00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027 #include <stdio.h>
00028 #include <stddef.h>
00029 #include <math.h>
00030 #include <string.h>
00031
00032 #include "libavutil/crc.h"
00033 #include "internal.h"
00034 #include "aac_ac3_parser.h"
00035 #include "ac3_parser.h"
00036 #include "ac3dec.h"
00037 #include "ac3dec_data.h"
00038
00040 #define AC3_FRAME_BUFFER_SIZE 32768
00041
00046 static uint8_t ungroup_3_in_7_bits_tab[128][3];
00047
00048
00050 static int b1_mantissas[32][3];
00051 static int b2_mantissas[128][3];
00052 static int b3_mantissas[8];
00053 static int b4_mantissas[128][2];
00054 static int b5_mantissas[16];
00055
00060 static const uint8_t quantization_tab[16] = {
00061 0, 3, 5, 7, 11, 15,
00062 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
00063 };
00064
00066 static float dynamic_range_tab[256];
00067
00069 #define LEVEL_PLUS_3DB 1.4142135623730950
00070 #define LEVEL_PLUS_1POINT5DB 1.1892071150027209
00071 #define LEVEL_MINUS_1POINT5DB 0.8408964152537145
00072 #define LEVEL_MINUS_3DB 0.7071067811865476
00073 #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
00074 #define LEVEL_MINUS_6DB 0.5000000000000000
00075 #define LEVEL_MINUS_9DB 0.3535533905932738
00076 #define LEVEL_ZERO 0.0000000000000000
00077 #define LEVEL_ONE 1.0000000000000000
00078
00079 static const float gain_levels[9] = {
00080 LEVEL_PLUS_3DB,
00081 LEVEL_PLUS_1POINT5DB,
00082 LEVEL_ONE,
00083 LEVEL_MINUS_1POINT5DB,
00084 LEVEL_MINUS_3DB,
00085 LEVEL_MINUS_4POINT5DB,
00086 LEVEL_MINUS_6DB,
00087 LEVEL_ZERO,
00088 LEVEL_MINUS_9DB
00089 };
00090
00095 static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
00096
00101 static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
00102
00107 static const uint8_t ac3_default_coeffs[8][5][2] = {
00108 { { 2, 7 }, { 7, 2 }, },
00109 { { 4, 4 }, },
00110 { { 2, 7 }, { 7, 2 }, },
00111 { { 2, 7 }, { 5, 5 }, { 7, 2 }, },
00112 { { 2, 7 }, { 7, 2 }, { 6, 6 }, },
00113 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
00114 { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
00115 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
00116 };
00117
00123 static inline int
00124 symmetric_dequant(int code, int levels)
00125 {
00126 return ((code - (levels >> 1)) << 24) / levels;
00127 }
00128
00129
00130
00131
00132 static av_cold void ac3_tables_init(void)
00133 {
00134 int i;
00135
00136
00137
00138 for(i=0; i<128; i++) {
00139 ungroup_3_in_7_bits_tab[i][0] = i / 25;
00140 ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
00141 ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
00142 }
00143
00144
00145
00146 for(i=0; i<32; i++) {
00147
00148 b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
00149 b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
00150 b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
00151 }
00152 for(i=0; i<128; i++) {
00153
00154 b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
00155 b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
00156 b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
00157
00158
00159 b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
00160 b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
00161 }
00162
00163
00164 for(i=0; i<7; i++) {
00165
00166 b3_mantissas[i] = symmetric_dequant(i, 7);
00167 }
00168 for(i=0; i<15; i++) {
00169
00170 b5_mantissas[i] = symmetric_dequant(i, 15);
00171 }
00172
00173
00174
00175 for(i=0; i<256; i++) {
00176 int v = (i >> 5) - ((i >> 7) << 3) - 5;
00177 dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
00178 }
00179 }
00180
00181
00185 static av_cold int ac3_decode_init(AVCodecContext *avctx)
00186 {
00187 AC3DecodeContext *s = avctx->priv_data;
00188 s->avctx = avctx;
00189
00190 ac3_common_init();
00191 ac3_tables_init();
00192 ff_mdct_init(&s->imdct_256, 8, 1);
00193 ff_mdct_init(&s->imdct_512, 9, 1);
00194 ff_kbd_window_init(s->window, 5.0, 256);
00195 dsputil_init(&s->dsp, avctx);
00196 av_lfg_init(&s->dith_state, 0);
00197
00198
00199 if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
00200 s->add_bias = 385.0f;
00201 s->mul_bias = 1.0f;
00202 } else {
00203 s->add_bias = 0.0f;
00204 s->mul_bias = 32767.0f;
00205 }
00206
00207
00208 if (avctx->channels > 0 && avctx->request_channels > 0 &&
00209 avctx->request_channels < avctx->channels &&
00210 avctx->request_channels <= 2) {
