FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
swscale.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include <inttypes.h>
22 #include <math.h>
23 #include <stdio.h>
24 #include <string.h>
25 
26 #include "libavutil/avassert.h"
27 #include "libavutil/avutil.h"
28 #include "libavutil/bswap.h"
29 #include "libavutil/cpu.h"
30 #include "libavutil/imgutils.h"
31 #include "libavutil/intreadwrite.h"
32 #include "libavutil/mathematics.h"
33 #include "libavutil/pixdesc.h"
34 #include "config.h"
35 #include "rgb2rgb.h"
36 #include "swscale_internal.h"
37 #include "swscale.h"
38 
40  { 36, 68, 60, 92, 34, 66, 58, 90, },
41  { 100, 4, 124, 28, 98, 2, 122, 26, },
42  { 52, 84, 44, 76, 50, 82, 42, 74, },
43  { 116, 20, 108, 12, 114, 18, 106, 10, },
44  { 32, 64, 56, 88, 38, 70, 62, 94, },
45  { 96, 0, 120, 24, 102, 6, 126, 30, },
46  { 48, 80, 40, 72, 54, 86, 46, 78, },
47  { 112, 16, 104, 8, 118, 22, 110, 14, },
48  { 36, 68, 60, 92, 34, 66, 58, 90, },
49 };
50 
51 DECLARE_ALIGNED(8, static const uint8_t, sws_pb_64)[8] = {
52  64, 64, 64, 64, 64, 64, 64, 64
53 };
54 
55 static av_always_inline void fillPlane(uint8_t *plane, int stride, int width,
56  int height, int y, uint8_t val)
57 {
58  int i;
59  uint8_t *ptr = plane + stride * y;
60  for (i = 0; i < height; i++) {
61  memset(ptr, val, width);
62  ptr += stride;
63  }
64 }
65 
66 static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW,
67  const uint8_t *_src, const int16_t *filter,
68  const int32_t *filterPos, int filterSize)
69 {
71  int i;
72  int32_t *dst = (int32_t *) _dst;
73  const uint16_t *src = (const uint16_t *) _src;
74  int bits = desc->comp[0].depth_minus1;
75  int sh = bits - 4;
76 
77  if((isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8) && desc->comp[0].depth_minus1<15)
78  sh= 9;
79 
80  for (i = 0; i < dstW; i++) {
81  int j;
82  int srcPos = filterPos[i];
83  int val = 0;
84 
85  for (j = 0; j < filterSize; j++) {
86  val += src[srcPos + j] * filter[filterSize * i + j];
87  }
88  // filter=14 bit, input=16 bit, output=30 bit, >> 11 makes 19 bit
89  dst[i] = FFMIN(val >> sh, (1 << 19) - 1);
90  }
91 }
92 
93 static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW,
94  const uint8_t *_src, const int16_t *filter,
95  const int32_t *filterPos, int filterSize)
96 {
98  int i;
99  const uint16_t *src = (const uint16_t *) _src;
100  int sh = desc->comp[0].depth_minus1;
101 
102  if(sh<15)
103  sh= isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8 ? 13 : desc->comp[0].depth_minus1;
104 
105  for (i = 0; i < dstW; i++) {
106  int j;
107  int srcPos = filterPos[i];
108  int val = 0;
109 
110  for (j = 0; j < filterSize; j++) {
111  val += src[srcPos + j] * filter[filterSize * i + j];
112  }
113  // filter=14 bit, input=16 bit, output=30 bit, >> 15 makes 15 bit
114  dst[i] = FFMIN(val >> sh, (1 << 15) - 1);
115  }
116 }
117 
118 // bilinear / bicubic scaling
119 static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW,
120  const uint8_t *src, const int16_t *filter,
121  const int32_t *filterPos, int filterSize)
122 {
123  int i;
124  for (i = 0; i < dstW; i++) {
125  int j;
126  int srcPos = filterPos[i];
127  int val = 0;
128  for (j = 0; j < filterSize; j++) {
129  val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
130  }
131  dst[i] = FFMIN(val >> 7, (1 << 15) - 1); // the cubic equation does overflow ...
132  }
133 }
134 
135 static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW,
136  const uint8_t *src, const int16_t *filter,
137  const int32_t *filterPos, int filterSize)
138 {
139  int i;
140  int32_t *dst = (int32_t *) _dst;
141  for (i = 0; i < dstW; i++) {
142  int j;
143  int srcPos = filterPos[i];
144  int val = 0;
145  for (j = 0; j < filterSize; j++) {
146  val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
147  }
148  dst[i] = FFMIN(val >> 3, (1 << 19) - 1); // the cubic equation does overflow ...
