_quality
frame quality index (FQI) 
 
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes. 
 
static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index, uint8_t *base_lag_int, int subframe)
Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes). 
 
static float find_hb_gain(AMRWBContext *ctx, const float *synth, uint16_t hb_idx, uint8_t vad)
Calculate the high-band gain based on encoded index (23k85 mode) or on the low-band speech signal and...
 
float samples_hb[LP_ORDER_16k+AMRWB_SFR_SIZE_16k]
high-band samples and memory from synthesis at 16kHz 
 
CELPMContext celpm_ctx
context for fixed point math operations 
 
static int decode(AVCodecContext *avctx, void *data, int *got_sub, AVPacket *avpkt)
 
static const float upsample_fir[4][24]
Interpolation coefficients for 5/4 signal upsampling Table from the reference source was reordered fo...
 
uint8_t base_pitch_lag
integer part of pitch lag for the next relative subframe 
 
static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
Decode the frame header in the "MIME/storage" format. 
 
common internal api header. 
 
common internal and external API header 
 
#define HB_FIR_SIZE
amount of past data needed by HB filters 
 
uint16_t hb_gain
high-band energy index (mode 23k85 only) 
 
void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
Adjust the quantized LSFs so they are increasing and not too close. 
 
#define BIT_STR(x, lsb, len)
Get x bits in the index interval [lsb,lsb+len-1] inclusive. 
 
static const int16_t dico1_isf[256][9]
Indexed tables for retrieval of quantized ISF vectors in Q15. 
 
void ff_acelp_filter_init(ACELPFContext *c)
Initialize ACELPFContext. 
 
static void decode_gains(const uint8_t vq_gain, const enum Mode mode, float *fixed_gain_factor, float *pitch_gain)
Decode pitch gain and fixed gain correction factor. 
 
float fixed_vector[AMRWB_SFR_SIZE]
algebraic codebook (fixed) vector for current subframe 
 
#define ENERGY_MEAN
mean innovation energy (dB) in all modes 
 
#define PREEMPH_FAC
factor used to de-emphasize synthesis 
 
static const int16_t dico22_isf_36b[128][4]
 
int channels
number of audio channels 
 
AMR wideband data and definitions. 
 
float hpf_400_mem[2]
previous values in the high pass filters 
 
static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
Apply pitch sharpening filters to the fixed codebook vector. 
 
static enum AVSampleFormat sample_fmts[]
 
static const int16_t isf_init[LP_ORDER]
Initialization tables for the processed ISF vector in Q15. 
 
#define BIT_POS(x, p)
Get the bit at specified position. 
 
static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
Decode quantized ISF vectors using 36-bit indexes (6K60 mode only). 
 
static const uint16_t qua_hb_gain[16]
High band quantized gains for 23k85 in Q14. 
 
#define AV_CH_LAYOUT_MONO
 
static void decode_4p_track(int *out, int code, int m, int off)
code: 4m bits 
 
This structure stores compressed data. 
 
uint16_t ltp
ltp-filtering flag 
 
int nb_samples
number of audio samples (per channel) described by this frame 
 
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators. 
 
double isp[4][LP_ORDER]
ISP vectors from current frame. 
 
void(* acelp_interpolatef)(float *out, const float *in, const float *filter_coeffs, int precision, int frac_pos, int filter_length, int length)
Floating point version of ff_acelp_interpolate() 
 
float ff_amr_set_fixed_gain(float fixed_gain_factor, float fixed_mean_energy, float *prediction_error, float energy_mean, const float *pred_table)
Calculate fixed gain (part of section 6.1.3 of AMR spec) 
 
#define AMRWB_P_DELAY_MIN