00211 avctx->channels = avctx->request_channels;
00212 }
00213 s->downmixed = 1;
00214
00215
00216 if (avctx->error_recognition >= FF_ER_CAREFUL) {
00217 s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
00218 if (!s->input_buffer)
00219 return AVERROR_NOMEM;
00220 }
00221
00222 avctx->sample_fmt = SAMPLE_FMT_S16;
00223 return 0;
00224 }
00225
00231 static int ac3_parse_header(AC3DecodeContext *s)
00232 {
00233 GetBitContext *gbc = &s->gbc;
00234 int i;
00235
00236
00237 i = !(s->channel_mode);
00238 do {
00239 skip_bits(gbc, 5);
00240 if (get_bits1(gbc))
00241 skip_bits(gbc, 8);
00242 if (get_bits1(gbc))
00243 skip_bits(gbc, 8);
00244 if (get_bits1(gbc))
00245 skip_bits(gbc, 7);
00246 } while (i--);
00247
00248 skip_bits(gbc, 2);
00249
00250
00251
00252 if (get_bits1(gbc))
00253 skip_bits(gbc, 14);
00254 if (get_bits1(gbc))
00255 skip_bits(gbc, 14);
00256
00257
00258 if (get_bits1(gbc)) {
00259 i = get_bits(gbc, 6);
00260 do {
00261 skip_bits(gbc, 8);
00262 } while(i--);
00263 }
00264
00265 return 0;
00266 }
00267
00271 static int parse_frame_header(AC3DecodeContext *s)
00272 {
00273 AC3HeaderInfo hdr;
00274 int err;
00275
00276 err = ff_ac3_parse_header(&s->gbc, &hdr);
00277 if(err)
00278 return err;
00279
00280
00281 s->bit_alloc_params.sr_code = hdr.sr_code;
00282 s->channel_mode = hdr.channel_mode;
00283 s->lfe_on = hdr.lfe_on;
00284 s->bit_alloc_params.sr_shift = hdr.sr_shift;
00285 s->sample_rate = hdr.sample_rate;
00286 s->bit_rate = hdr.bit_rate;
00287 s->channels = hdr.channels;
00288 s->fbw_channels = s->channels - s->lfe_on;
00289 s->lfe_ch = s->fbw_channels + 1;
00290 s->frame_size = hdr.frame_size;
00291 s->center_mix_level = hdr.center_mix_level;
00292 s->surround_mix_level = hdr.surround_mix_level;
00293 s->num_blocks = hdr.num_blocks;
00294 s->frame_type = hdr.frame_type;
00295 s->substreamid = hdr.substreamid;
00296
00297 if(s->lfe_on) {
00298 s->start_freq[s->lfe_ch] = 0;
00299 s->end_freq[s->lfe_ch] = 7;
00300 s->num_exp_groups[s->lfe_ch] = 2;
00301 s->channel_in_cpl[s->lfe_ch] = 0;
00302 }
00303
00304 if (hdr.bitstream_id <= 10) {
00305 s->eac3 = 0;
00306 s->snr_offset_strategy = 2;
00307 s->block_switch_syntax = 1;
00308 s->dither_flag_syntax = 1;
00309 s->bit_allocation_syntax = 1;
00310 s->fast_gain_syntax = 0;
00311 s->first_cpl_leak = 0;
00312 s->dba_syntax = 1;
00313 s->skip_syntax = 1;
00314 memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
00315 return ac3_parse_header(s);
00316 } else {
00317 s->eac3 = 1;
00318 return ff_eac3_parse_header(s);
00319 }
00320 }
00321
00326 static void set_downmix_coeffs(AC3DecodeContext *s)
00327 {
00328 int i;
00329 float cmix = gain_levels[center_levels[s->center_mix_level]];
00330 float smix = gain_levels[surround_levels[s->surround_mix_level]];
00331 float norm0, norm1;
00332
00333 for(i=0; i<s->fbw_channels; i++) {
00334 s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
00335 s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
00336 }
00337 if(s->channel_mode > 1 && s->channel_mode & 1) {
00338 s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
00339 }
00340 if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
00341 int nf = s->channel_mode - 2;
00342 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
00343 }
00344 if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
00345 int nf = s->channel_mode - 4;
00346 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
00347 }
00348
00349
00350 norm0 = norm1 = 0.0;
00351 for(i=0; i<s->fbw_channels; i++) {
00352 norm0 += s->downmix_coeffs[i][0];
00353 norm1 += s->downmix_coeffs[i][1];
00354 }
00355 norm0 = 1.0f / norm0;
00356 norm1 = 1.0f / norm1;
00357 for(i=0; i<s->fbw_channels; i++) {
00358 s->downmix_coeffs[i][0] *= norm0;
00359 s->downmix_coeffs[i][1] *= norm1;
00360 }
00361
00362 if(s->output_mode == AC3_CHMODE_MONO) {
00363 for(i=0; i<s->fbw_channels; i++)
00364 s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
00365 }
00366 }
00367
00372 static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
00373 uint8_t absexp, int8_t *dexps)
00374 {
00375 int i, j, grp, group_size;
00376 int dexp[256];
00377 int expacc, prevexp;
00378
00379
00380 group_size = exp_strategy + (exp_strategy == EXP_D45);
00381 for(grp=0,i=0; grp<ngrps; grp++) {
00382 expacc = get_bits(gbc, 7);
00383 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