149  }
150 }
151 
152 // FIXME all pal and rgb srcFormats could do this conversion as well
153 // FIXME all scalers more complex than bilinear could do half of this transform
154 static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
155 {
156  int i;
157  for (i = 0; i < width; i++) {
158  dstU[i] = (FFMIN(dstU[i], 30775) * 4663 - 9289992) >> 12; // -264
159  dstV[i] = (FFMIN(dstV[i], 30775) * 4663 - 9289992) >> 12; // -264
160  }
161 }
162 
163 static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
164 {
165  int i;
166  for (i = 0; i < width; i++) {
167  dstU[i] = (dstU[i] * 1799 + 4081085) >> 11; // 1469
168  dstV[i] = (dstV[i] * 1799 + 4081085) >> 11; // 1469
169  }
170 }
171 
172 static void lumRangeToJpeg_c(int16_t *dst, int width)
173 {
174  int i;
175  for (i = 0; i < width; i++)
176  dst[i] = (FFMIN(dst[i], 30189) * 19077 - 39057361) >> 14;
177 }
178 
179 static void lumRangeFromJpeg_c(int16_t *dst, int width)
180 {
181  int i;
182  for (i = 0; i < width; i++)
183  dst[i] = (dst[i] * 14071 + 33561947) >> 14;
184 }
185 
186 static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
187 {
188  int i;
189  int32_t *dstU = (int32_t *) _dstU;
190  int32_t *dstV = (int32_t *) _dstV;
191  for (i = 0; i < width; i++) {
192  dstU[i] = (FFMIN(dstU[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
193  dstV[i] = (FFMIN(dstV[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
194  }
195 }
196 
197 static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
198 {
199  int i;
200  int32_t *dstU = (int32_t *) _dstU;
201  int32_t *dstV = (int32_t *) _dstV;
202  for (i = 0; i < width; i++) {
203  dstU[i] = (dstU[i] * 1799 + (4081085 << 4)) >> 11; // 1469
204  dstV[i] = (dstV[i] * 1799 + (4081085 << 4)) >> 11; // 1469
205  }
206 }
207 
208 static void lumRangeToJpeg16_c(int16_t *_dst, int width)
209 {
210  int i;
211  int32_t *dst = (int32_t *) _dst;
212  for (i = 0; i < width; i++) {
213  dst[i] = ((int)(FFMIN(dst[i], 30189 << 4) * 4769U - (39057361 << 2))) >> 12;
214  }
215 }
216 
217 static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
218 {
219  int i;
220  int32_t *dst = (int32_t *) _dst;
221  for (i = 0; i < width; i++)
222  dst[i] = (dst[i]*(14071/4) + (33561947<<4)/4)>>12;
223 }
224 
225 // *** horizontal scale Y line to temp buffer
226 static av_always_inline void hyscale(SwsContext *c, int16_t *dst, int dstWidth,
227  const uint8_t *src_in[4],
228  int srcW, int xInc,
229  const int16_t *hLumFilter,
230  const int32_t *hLumFilterPos,
231  int hLumFilterSize,
233  uint32_t *pal, int isAlpha)
234 {
235  void (*toYV12)(uint8_t *, const uint8_t *, const uint8_t *, const uint8_t *, int, uint32_t *) =
236  isAlpha ? c->alpToYV12 : c->lumToYV12;
237  void (*convertRange)(int16_t *, int) = isAlpha ? NULL : c->lumConvertRange;
238  const uint8_t *src = src_in[isAlpha ? 3 : 0];
239 
240  if (toYV12) {
241  toYV12(formatConvBuffer, src, src_in[1], src_in[2], srcW, pal);
243  } else if (c->readLumPlanar && !isAlpha) {
244  c->readLumPlanar(formatConvBuffer, src_in, srcW, c->input_rgb2yuv_table);
246  } else if (c->readAlpPlanar && isAlpha) {
247  c->readAlpPlanar(formatConvBuffer, src_in, srcW, NULL);
249  }
250 
251  if (!c->hyscale_fast) {
252  c->hyScale(c, dst, dstWidth, src, hLumFilter,
253  hLumFilterPos, hLumFilterSize);
254  } else { // fast bilinear upscale / crap downscale
255  c->hyscale_fast(c, dst, dstWidth, src, srcW, xInc);
256  }
257 
258  if (convertRange)
259  convertRange(dst, dstWidth);
260 }
261 
262 static av_always_inline void hcscale(SwsContext *c, int16_t *dst1,
263  int16_t *dst2, int dstWidth,
264  const uint8_t *src_in[4],
265  int srcW, int xInc,
266  const int16_t *hChrFilter,
267  const int32_t *hChrFilterPos,
268  int hChrFilterSize,
269  uint8_t *formatConvBuffer, uint32_t *pal)
270 {
271  const uint8_t *src1 = src_in[1], *src2 = src_in[2];
272  if (c->chrToYV12) {
273  uint8_t *buf2 = formatConvBuffer +
274  FFALIGN(srcW*2+78, 16);
275  c->chrToYV12(formatConvBuffer, buf2, src_in[0], src1, src2, srcW, pal);
276  src1= formatConvBuffer;
277  src2= buf2;
278  } else if (c->readChrPlanar) {
279  uint8_t *buf2 = formatConvBuffer +
280  FFALIGN(srcW*2+78, 16);
281  c->readChrPlanar(formatConvBuffer, buf2, src_in, srcW, c->input_rgb2yuv_table);
282  src1 = formatConvBuffer;
283  src2 = buf2;
284  }
285 
286  if (!c->hcscale_fast) {
287  c->hcScale(c, dst1, dstWidth, src1, hChrFilter, hChrFilterPos, hChrFilterSize);
288  c->hcScale(c, dst2, dstWidth, src2, hChrFilter, hChrFilterPos, hChrFilterSize);
289  } else { // fast bilinear upscale / crap downscale
290  c->hcscale_fast(c, dst1, dst2, dstWidth, src1, src2, srcW, xInc);
291  }
292 
293  if (c->chrConvertRange)
294  c->chrConvertRange(dst1, dst2, dstWidth);
295 }
296 
297 #define DEBUG_SWSCALE_BUFFERS 0
298 #define DEBUG_BUFFERS(...) \
299  if (DEBUG_SWSCALE_BUFFERS) \
300  av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
301 
302 static int swscale(SwsContext *c, const uint8_t *src[],
303  int srcStride[], int srcSliceY,
304  int srcSliceH, uint8_t *dst[], int dstStride[])
305 {
306  /* load a few things into local vars to make the code more readable?
