FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cavs.c
Go to the documentation of this file.
1 /*
2  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3  * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25  * @author Stefan Gehrer <stefan.gehrer@gmx.de>
26  */
27 
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "golomb.h"
31 #include "h264chroma.h"
32 #include "mathops.h"
33 #include "cavs.h"
34 
35 static const uint8_t alpha_tab[64] = {
36  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
37  4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
38  22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
39  46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
40 };
41 
42 static const uint8_t beta_tab[64] = {
43  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
44  2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
45  6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
46  15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
47 };
48 
49 static const uint8_t tc_tab[64] = {
50  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
51  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
52  2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
53  5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
54 };
55 
56 /** mark block as unavailable, i.e. out of picture
57  or not yet decoded */
58 static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
59 
60 static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
61 static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
62 static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
63 static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
64 
65 /*****************************************************************************
66  *
67  * in-loop deblocking filter
68  *
69  ****************************************************************************/
70 
71 static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
72 {
73  if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
74  return 2;
75  if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
76  return 1;
77  if (b) {
78  mvP += MV_BWD_OFFS;
79  mvQ += MV_BWD_OFFS;
80  if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
81  return 1;
82  } else {
83  if (mvP->ref != mvQ->ref)
84  return 1;
85  }
86  return 0;
87 }
88 
89 #define SET_PARAMS \
90  alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; \
91  beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0, 63)]; \
92  tc = tc_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)];
93 
94 /**
95  * in-loop deblocking filter for a single macroblock
96  *
97  * boundary strength (bs) mapping:
98  *
99  * --4---5--
100  * 0 2 |
101  * | 6 | 7 |
102  * 1 3 |
103  * ---------
104  *
105  */
106 void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
107 {
108  uint8_t bs[8];
109  int qp_avg, alpha, beta, tc;
110  int i;
111 
112  /* save un-deblocked lines */
113  h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
114  h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
115  h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
116  memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
117  memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
118  memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
119  for (i = 0; i < 8; i++) {
120  h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
121  h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
122  h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
123  h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
124  }
125  if (!h->loop_filter_disable) {
126  /* determine bs */
127  if (mb_type == I_8X8)
128  memset(bs, 2, 8);
129  else{
130  memset(bs, 0, 8);
131  if (ff_cavs_partition_flags[mb_type] & SPLITV) {
132  bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
133  bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
134  }
135  if (ff_cavs_partition_flags[mb_type] & SPLITH) {
136  bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
137  bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
138  }
139  bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
140  bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
141  bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
142  bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
143  }
144  if (AV_RN64(bs)) {
145  if (h->flags & A_AVAIL) {
146  qp_avg = (h->qp + h->left_qp + 1) >> 1;
147  SET_PARAMS;
148  h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
149  h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
150  h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
151  }
152  qp_avg = h->qp;
153  SET_PARAMS;
154  h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
155  h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
156 
157  if (h->flags & B_AVAIL) {
158  qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
159  SET_PARAMS;
160  h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
161  h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
162  h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
163  }
164  }
165  }
166  h->left_qp = h->qp;
167  h->top_qp[h->mbx] = h->qp;
168 }
169 
170 #undef SET_PARAMS
171 
172 /*****************************************************************************
173  *
174  * spatial intra prediction
175  *
176  ****************************************************************************/
177 
179  uint8_t **left, int block)
180 {
181  int i;
182 
183  switch (block) {
184  case 0:
185  *left = h->left_border_y;
186  h->left_border_y[0] = h->left_border_y[1];
187  memset(&h->left_border_y[17], h->left_border_y[16], 9);