00384 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
00385 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
00386 }
00387
00388
00389 prevexp = absexp;
00390 for(i=0,j=0; i<ngrps*3; i++) {
00391 prevexp += dexp[i] - 2;
00392 if (prevexp > 24U)
00393 return -1;
00394 switch (group_size) {
00395 case 4: dexps[j++] = prevexp;
00396 dexps[j++] = prevexp;
00397 case 2: dexps[j++] = prevexp;
00398 case 1: dexps[j++] = prevexp;
00399 }
00400 }
00401 return 0;
00402 }
00403
00409 static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
00410 {
00411 int i, j, ch, bnd, subbnd;
00412
00413 subbnd = -1;
00414 i = s->start_freq[CPL_CH];
00415 for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
00416 do {
00417 subbnd++;
00418 for(j=0; j<12; j++) {
00419 for(ch=1; ch<=s->fbw_channels; ch++) {
00420 if(s->channel_in_cpl[ch]) {
00421 s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
00422 if (ch == 2 && s->phase_flags[bnd])
00423 s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
00424 }
00425 }
00426 i++;
00427 }
00428 } while(s->cpl_band_struct[subbnd]);
00429 }
00430 }
00431
00435 typedef struct {
00436 int b1_mant[2];
00437 int b2_mant[2];
00438 int b4_mant;
00439 int b1;
00440 int b2;
00441 int b4;
00442 } mant_groups;
00443
00448 static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
00449 {
00450 int start_freq = s->start_freq[ch_index];
00451 int end_freq = s->end_freq[ch_index];
00452 uint8_t *baps = s->bap[ch_index];
00453 int8_t *exps = s->dexps[ch_index];
00454 int *coeffs = s->fixed_coeffs[ch_index];
00455 GetBitContext *gbc = &s->gbc;
00456 int freq;
00457
00458 for(freq = start_freq; freq < end_freq; freq++){
00459 int bap = baps[freq];
00460 int mantissa;
00461 switch(bap){
00462 case 0:
00463 mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
00464 break;
00465 case 1:
00466 if(m->b1){
00467 m->b1--;
00468 mantissa = m->b1_mant[m->b1];
00469 }
00470 else{
00471 int bits = get_bits(gbc, 5);
00472 mantissa = b1_mantissas[bits][0];
00473 m->b1_mant[1] = b1_mantissas[bits][1];
00474 m->b1_mant[0] = b1_mantissas[bits][2];
00475 m->b1 = 2;
00476 }
00477 break;
00478 case 2:
00479 if(m->b2){
00480 m->b2--;
00481 mantissa = m->b2_mant[m->b2];
00482 }
00483 else{
00484 int bits = get_bits(gbc, 7);
00485 mantissa = b2_mantissas[bits][0];
00486 m->b2_mant[1] = b2_mantissas[bits][1];
00487 m->b2_mant[0] = b2_mantissas[bits][2];
00488 m->b2 = 2;
00489 }
00490 break;
00491 case 3:
00492 mantissa = b3_mantissas[get_bits(gbc, 3)];
00493 break;
00494 case 4:
00495 if(m->b4){
00496 m->b4 = 0;
00497 mantissa = m->b4_mant;
00498 }
00499 else{
00500 int bits = get_bits(gbc, 7);
00501 mantissa = b4_mantissas[bits][0];
00502 m->b4_mant = b4_mantissas[bits][1];
00503 m->b4 = 1;
00504 }
00505 break;
00506 case 5:
00507 mantissa = b5_mantissas[get_bits(gbc, 4)];
00508 break;
00509 default:
00510 mantissa = get_bits(gbc, quantization_tab[bap]);
00511
00512 mantissa = (mantissa << (32-quantization_tab[bap]))>>8;
00513 break;
00514 }
00515 coeffs[freq] = mantissa >> exps[freq];
00516 }
00517 }
00518
00523 static void remove_dithering(AC3DecodeContext *s) {
00524 int ch, i;
00525 int end=0;
00526 int *coeffs;
00527 uint8_t *bap;
00528
00529 for(ch=1; ch<=s->fbw_channels; ch++) {
00530 if(!s->dither_flag[ch]) {
00531 coeffs = s->fixed_coeffs[ch];
00532 bap = s->bap[ch];
00533 if(s->channel_in_cpl[ch])
00534 end = s->start_freq[CPL_CH];
00535 else
00536 end = s->end_freq[ch];
00537 for(i=0; i<end; i++) {
00538 if(!bap[i])
00539 coeffs[i] = 0;
00540 }
00541 if(s->channel_in_cpl[ch]) {
00542 bap = s->bap[CPL_CH];
00543 for(; i<s->end_freq[CPL_CH]; i++) {
00544 if(!bap[i])
00545 coeffs[i] = 0;
00546 }
00547 }
00548 }
00549 }
00550 }
00551
00552 static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
00553 mant_groups *m)
00554 {
00555 if (!s->channel_uses_aht[ch]) {
00556 ac3_decode_transform_coeffs_ch(s, ch, m);
00557 } else {
00558
00559
00560 int bin;
00561 if (!blk)
00562 ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
00563 for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
00564 s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
00565 }
00566 }
00567 }
00568
00572 static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
00573 {
00574 int ch, end;
00575 int got_cplchan = 0;
00576 mant_groups m;
00577
00578 m.b1 = m.b2 = m.b4 = 0;
00579