307  * and faster */
308  const int srcW = c->srcW;
309  const int dstW = c->dstW;
310  const int dstH = c->dstH;
311  const int chrDstW = c->chrDstW;
312  const int chrSrcW = c->chrSrcW;
313  const int lumXInc = c->lumXInc;
314  const int chrXInc = c->chrXInc;
315  const enum AVPixelFormat dstFormat = c->dstFormat;
316  const int flags = c->flags;
321  int16_t *hLumFilter = c->hLumFilter;
322  int16_t *hChrFilter = c->hChrFilter;
325  const int vLumFilterSize = c->vLumFilterSize;
326  const int vChrFilterSize = c->vChrFilterSize;
327  const int hLumFilterSize = c->hLumFilterSize;
328  const int hChrFilterSize = c->hChrFilterSize;
329  int16_t **lumPixBuf = c->lumPixBuf;
330  int16_t **chrUPixBuf = c->chrUPixBuf;
331  int16_t **chrVPixBuf = c->chrVPixBuf;
332  int16_t **alpPixBuf = c->alpPixBuf;
333  const int vLumBufSize = c->vLumBufSize;
334  const int vChrBufSize = c->vChrBufSize;
336  uint32_t *pal = c->pal_yuv;
344  const int chrSrcSliceY = srcSliceY >> c->chrSrcVSubSample;
345  const int chrSrcSliceH = FF_CEIL_RSHIFT(srcSliceH, c->chrSrcVSubSample);
346  int should_dither = is9_OR_10BPS(c->srcFormat) ||
347  is16BPS(c->srcFormat);
348  int lastDstY;
349 
350  /* vars which will change and which we need to store back in the context */
351  int dstY = c->dstY;
352  int lumBufIndex = c->lumBufIndex;
353  int chrBufIndex = c->chrBufIndex;
354  int lastInLumBuf = c->lastInLumBuf;
355  int lastInChrBuf = c->lastInChrBuf;
356 
357  if (!usePal(c->srcFormat)) {
358  pal = c->input_rgb2yuv_table;
359  }
360 
361  if (isPacked(c->srcFormat)) {
362  src[0] =
363  src[1] =
364  src[2] =
365  src[3] = src[0];
366  srcStride[0] =
367  srcStride[1] =
368  srcStride[2] =
369  srcStride[3] = srcStride[0];
370  }
371  srcStride[1] <<= c->vChrDrop;
372  srcStride[2] <<= c->vChrDrop;
373 
374  DEBUG_BUFFERS("swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
375  src[0], srcStride[0], src[1], srcStride[1],
376  src[2], srcStride[2], src[3], srcStride[3],
377  dst[0], dstStride[0], dst[1], dstStride[1],
378  dst[2], dstStride[2], dst[3], dstStride[3]);
379  DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
380  srcSliceY, srcSliceH, dstY, dstH);
381  DEBUG_BUFFERS("vLumFilterSize: %d vLumBufSize: %d vChrFilterSize: %d vChrBufSize: %d\n",
382  vLumFilterSize, vLumBufSize, vChrFilterSize, vChrBufSize);
383 
384  if (dstStride[0]&15 || dstStride[1]&15 ||
385  dstStride[2]&15 || dstStride[3]&15) {
386  static int warnedAlready = 0; // FIXME maybe move this into the context
387  if (flags & SWS_PRINT_INFO && !warnedAlready) {
389  "Warning: dstStride is not aligned!\n"
390  " ->cannot do aligned memory accesses anymore\n");
391  warnedAlready = 1;
392  }
393  }
394 
395  if ( (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15
396  || (uintptr_t)src[0]&15 || (uintptr_t)src[1]&15 || (uintptr_t)src[2]&15
397  || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
398  || srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15
399  ) {
400  static int warnedAlready=0;
401  int cpu_flags = av_get_cpu_flags();
402  if (HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) && !warnedAlready){
403  av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speedloss\n");
404  warnedAlready=1;
405  }
406  }
407 
408  /* Note the user might start scaling the picture in the middle so this
409  * will not get executed. This is not really intended but works
410  * currently, so people might do it. */
411  if (srcSliceY == 0) {
412  lumBufIndex = -1;
413  chrBufIndex = -1;
414  dstY = 0;
415  lastInLumBuf = -1;
416  lastInChrBuf = -1;
417  }
418 
419  if (!should_dither) {
420  c->chrDither8 = c->lumDither8 = sws_pb_64;
421  }
422  lastDstY = dstY;
423 
424  for (; dstY < dstH; dstY++) {
425  const int chrDstY = dstY >> c->chrDstVSubSample;
426  uint8_t *dest[4] = {
427  dst[0] + dstStride[0] * dstY,
428  dst[1] + dstStride[1] * chrDstY,
429  dst[2] + dstStride[2] * chrDstY,
430  (CONFIG_SWSCALE_ALPHA && alpPixBuf) ? dst[3] + dstStride[3] * dstY : NULL,
431  };
433 
434  // First line needed as input
435  const int firstLumSrcY = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
436  const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), dstH - 1)]);
437  // First line needed as input
438  const int firstChrSrcY = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
439 
440  // Last line needed as input
441  int lastLumSrcY = FFMIN(c->srcH, firstLumSrcY + vLumFilterSize) - 1;
442  int lastLumSrcY2 = FFMIN(c->srcH, firstLumSrcY2 + vLumFilterSize) - 1;
443  int lastChrSrcY = FFMIN(c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
444  int enough_lines;
445 
446  // handle holes (FAST_BILINEAR & weird filters)
447  if (firstLumSrcY > lastInLumBuf)
448  lastInLumBuf = firstLumSrcY - 1;
449  if (firstChrSrcY > lastInChrBuf)
450  lastInChrBuf = firstChrSrcY - 1;
451  av_assert0(firstLumSrcY >= lastInLumBuf - vLumBufSize + 1);
452  av_assert0(firstChrSrcY >= lastInChrBuf - vChrBufSize + 1);
453 
454  DEBUG_BUFFERS("dstY: %d\n", dstY);
455  DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
456  firstLumSrcY, lastLumSrcY, lastInLumBuf);
457  DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
458  firstChrSrcY, lastChrSrcY, lastInChrBuf);
459 
460  // Do we have enough lines in this slice to output the dstY line
461  enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&
462  lastChrSrcY < FF_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample);
463 
464  if (!enough_lines) {
465  lastLumSrcY = srcSliceY + srcSliceH - 1;
466  lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
467  DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
468  lastLumSrcY, lastChrSrcY);
469  }
470 
471  // Do horizontal scaling
472  while (lastInLumBuf < lastLumSrcY) {
473  const uint8_t *src1[4] = {
474  src[0] + (lastInLumBuf + 1 - srcSliceY) * srcStride[0],
475  src[1] + (lastInLumBuf + 1 - srcSliceY) * srcStride[1],
476  src[2] + (lastInLumBuf + 1 - srcSliceY) * srcStride[2],
477  src[3] + (lastInLumBuf + 1 - srcSliceY) * srcStride[3],
478  };
479  lumBufIndex++;
480  av_assert0(lumBufIndex < 2 * vLumBufSize);
481  av_assert0(lastInLumBuf + 1 - srcSliceY < srcSliceH);
482  av_assert0(lastInLumBuf + 1 - srcSliceY >= 0);
483  hyscale(c, lumPixBuf[lumBufIndex], dstW, src1, srcW, lumXInc,
484  hLumFilter, hLumFilterPos, hLumFilterSize,
485  formatConvBuffer, pal, 0);
486  if (CONFIG_SWSCALE_ALPHA && alpPixBuf)
487  hyscale(c, alpPixBuf[lumBufIndex], dstW, src1, srcW,
488  lumXInc, hLumFilter, hLumFilterPos, hLumFilterSize,
489  formatConvBuffer, pal, 1);
490  lastInLumBuf++;
491  DEBUG_BUFFERS("\t\tlumBufIndex %d: lastInLumBuf: %d\n",
492  lumBufIndex, lastInLumBuf);
493  }
494  while (lastInChrBuf < lastChrSrcY) {
495  const uint8_t *src1[4] = {
496  src[0] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[0],
497  src[1] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[1],
498  src[2] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[2],
499  src[3] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[3],
500  };
501  chrBufIndex++;
502  av_assert0(chrBufIndex < 2 * vChrBufSize);
503  av_assert0(lastInChrBuf + 1 - chrSrcSliceY < (chrSrcSliceH));
504  av_assert0(lastInChrBuf + 1 - chrSrcSliceY >= 0);
505  // FIXME replace parameters through context struct (some at least)
506 
507  if (c->needs_hcscale)
508  hcscale(c, chrUPixBuf[chrBufIndex], chrVPixBuf[chrBufIndex],
509  chrDstW, src1, chrSrcW, chrXInc,
510  hChrFilter, hChrFilterPos, hChrFilterSize,
511  formatConvBuffer, pal);
512  lastInChrBuf++;
513  DEBUG_BUFFERS("\t\tchrBufIndex %d: lastInChrBuf: %d\n",
514  chrBufIndex, lastInChrBuf);
515  }
516  // wrap buf index around to stay inside the ring buffer
517  if (lumBufIndex >= vLumBufSize)
518  lumBufIndex -= vLumBufSize;
519  if (chrBufIndex >= vChrBufSize)
520  chrBufIndex -= vChrBufSize;
521  if (!enough_lines)
522  break; // we can't output a dstY line so let's try with the next slice
523 
524 #if HAVE_MMX_INLINE
525  updateMMXDitherTables(c, dstY, lumBufIndex, chrBufIndex,
526  lastInLumBuf, lastInChrBuf);
527 #endif
528  if (should_dither) {
529  c->chrDither8 = ff_dither_8x8_128[chrDstY & 7];
530  c->lumDither8 = ff_dither_8x8_128[dstY & 7];
531  }
532  if (dstY >= dstH - 2) {
533  /* hmm looks like we can't use MMX here without overwriting
534  * this array's tail */
535  ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX,
536  &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
537  use_mmx_vfilter= 0;
538  }
539 
540  {
541  const int16_t **lumSrcPtr = (const int16_t **)(void*) lumPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize;
542  const int16_t **chrUSrcPtr = (const int16_t **)(void*) chrUPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
543  const int16_t **chrVSrcPtr = (const int16_t **)(void*) chrVPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
544  const int16_t **alpSrcPtr = (CONFIG_SWSCALE_ALPHA && alpPixBuf) ?