00580 for (ch = 1; ch <= s->channels; ch++) {
00581
00582 decode_transform_coeffs_ch(s, blk, ch, &m);
00583
00584
00585 if (s->channel_in_cpl[ch]) {
00586 if (!got_cplchan) {
00587 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
00588 calc_transform_coeffs_cpl(s);
00589 got_cplchan = 1;
00590 }
00591 end = s->end_freq[CPL_CH];
00592 } else {
00593 end = s->end_freq[ch];
00594 }
00595 do
00596 s->fixed_coeffs[ch][end] = 0;
00597 while(++end < 256);
00598 }
00599
00600
00601 remove_dithering(s);
00602 }
00603
00608 static void do_rematrixing(AC3DecodeContext *s)
00609 {
00610 int bnd, i;
00611 int end, bndend;
00612 int tmp0, tmp1;
00613
00614 end = FFMIN(s->end_freq[1], s->end_freq[2]);
00615
00616 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
00617 if(s->rematrixing_flags[bnd]) {
00618 bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
00619 for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
00620 tmp0 = s->fixed_coeffs[1][i];
00621 tmp1 = s->fixed_coeffs[2][i];
00622 s->fixed_coeffs[1][i] = tmp0 + tmp1;
00623 s->fixed_coeffs[2][i] = tmp0 - tmp1;
00624 }
00625 }
00626 }
00627 }
00628
00634 static inline void do_imdct(AC3DecodeContext *s, int channels)
00635 {
00636 int ch;
00637 float add_bias = s->add_bias;
00638 if(s->out_channels==1 && channels>1)
00639 add_bias *= LEVEL_MINUS_3DB;
00640
00641 for (ch=1; ch<=channels; ch++) {
00642 if (s->block_switch[ch]) {
00643 int i;
00644 float *x = s->tmp_output+128;
00645 for(i=0; i<128; i++)
00646 x[i] = s->transform_coeffs[ch][2*i];
00647 ff_imdct_half(&s->imdct_256, s->tmp_output, x);
00648 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
00649 for(i=0; i<128; i++)
00650 x[i] = s->transform_coeffs[ch][2*i+1];
00651 ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
00652 } else {
00653 ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
00654 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
00655 memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
00656 }
00657 }
00658 }
00659
00663 void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
00664 {
00665 int i, j;
00666 float v0, v1;
00667 if(out_ch == 2) {
00668 for(i=0; i<len; i++) {
00669 v0 = v1 = 0.0f;
00670 for(j=0; j<in_ch; j++) {
00671 v0 += samples[j][i] * matrix[j][0];
00672 v1 += samples[j][i] * matrix[j][1];
00673 }
00674 samples[0][i] = v0;
00675 samples[1][i] = v1;
00676 }
00677 } else if(out_ch == 1) {
00678 for(i=0; i<len; i++) {
00679 v0 = 0.0f;
00680 for(j=0; j<in_ch; j++)
00681 v0 += samples[j][i] * matrix[j][0];
00682 samples[0][i] = v0;
00683 }
00684 }
00685 }
00686
00690 static void ac3_upmix_delay(AC3DecodeContext *s)
00691 {
00692 int channel_data_size = sizeof(s->delay[0]);
00693 switch(s->channel_mode) {
00694 case AC3_CHMODE_DUALMONO:
00695 case AC3_CHMODE_STEREO:
00696
00697 memcpy(s->delay[1], s->delay[0], channel_data_size);
00698 break;
00699 case AC3_CHMODE_2F2R:
00700 memset(s->delay[3], 0, channel_data_size);
00701 case AC3_CHMODE_2F1R:
00702 memset(s->delay[2], 0, channel_data_size);
00703 break;
00704 case AC3_CHMODE_3F2R:
00705 memset(s->delay[4], 0, channel_data_size);
00706 case AC3_CHMODE_3F1R:
00707 memset(s->delay[3], 0, channel_data_size);
00708 case AC3_CHMODE_3F:
00709 memcpy(s->delay[2], s->delay[1], channel_data_size);
00710 memset(s->delay[1], 0, channel_data_size);
00711 break;
00712 }
00713 }
00714
00729 static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
00730 int ecpl, int start_subband, int end_subband,
00731 const uint8_t *default_band_struct,
00732 uint8_t *band_struct, int *num_subbands,
00733 int *num_bands, uint8_t *band_sizes)
00734 {
00735 int subbnd, bnd, n_subbands, n_bands=0;
00736 uint8_t bnd_sz[22];
00737
00738 n_subbands = end_subband - start_subband;
00739
00740
00741 if (!eac3 || get_bits1(gbc)) {
00742 for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
00743 band_struct[subbnd] = get_bits1(gbc);
00744 }
00745 } else if (!blk) {
00746 memcpy(band_struct,
00747 &default_band_struct[start_subband+1],
00748 n_subbands-1);
00749 }
00750 band_struct[n_subbands-1] = 0;
00751
00752
00753
00754
00755 if (num_bands || band_sizes ) {
00756 n_bands = n_subbands;
00757 bnd_sz[0] = ecpl ? 6 : 12;
00758 for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
00759 int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
00760 if (band_struct[subbnd-1]) {
00761 n_bands--;