545  (const int16_t **)(void*) alpPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize : NULL;
546  int16_t *vLumFilter = c->vLumFilter;
547  int16_t *vChrFilter = c->vChrFilter;
548 
549  if (isPlanarYUV(dstFormat) ||
550  (isGray(dstFormat) && !isALPHA(dstFormat))) { // YV12 like
551  const int chrSkipMask = (1 << c->chrDstVSubSample) - 1;
552 
553  vLumFilter += dstY * vLumFilterSize;
554  vChrFilter += chrDstY * vChrFilterSize;
555 
556 // av_assert0(use_mmx_vfilter != (
557 // yuv2planeX == yuv2planeX_10BE_c
558 // || yuv2planeX == yuv2planeX_10LE_c
559 // || yuv2planeX == yuv2planeX_9BE_c
560 // || yuv2planeX == yuv2planeX_9LE_c
561 // || yuv2planeX == yuv2planeX_16BE_c
562 // || yuv2planeX == yuv2planeX_16LE_c
563 // || yuv2planeX == yuv2planeX_8_c) || !ARCH_X86);
564 
565  if(use_mmx_vfilter){
566  vLumFilter= (int16_t *)c->lumMmxFilter;
567  vChrFilter= (int16_t *)c->chrMmxFilter;
568  }
569 
570  if (vLumFilterSize == 1) {
571  yuv2plane1(lumSrcPtr[0], dest[0], dstW, c->lumDither8, 0);
572  } else {
573  yuv2planeX(vLumFilter, vLumFilterSize,
574  lumSrcPtr, dest[0],
575  dstW, c->lumDither8, 0);
576  }
577 
578  if (!((dstY & chrSkipMask) || isGray(dstFormat))) {
579  if (yuv2nv12cX) {
580  yuv2nv12cX(c, vChrFilter,
581  vChrFilterSize, chrUSrcPtr, chrVSrcPtr,
582  dest[1], chrDstW);
583  } else if (vChrFilterSize == 1) {
584  yuv2plane1(chrUSrcPtr[0], dest[1], chrDstW, c->chrDither8, 0);
585  yuv2plane1(chrVSrcPtr[0], dest[2], chrDstW, c->chrDither8, 3);
586  } else {
587  yuv2planeX(vChrFilter,
588  vChrFilterSize, chrUSrcPtr, dest[1],
589  chrDstW, c->chrDither8, 0);
590  yuv2planeX(vChrFilter,
591  vChrFilterSize, chrVSrcPtr, dest[2],
592  chrDstW, c->chrDither8, use_mmx_vfilter ? (c->uv_offx2 >> 1) : 3);
593  }
594  }
595 
596  if (CONFIG_SWSCALE_ALPHA && alpPixBuf) {
597  if(use_mmx_vfilter){
598  vLumFilter= (int16_t *)c->alpMmxFilter;
599  }
600  if (vLumFilterSize == 1) {
601  yuv2plane1(alpSrcPtr[0], dest[3], dstW,
602  c->lumDither8, 0);
603  } else {
604  yuv2planeX(vLumFilter,
605  vLumFilterSize, alpSrcPtr, dest[3],
606  dstW, c->lumDither8, 0);
607  }
608  }
609  } else if (yuv2packedX) {
610  av_assert1(lumSrcPtr + vLumFilterSize - 1 < (const int16_t **)lumPixBuf + vLumBufSize * 2);
611  av_assert1(chrUSrcPtr + vChrFilterSize - 1 < (const int16_t **)chrUPixBuf + vChrBufSize * 2);
612  if (c->yuv2packed1 && vLumFilterSize == 1 &&
613  vChrFilterSize <= 2) { // unscaled RGB
614  int chrAlpha = vChrFilterSize == 1 ? 0 : vChrFilter[2 * dstY + 1];
615  yuv2packed1(c, *lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
616  alpPixBuf ? *alpSrcPtr : NULL,
617  dest[0], dstW, chrAlpha, dstY);
618  } else if (c->yuv2packed2 && vLumFilterSize == 2 &&
619  vChrFilterSize == 2) { // bilinear upscale RGB
620  int lumAlpha = vLumFilter[2 * dstY + 1];
621  int chrAlpha = vChrFilter[2 * dstY + 1];
622  lumMmxFilter[2] =
623  lumMmxFilter[3] = vLumFilter[2 * dstY] * 0x10001;
624  chrMmxFilter[2] =
625  chrMmxFilter[3] = vChrFilter[2 * chrDstY] * 0x10001;
626  yuv2packed2(c, lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
627  alpPixBuf ? alpSrcPtr : NULL,
628  dest[0], dstW, lumAlpha, chrAlpha, dstY);
629  } else { // general RGB
630  yuv2packedX(c, vLumFilter + dstY * vLumFilterSize,
631  lumSrcPtr, vLumFilterSize,
632  vChrFilter + dstY * vChrFilterSize,
633  chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
634  alpSrcPtr, dest[0], dstW, dstY);
635  }
636  } else {
637  av_assert1(!yuv2packed1 && !yuv2packed2);
638  yuv2anyX(c, vLumFilter + dstY * vLumFilterSize,
639  lumSrcPtr, vLumFilterSize,
640  vChrFilter + dstY * vChrFilterSize,
641  chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
642  alpSrcPtr, dest, dstW, dstY);
643  }
644  }
645  }
646  if (isPlanar(dstFormat) && isALPHA(dstFormat) && !alpPixBuf) {
647  int length = dstW;
648  int height = dstY - lastDstY;
649 
650  if (is16BPS(dstFormat) || isNBPS(dstFormat)) {
651  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat);
652  fillPlane16(dst[3], dstStride[3], length, height, lastDstY,
653  1, desc->comp[3].depth_minus1,
654  isBE(dstFormat));
655  } else
656  fillPlane(dst[3], dstStride[3], length, height, lastDstY, 255);
657  }
658 