00762 bnd_sz[bnd] += subbnd_size;
00763 } else {
00764 bnd_sz[++bnd] = subbnd_size;
00765 }
00766 }
00767 }
00768
00769
00770 if (num_subbands)
00771 *num_subbands = n_subbands;
00772 if (num_bands)
00773 *num_bands = n_bands;
00774 if (band_sizes)
00775 memcpy(band_sizes, bnd_sz, n_bands);
00776 }
00777
00781 static int decode_audio_block(AC3DecodeContext *s, int blk)
00782 {
00783 int fbw_channels = s->fbw_channels;
00784 int channel_mode = s->channel_mode;
00785 int i, bnd, seg, ch;
00786 int different_transforms;
00787 int downmix_output;
00788 int cpl_in_use;
00789 GetBitContext *gbc = &s->gbc;
00790 uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
00791
00792 memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
00793
00794
00795 different_transforms = 0;
00796 if (s->block_switch_syntax) {
00797 for (ch = 1; ch <= fbw_channels; ch++) {
00798 s->block_switch[ch] = get_bits1(gbc);
00799 if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
00800 different_transforms = 1;
00801 }
00802 }
00803
00804
00805 if (s->dither_flag_syntax) {
00806 for (ch = 1; ch <= fbw_channels; ch++) {
00807 s->dither_flag[ch] = get_bits1(gbc);
00808 }
00809 }
00810
00811
00812 i = !(s->channel_mode);
00813 do {
00814 if(get_bits1(gbc)) {
00815 s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
00816 s->avctx->drc_scale)+1.0;
00817 } else if(blk == 0) {
00818 s->dynamic_range[i] = 1.0f;
00819 }
00820 } while(i--);
00821
00822
00823 if (s->eac3 && (!blk || get_bits1(gbc))) {
00824 if (get_bits1(gbc)) {
00825 ff_log_missing_feature(s->avctx, "Spectral extension", 1);
00826 return -1;
00827 }
00828
00829 }
00830
00831
00832
00833
00834 if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
00835 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
00836 if (!s->eac3)
00837 s->cpl_in_use[blk] = get_bits1(gbc);
00838 if (s->cpl_in_use[blk]) {
00839
00840 int cpl_start_subband, cpl_end_subband;
00841
00842 if (channel_mode < AC3_CHMODE_STEREO) {
00843 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
00844 return -1;
00845 }
00846
00847
00848 if (s->eac3 && get_bits1(gbc)) {
00849
00850 ff_log_missing_feature(s->avctx, "Enhanced coupling", 1);
00851 return -1;
00852 }
00853
00854
00855 if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
00856 s->channel_in_cpl[1] = 1;
00857 s->channel_in_cpl[2] = 1;
00858 } else {
00859 for (ch = 1; ch <= fbw_channels; ch++)
00860 s->channel_in_cpl[ch] = get_bits1(gbc);
00861 }
00862
00863
00864 if (channel_mode == AC3_CHMODE_STEREO)
00865 s->phase_flags_in_use = get_bits1(gbc);
00866
00867
00868
00869 cpl_start_subband = get_bits(gbc, 4);
00870 cpl_end_subband = get_bits(gbc, 4) + 3;
00871 s->num_cpl_subbands = cpl_end_subband - cpl_start_subband;
00872 if (s->num_cpl_subbands < 0) {
00873 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d > %d)\n",
00874 cpl_start_subband, cpl_end_subband);
00875 return -1;
00876 }
00877 s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
00878 s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
00879
00880 decode_band_structure(gbc, blk, s->eac3, 0,
00881 cpl_start_subband, cpl_end_subband,
00882 ff_eac3_default_cpl_band_struct,
00883 s->cpl_band_struct, &s->num_cpl_subbands,
00884 &s->num_cpl_bands, NULL);
00885 } else {
00886
00887 for (ch = 1; ch <= fbw_channels; ch++) {
00888 s->channel_in_cpl[ch] = 0;
00889 s->first_cpl_coords[ch] = 1;
00890 }
00891 s->first_cpl_leak = s->eac3;
00892 s->phase_flags_in_use = 0;
00893 }
00894 } else if (!s->eac3) {
00895 if(!blk) {
00896 av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
00897 return -1;
00898 } else {
00899 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
00900 }
00901 }
00902 cpl_in_use = s->cpl_in_use[blk];
00903
00904
00905 if (cpl_in_use) {
00906 int cpl_coords_exist = 0;
00907
00908 for (ch = 1; ch <= fbw_channels; ch++) {
00909 if (s->channel_in_cpl[ch]) {
00910 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
00911 int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
00912 s->first_cpl_coords[ch] = 0;
00913 cpl_coords_exist = 1;
00914 master_cpl_coord = 3 * get_bits(gbc, 2);
00915 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
00916 cpl_coord_exp = get_bits(gbc, 4);
00917 cpl_coord_mant = get_bits(gbc, 4);
00918 if (cpl_coord_exp == 15)
00919 s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
00920 else