659 #if HAVE_MMXEXT_INLINE
661  __asm__ volatile ("sfence" ::: "memory");
662 #endif
663  emms_c();
664 
665  /* store changed local vars back in the context */
666  c->dstY = dstY;
671 
672  return dstY - lastDstY;
673 }
674 
676 {
677  c->lumConvertRange = NULL;
678  c->chrConvertRange = NULL;
679  if (c->srcRange != c->dstRange && !isAnyRGB(c->dstFormat)) {
680  if (c->dstBpc <= 14) {
681  if (c->srcRange) {
684  } else {
687  }
688  } else {
689  if (c->srcRange) {
692  } else {
695  }
696  }
697  }
698 }
699 
701 {
703 
705  &c->yuv2nv12cX, &c->yuv2packed1,
706  &c->yuv2packed2, &c->yuv2packedX, &c->yuv2anyX);
707 
709 
710 
711  if (c->srcBpc == 8) {
712  if (c->dstBpc <= 14) {
713  c->hyScale = c->hcScale = hScale8To15_c;
714  if (c->flags & SWS_FAST_BILINEAR) {
717  }
718  } else {
719  c->hyScale = c->hcScale = hScale8To19_c;
720  }
721  } else {
722  c->hyScale = c->hcScale = c->dstBpc > 14 ? hScale16To19_c
723  : hScale16To15_c;
724  }
725 
727 
728  if (!(isGray(srcFormat) || isGray(c->dstFormat) ||
729  srcFormat == AV_PIX_FMT_MONOBLACK || srcFormat == AV_PIX_FMT_MONOWHITE))
730  c->needs_hcscale = 1;
731 }
732 
734 {
735  sws_init_swscale(c);
736 
737  if (ARCH_PPC)
739  if (ARCH_X86)
741 
742  return swscale;
743 }
744 
745 static void reset_ptr(const uint8_t *src[], int format)
746 {
747  if (!isALPHA(format))
748  src[3] = NULL;
749  if (!isPlanar(format)) {
750  src[3] = src[2] = NULL;
751 
752  if (!usePal(format))
753  src[1] = NULL;
754  }
755 }
756 
757 static int check_image_pointers(const uint8_t * const data[4], enum AVPixelFormat pix_fmt,
758  const int linesizes[4])
759 {
760  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
761  int i;
762 
763  for (i = 0; i < 4; i++) {
764  int plane = desc->comp[i].plane;
765  if (!data[plane] || !linesizes[plane])
766  return 0;
767  }
768 
769  return 1;
770 }
771 
772 static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst,
773  const uint16_t *src, int stride, int h)
774 {
775  int xp,yp;
777 
778  for (yp=0; yp<h; yp++) {
779  for (xp=0; xp+2<stride; xp+=3) {
780  int x, y, z, r, g, b;
781 
782  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
783  x = AV_RB16(src + xp + 0);
784  y = AV_RB16(src + xp + 1);
785  z = AV_RB16(src + xp + 2);
786  } else {
787  x = AV_RL16(src + xp + 0);
788  y = AV_RL16(src + xp + 1);
789  z = AV_RL16(src + xp + 2);
790  }
791 
792  x = c->xyzgamma[x>>4];
793  y = c->xyzgamma[y>>4];
794  z = c->xyzgamma[z>>4];
795 
796  // convert from XYZlinear to sRGBlinear
797  r = c->xyz2rgb_matrix[0][0] * x +
798  c->xyz2rgb_matrix[0][1] * y +
799  c->xyz2rgb_matrix[0][2] * z >> 12;
800  g = c->xyz2rgb_matrix[1][0] * x +
801  c->xyz2rgb_matrix[1][1] * y +
802  c->xyz2rgb_matrix[1][2] * z >> 12;
803  b = c->xyz2rgb_matrix[2][0] * x +
804  c->xyz2rgb_matrix[2][1] * y +
805  c->xyz2rgb_matrix[2][2] * z >> 12;
806 
807  // limit values to 12-bit depth
808  r = av_clip(r, 0, 4095);
809  g = av_clip(g, 0, 4095);
810  b = av_clip(b, 0, 4095);
811 
812  // convert from sRGBlinear to RGB and scale from 12bit to 16bit
813  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
814  AV_WB16(dst + xp + 0, c->rgbgamma[r] << 4);
815  AV_WB16(dst + xp + 1, c->rgbgamma[g] << 4);
816  AV_WB16(dst + xp + 2, c->rgbgamma[b] << 4);
817  } else {
818  AV_WL16(dst + xp + 0, c->rgbgamma[r] << 4);
819  AV_WL16(dst + xp + 1, c->rgbgamma[g] << 4);
820  AV_WL16(dst + xp + 2, c->rgbgamma[b] << 4);
821  }
822  }
823  src += stride;
824  dst += stride;
825  }
826 }
827 
828 static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst,
829  const uint16_t *src, int stride, int h)
830 {
831  int xp,yp;
833 
834  for (yp=0; yp<h; yp++) {
835  for (xp=0; xp+2<stride; xp+=3) {
836  int x, y, z, r, g, b;
837 
838  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
839  r = AV_RB16(src + xp + 0);
840  g = AV_RB16(src + xp + 1);
841  b = AV_RB16(src + xp + 2);
842  } else {
843  r = AV_RL16(src + xp + 0);
844  g = AV_RL16(src + xp + 1);
845  b = AV_RL16(src + xp + 2);
846  }
847 
848  r = c->rgbgammainv[r>>4];
849  g = c->rgbgammainv[g>>4];
850  b = c->rgbgammainv[b>>4];
851 
852  // convert from sRGBlinear to XYZlinear
853  x = c->rgb2xyz_matrix[0][0] * r +
854  c->rgb2xyz_matrix[0][1] * g +