00921 s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
00922 s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
00923 }
00924 } else if (!blk) {
00925 av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
00926 return -1;
00927 }
00928 } else {
00929
00930 s->first_cpl_coords[ch] = 1;
00931 }
00932 }
00933
00934 if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
00935 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
00936 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
00937 }
00938 }
00939 }
00940
00941
00942 if (channel_mode == AC3_CHMODE_STEREO) {
00943 if ((s->eac3 && !blk) || get_bits1(gbc)) {
00944 s->num_rematrixing_bands = 4;
00945 if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
00946 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
00947 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
00948 s->rematrixing_flags[bnd] = get_bits1(gbc);
00949 } else if (!blk) {
00950 av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
00951 return -1;
00952 }
00953 }
00954
00955
00956 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
00957 if (!s->eac3)
00958 s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
00959 if(s->exp_strategy[blk][ch] != EXP_REUSE)
00960 bit_alloc_stages[ch] = 3;
00961 }
00962
00963
00964 for (ch = 1; ch <= fbw_channels; ch++) {
00965 s->start_freq[ch] = 0;
00966 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
00967 int group_size;
00968 int prev = s->end_freq[ch];
00969 if (s->channel_in_cpl[ch])
00970 s->end_freq[ch] = s->start_freq[CPL_CH];
00971 else {
00972 int bandwidth_code = get_bits(gbc, 6);
00973 if (bandwidth_code > 60) {
00974 av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
00975 return -1;
00976 }
00977 s->end_freq[ch] = bandwidth_code * 3 + 73;
00978 }
00979 group_size = 3 << (s->exp_strategy[blk][ch] - 1);
00980 s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
00981 if(blk > 0 && s->end_freq[ch] != prev)
00982 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
00983 }
00984 }
00985 if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
00986 s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
00987 (3 << (s->exp_strategy[blk][CPL_CH] - 1));
00988 }
00989
00990
00991 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
00992 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
00993 s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
00994 if (decode_exponents(gbc, s->exp_strategy[blk][ch],
00995 s->num_exp_groups[ch], s->dexps[ch][0],
00996 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
00997 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
00998 return -1;
00999 }
01000 if(ch != CPL_CH && ch != s->lfe_ch)
01001 skip_bits(gbc, 2);
01002 }
01003 }
01004
01005
01006 if (s->bit_allocation_syntax) {
01007 if (get_bits1(gbc)) {
01008 s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
01009 s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
01010 s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
01011 s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
01012 s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
01013 for(ch=!cpl_in_use; ch<=s->channels; ch++)
01014 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
01015 } else if (!blk) {
01016 av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
01017 return -1;
01018 }
01019 }
01020
01021
01022 if(!s->eac3 || !blk){
01023 if(s->snr_offset_strategy && get_bits1(gbc)) {
01024 int snr = 0;
01025 int csnr;
01026 csnr = (get_bits(gbc, 6) - 15) << 4;
01027 for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
01028
01029 if (ch == i || s->snr_offset_strategy == 2)
01030 snr = (csnr + get_bits(gbc, 4)) << 2;
01031
01032 if(blk && s->snr_offset[ch] != snr) {
01033 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
01034 }
01035 s->snr_offset[ch] = snr;
01036
01037
01038 if (!s->eac3) {
01039 int prev = s->fast_gain[ch];
01040 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
01041
01042 if(blk && prev != s->fast_gain[ch])
01043 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
01044 }
01045 }
01046 } else if (!s->eac3 && !blk) {
01047 av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
01048 return -1;
01049 }
01050 }
01051
01052
01053 if (s->fast_gain_syntax && get_bits1(gbc)) {
01054 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
01055 int prev = s->fast_gain[ch];