855  c->rgb2xyz_matrix[0][2] * b >> 12;
856  y = c->rgb2xyz_matrix[1][0] * r +
857  c->rgb2xyz_matrix[1][1] * g +
858  c->rgb2xyz_matrix[1][2] * b >> 12;
859  z = c->rgb2xyz_matrix[2][0] * r +
860  c->rgb2xyz_matrix[2][1] * g +
861  c->rgb2xyz_matrix[2][2] * b >> 12;
862 
863  // limit values to 12-bit depth
864  x = av_clip(x, 0, 4095);
865  y = av_clip(y, 0, 4095);
866  z = av_clip(z, 0, 4095);
867 
868  // convert from XYZlinear to X'Y'Z' and scale from 12bit to 16bit
869  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
870  AV_WB16(dst + xp + 0, c->xyzgammainv[x] << 4);
871  AV_WB16(dst + xp + 1, c->xyzgammainv[y] << 4);
872  AV_WB16(dst + xp + 2, c->xyzgammainv[z] << 4);
873  } else {
874  AV_WL16(dst + xp + 0, c->xyzgammainv[x] << 4);
875  AV_WL16(dst + xp + 1, c->xyzgammainv[y] << 4);
876  AV_WL16(dst + xp + 2, c->xyzgammainv[z] << 4);
877  }
878  }
879  src += stride;
880  dst += stride;
881  }
882 }
883 
884 /**
885  * swscale wrapper, so we don't need to export the SwsContext.
886  * Assumes planar YUV to be in YUV order instead of YVU.
887  */
888 int attribute_align_arg sws_scale(struct SwsContext *c,
889  const uint8_t * const srcSlice[],
890  const int srcStride[], int srcSliceY,
891  int srcSliceH, uint8_t *const dst[],
892  const int dstStride[])
893 {
894  int i, ret;
895  const uint8_t *src2[4];
896  uint8_t *dst2[4];
897  uint8_t *rgb0_tmp = NULL;
898 
899  if (!srcStride || !dstStride || !dst || !srcSlice) {
900  av_log(c, AV_LOG_ERROR, "One of the input parameters to sws_scale() is NULL, please check the calling code\n");
901  return 0;
902  }
903  if (c->cascaded_context[0] && srcSliceY == 0 && srcSliceH == c->cascaded_context[0]->srcH) {
904  ret = sws_scale(c->cascaded_context[0],
905  srcSlice, srcStride, srcSliceY, srcSliceH,
907  if (ret < 0)
908  return ret;
909  ret = sws_scale(c->cascaded_context[1],
910  (const uint8_t * const * )c->cascaded_tmp, c->cascaded_tmpStride, 0, c->cascaded_context[0]->dstH,
911  dst, dstStride);
912  return ret;
913  }
914 
915  memcpy(src2, srcSlice, sizeof(src2));
916  memcpy(dst2, dst, sizeof(dst2));
917 
918  // do not mess up sliceDir if we have a "trailing" 0-size slice
919  if (srcSliceH == 0)
920  return 0;
921 
922  if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {
923  av_log(c, AV_LOG_ERROR, "bad src image pointers\n");
924  return 0;
925  }
926  if (!check_image_pointers((const uint8_t* const*)dst, c->dstFormat, dstStride)) {
927  av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");
928  return 0;
929  }
930 
931  if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
932  av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
933  return 0;
934  }
935  if (c->sliceDir == 0) {
936  if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
937  }
938 
939  if (usePal(c->srcFormat)) {
940  for (i = 0; i < 256; i++) {
941  int r, g, b, y, u, v, a = 0xff;
942  if (c->srcFormat == AV_PIX_FMT_PAL8) {
943  uint32_t p = ((const uint32_t *)(srcSlice[1]))[i];
944  a = (p >> 24) & 0xFF;
945  r = (p >> 16) & 0xFF;
946  g = (p >> 8) & 0xFF;
947  b = p & 0xFF;
948  } else if (c->srcFormat == AV_PIX_FMT_RGB8) {
949  r = ( i >> 5 ) * 36;
950  g = ((i >> 2) & 7) * 36;
951  b = ( i & 3) * 85;
952  } else if (c->srcFormat == AV_PIX_FMT_BGR8) {
953  b = ( i >> 6 ) * 85;
954  g = ((i >> 3) & 7) * 36;
955  r = ( i & 7) * 36;
956  } else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) {
957  r = ( i >> 3 ) * 255;
958  g = ((i >> 1) & 3) * 85;
959  b = ( i & 1) * 255;
960  } else if (c->srcFormat == AV_PIX_FMT_GRAY8 || c->srcFormat == AV_PIX_FMT_GRAY8A) {
961  r = g = b = i;
962  } else {
964  b = ( i >> 3 ) * 255;
965  g = ((i >> 1) & 3) * 85;
966  r = ( i & 1) * 255;
967  }
968 #define RGB2YUV_SHIFT 15
969 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
970 #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
971 #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
972 #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
973 #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
974 #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
975 #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
976 #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
977 #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
978 
979  y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
980  u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
981  v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
982  c->pal_yuv[i]= y + (u<<8) + (v<<16) + ((unsigned)a<<24);
983 
984  switch (c->dstFormat) {
985  case AV_PIX_FMT_BGR32:
986 #if !HAVE_BIGENDIAN
987  case AV_PIX_FMT_RGB24:
988 #endif
989  c->pal_rgb[i]= r + (g<<8) + (b<<16) + ((unsigned)a<<24);
990  break;
991  case AV_PIX_FMT_BGR32_1:
992 #if HAVE_BIGENDIAN
993  case AV_PIX_FMT_BGR24:
994 #endif
995  c->pal_rgb[i]= a + (r<<8) + (g<<16) + ((unsigned)b<<24);
996  break;
997  case AV_PIX_FMT_RGB32_1:
998 #if HAVE_BIGENDIAN
999  case AV_PIX_FMT_RGB24:
1000 #endif
1001  c->pal_rgb[i]= a + (b<<8) + (g<<16) + ((unsigned)r<<24);
1002  break;
1003  case AV_PIX_FMT_RGB32:
1004 #if !HAVE_BIGENDIAN
1005  case AV_PIX_FMT_BGR24:
1006 #endif
1007  default:
1008  c->pal_rgb[i]= b + (g<<8) + (r<<16) + ((unsigned)a<<24);
1009  }
1010  }
1011  }
1012 
1013  if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) {
1014  uint8_t *base;
1015  int x,y;
1016  rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
1017  if (!rgb0_tmp)
1018  return AVERROR(ENOMEM);
1019 
1020  base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
1021  for (y=0; y<srcSliceH; y++){
1022  memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW);
1023  for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) {
1024  base[ srcStride[0]*y + x] = 0xFF;
1025  }
1026  }
1027  src2[0] = base;
1028  }
1029 
1030  if (c->srcXYZ && !(c->dstXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
1031  uint8_t *base;
1032  rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
1033  if (!rgb0_tmp)
1034  return AVERROR(ENOMEM);
1035 
1036  base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
1037 
1038  xyz12Torgb48(c, (uint16_t*)base, (const uint16_t*)src2[0], srcStride[0]/2, srcSliceH);
1039  src2[0] = base;
1040  }
1041 
1042  if (!srcSliceY && (c->flags & SWS_BITEXACT) && c->dither == SWS_DITHER_ED && c->dither_error[0])
1043  for (i = 0; i < 4; i++)
1044  memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (c->dstW+2));
1045 
1046 
1047  // copy strides, so they can safely be modified
1048  if (c->sliceDir == 1) {
1049  // slices go from top to bottom
1050  int srcStride2[4] = { srcStride[0], srcStride[1], srcStride[2],
1051  srcStride[3] };
1052  int dstStride2[4] = { dstStride[0], dstStride[1], dstStride[2],
1053  dstStride[3] };
1054 
1055  reset_ptr(src2, c->srcFormat);
1056  reset_ptr((void*)dst2, c->dstFormat);
1057 
1058  /* reset slice direction at end of frame */
1059  if (srcSliceY + srcSliceH == c->srcH)
1060  c->sliceDir = 0;
1061 
1062  ret = c->swscale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2,
1063  dstStride2);
1064  } else {
1065  // slices go from bottom to top => we flip the image internally
1066  int srcStride2[4] = { -srcStride[0], -srcStride[1], -srcStride[2],
1067  -srcStride[3] };
1068  int dstStride2[4] = { -dstStride[0], -dstStride[1], -dstStride[2],
1069  -dstStride[3] };
1070 
1071  src2[0] += (srcSliceH - 1) * srcStride[0];
1072  if (!usePal(c->srcFormat))
1073  src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];
1074  src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];
1075  src2[3] += (srcSliceH - 1) * srcStride[3];
1076  dst2[0] += ( c->dstH - 1) * dstStride[0];
1077  dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];
1078  dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];
1079  dst2[3] += ( c->dstH - 1) * dstStride[3];
1080 
1081  reset_ptr(src2, c->srcFormat);
1082  reset_ptr((void*)dst2, c->dstFormat);
1083 
1084  /* reset slice direction at end of frame */
1085  if (!srcSliceY)
1086  c->sliceDir = 0;
1087 
1088  ret = c->swscale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH,
1089  srcSliceH, dst2, dstStride2);
1090  }
1091 
1092 
1093  if (c->dstXYZ && !(c->srcXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
1094  /* replace on the same data */
1095  rgb48Toxyz12(c, (uint16_t*)dst2[0], (const uint16_t*)dst2[0], dstStride[0]/2, ret);
1096  }
1097 
1098  av_free(rgb0_tmp);
1099  return ret;
1100 }
1101