01056 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
01057
01058 if(blk && prev != s->fast_gain[ch])
01059 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
01060 }
01061 } else if (s->eac3 && !blk) {
01062 for (ch = !cpl_in_use; ch <= s->channels; ch++)
01063 s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
01064 }
01065
01066
01067 if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
01068 skip_bits(gbc, 10);
01069 }
01070
01071
01072 if (cpl_in_use) {
01073 if (s->first_cpl_leak || get_bits1(gbc)) {
01074 int fl = get_bits(gbc, 3);
01075 int sl = get_bits(gbc, 3);
01076
01077
01078 if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
01079 sl != s->bit_alloc_params.cpl_slow_leak)) {
01080 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
01081 }
01082 s->bit_alloc_params.cpl_fast_leak = fl;
01083 s->bit_alloc_params.cpl_slow_leak = sl;
01084 } else if (!s->eac3 && !blk) {
01085 av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
01086 return -1;
01087 }
01088 s->first_cpl_leak = 0;
01089 }
01090
01091
01092 if (s->dba_syntax && get_bits1(gbc)) {
01093
01094 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
01095 s->dba_mode[ch] = get_bits(gbc, 2);
01096 if (s->dba_mode[ch] == DBA_RESERVED) {
01097 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
01098 return -1;
01099 }
01100 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
01101 }
01102
01103 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
01104 if (s->dba_mode[ch] == DBA_NEW) {
01105 s->dba_nsegs[ch] = get_bits(gbc, 3);
01106 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
01107 s->dba_offsets[ch][seg] = get_bits(gbc, 5);
01108 s->dba_lengths[ch][seg] = get_bits(gbc, 4);
01109 s->dba_values[ch][seg] = get_bits(gbc, 3);
01110 }
01111
01112 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
01113 }
01114 }
01115 } else if(blk == 0) {
01116 for(ch=0; ch<=s->channels; ch++) {
01117 s->dba_mode[ch] = DBA_NONE;
01118 }
01119 }
01120
01121
01122 for(ch=!cpl_in_use; ch<=s->channels; ch++) {
01123 if(bit_alloc_stages[ch] > 2) {
01124
01125 ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
01126 s->start_freq[ch], s->end_freq[ch],
01127 s->psd[ch], s->band_psd[ch]);
01128 }
01129 if(bit_alloc_stages[ch] > 1) {
01130
01131
01132 if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
01133 s->start_freq[ch], s->end_freq[ch],
01134 s->fast_gain[ch], (ch == s->lfe_ch),
01135 s->dba_mode[ch], s->dba_nsegs[ch],
01136 s->dba_offsets[ch], s->dba_lengths[ch],
01137 s->dba_values[ch], s->mask[ch])) {
01138 av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
01139 return -1;
01140 }
01141 }
01142 if(bit_alloc_stages[ch] > 0) {
01143
01144 const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
01145 ff_eac3_hebap_tab : ff_ac3_bap_tab;
01146 ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
01147 s->start_freq[ch], s->end_freq[ch],
01148 s->snr_offset[ch],
01149 s->bit_alloc_params.floor,
01150 bap_tab, s->bap[ch]);
01151 }
01152 }
01153
01154
01155 if (s->skip_syntax && get_bits1(gbc)) {
01156 int skipl = get_bits(gbc, 9);
01157 while(skipl--)
01158 skip_bits(gbc, 8);
01159 }
01160
01161
01162
01163 decode_transform_coeffs(s, blk);
01164
01165
01166
01167
01168
01169
01170 if(s->channel_mode == AC3_CHMODE_STEREO)
01171 do_rematrixing(s);
01172
01173
01174 for(ch=1; ch<=s->channels; ch++) {
01175 float gain = s->mul_bias / 4194304.0f;
01176 if(s->channel_mode == AC3_CHMODE_DUALMONO) {
01177 gain *= s->dynamic_range[ch-1];
01178 } else {
01179 gain *= s->dynamic_range[0];
01180 }
01181 s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
01182 }
01183
01184
01185
01186
01187 downmix_output = s->channels != s->out_channels &&
01188 !((s->output_mode & AC3_OUTPUT_LFEON) &&
01189 s->fbw_channels == s->out_channels);
01190 if(different_transforms) {
01191
01192
01193 if(s->downmixed) {
01194 s->downmixed = 0;
01195 ac3_upmix_delay(s);
01196 }
01197
01198 do_imdct(s, s->channels);
01199
01200 if(downmix_output) {
01201 s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
01202 }
01203 } else {
01204 if(downmix_output) {
01205 s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
01206 }
01207
01208 if(downmix_output && !s->downmixed) {
01209 s->downmixed = 1;
01210 s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
01211 }
01212
01213 do_imdct(s, s->out_channels);
01214 }
01215
01216 return 0;
01217 }
01218
01222 static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
01223 const uint8_t *buf, int buf_size)
01224 {
01225 AC3DecodeContext *s = avctx->priv_data;
01226 int16_t *out_samples = (int16_t *)data;
01227 int blk, ch, err;
01228
01229
01230 if (s->input_buffer) {
01231
01232
01233 memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
01234 init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
01235 } else {
01236 init_get_bits(&s->gbc, buf, buf_size * 8);
01237 }
01238
01239
01240 *data_size = 0;
01241 err = parse_frame_header(s);
01242
01243
01244 if(s->frame_size > buf_size) {
01245 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
01246 err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
01247 }
01248
01249
01250 if(err != AAC_AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
01251 if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
01252 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
01253 err = AAC_AC3_PARSE_ERROR_CRC;
01254 }
01255 }
01256
01257 if(err && err != AAC_AC3_PARSE_ERROR_CRC) {
01258 switch(err) {
01259 case AAC_AC3_PARSE_ERROR_SYNC:
01260 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
01261 return -1;
01262 case AAC_AC3_PARSE_ERROR_BSID:
01263 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
01264 break;
01265 case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
01266 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
01267 break;
01268 case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
01269 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
01270 break;
01271 case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
01272
01273
01274 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
01275 av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
01276 return s->frame_size;
01277 } else {
01278 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
01279 }
01280 break;
01281 default:
01282 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
01283 break;
01284 }
01285 }
01286
01287
01288 if (!err) {
01289 avctx->sample_rate = s->sample_rate;
01290 avctx->bit_rate = s->bit_rate;
01291
01292
01293 s->out_channels = s->channels;
01294 s->output_mode = s->channel_mode;
01295 if(s->lfe_on)
01296 s->output_mode |= AC3_OUTPUT_LFEON;
01297 if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
01298 avctx->request_channels < s->channels) {
01299 s->out_channels = avctx->request_channels;
01300 s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
01301 }
01302 avctx->channels = s->out_channels;
01303
01304
01305 if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
01306 s->fbw_channels == s->out_channels)) {
01307 set_downmix_coeffs(s);
01308 }
01309 } else if (!s->out_channels) {
01310 s->out_channels = avctx->channels;
01311 if(s->out_channels < s->channels)
01312 s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
01313 }
01314
01315
01316 for (blk = 0; blk < s->num_blocks; blk++) {
01317 const float *output[s->out_channels];
01318 if (!err && decode_audio_block(s, blk)) {
01319 av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
01320 err = 1;
01321 }
01322 for (ch = 0; ch < s->out_channels; ch++)
01323 output[ch] = s->output[ch];
01324 s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
01325 out_samples += 256 * s->out_channels;
01326 }
01327 *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
01328 return s->frame_size;
01329 }
01330
01334 static av_cold int ac3_decode_end(AVCodecContext *avctx)
01335 {
01336 AC3DecodeContext *s = avctx->priv_data;
01337 ff_mdct_end(&s->imdct_512);
01338 ff_mdct_end(&s->imdct_256);
01339
01340 av_freep(&s->input_buffer);
01341
01342 return 0;
01343 }
01344
01345 AVCodec ac3_decoder = {
01346 .name = "ac3",
01347 .type = CODEC_TYPE_AUDIO,
01348 .id = CODEC_ID_AC3,
01349 .priv_data_size = sizeof (AC3DecodeContext),
01350 .init = ac3_decode_init,
01351 .close = ac3_decode_end,
01352 .decode = ac3_decode_frame,
01353 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
01354 };
01355
01356 AVCodec eac3_decoder = {
01357 .name = "eac3",
01358 .type = CODEC_TYPE_AUDIO,
01359 .id = CODEC_ID_EAC3,
01360 .priv_data_size = sizeof (AC3DecodeContext),
01361 .init = ac3_decode_init,
01362 .close = ac3_decode_end,
01363 .decode = ac3_decode_frame,
01364 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
01365 };