188  memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
189  top[17] = top[16];
190  top[0] = top[1];
191  if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
192  h->left_border_y[0] = top[0] = h->topleft_border_y;
193  break;
194  case 1:
195  *left = h->intern_border_y;
196  for (i = 0; i < 8; i++)
197  h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
198  memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
199  h->intern_border_y[0] = h->intern_border_y[1];
200  memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
201  if (h->flags & C_AVAIL)
202  memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
203  else
204  memset(&top[9], top[8], 9);
205  top[17] = top[16];
206  top[0] = top[1];
207  if (h->flags & B_AVAIL)
208  h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
209  break;
210  case 2:
211  *left = &h->left_border_y[8];
212  memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
213  top[17] = top[16];
214  top[0] = top[1];
215  if (h->flags & A_AVAIL)
216  top[0] = h->left_border_y[8];
217  break;
218  case 3:
219  *left = &h->intern_border_y[8];
220  for (i = 0; i < 8; i++)
221  h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
222  memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
223  memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
224  memset(&top[9], top[8], 9);
225  break;
226  }
227 }
228 
230 {
231  /* extend borders by one pixel */
232  h->left_border_u[9] = h->left_border_u[8];
233  h->left_border_v[9] = h->left_border_v[8];
234  h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
235  h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
236  if (h->mbx && h->mby) {
237  h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
238  h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
239  } else {
240  h->left_border_u[0] = h->left_border_u[1];
241  h->left_border_v[0] = h->left_border_v[1];
242  h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
243  h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
244  }
245 }
246 
247 static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
248 {
249  int y;
250  uint64_t a = AV_RN64(&top[1]);
251  for (y = 0; y < 8; y++) {
252  *((uint64_t *)(d + y * stride)) = a;
253  }
254 }
255 
256 static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
257 {
258  int y;
259  uint64_t a;
260  for (y = 0; y < 8; y++) {
261  a = left[y + 1] * 0x0101010101010101ULL;
262  *((uint64_t *)(d + y * stride)) = a;
263  }
264 }
265 
266 static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
267 {
268  int y;
269  uint64_t a = 0x8080808080808080ULL;
270  for (y = 0; y < 8; y++)
271  *((uint64_t *)(d + y * stride)) = a;
272 }
273 
274 static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
275 {
276  int x, y, ia;
277  int ih = 0;
278  int iv = 0;
279  const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
280 
281  for (x = 0; x < 4; x++) {
282  ih += (x + 1) * (top [5 + x] - top [3 - x]);
283  iv += (x + 1) * (left[5 + x] - left[3 - x]);
284  }
285  ia = (top[8] + left[8]) << 4;
286  ih = (17 * ih + 16) >> 5;
287  iv = (17 * iv + 16) >> 5;
288  for (y = 0; y < 8; y++)
289  for (x = 0; x < 8; x++)
290  d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
291 }
292 
293 #define LOWPASS(ARRAY,INDEX) \
294  ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
295 
296 static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
297 {
298  int x, y;
299  for (y = 0; y < 8; y++)
300  for (x = 0; x < 8; x++)
301  d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
302 }
303 
304 static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
305 {
306  int x, y;
307  for (y = 0; y < 8; y++)
308  for (x = 0; x < 8; x++)
309  d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
310 }
311 
312 static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
313 {
314  int x, y;
315  for (y = 0; y < 8; y++)
316  for (x = 0; x < 8; x++)
317  if (x == y)
318  d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
319  else if (x > y)
320  d[y * stride + x] = LOWPASS(top, x - y);
321  else
322  d[y * stride + x] = LOWPASS(left, y - x);
323 }
324 
325 static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
326 {
327  int x, y;
328  for (y = 0; y < 8; y++)
329  for (x = 0; x < 8; x++)
330  d[y * stride + x] = LOWPASS(left, y + 1);
331 }
332 
333 static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
334 {
335  int x, y;
336  for (y = 0; y < 8; y++)
337  for (x = 0; x < 8; x++)
338  d[y * stride + x] = LOWPASS(top, x + 1);
339 }
340 
341 #undef LOWPASS
342 
343 static inline void modify_pred(const int8_t *mod_table, int *mode)
344 {
345  *mode = mod_table[*mode];
346  if (*mode < 0) {
347  av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
348  *mode = 0;
349  }
350 }
351 
352 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
353 {
354  /* save pred modes before they get modified */
355  h->pred_mode_Y[3] = h->pred_mode_Y[5];
356  h->pred_mode_Y[6] = h->pred_mode_Y[8];
357  h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
358  h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
359 
360  /* modify pred modes according to availability of neighbour samples */
361  if (!(h->flags & A_AVAIL)) {
364  modify_pred(left_modifier_c, pred_mode_uv);
365  }
366  if (!(h->flags & B_AVAIL)) {
369  modify_pred(top_modifier_c, pred_mode_uv);
370  }
371 }
372 
373 /*****************************************************************************
374  *
375  * motion compensation
376  *
377  ****************************************************************************/
378 
379 static inline void mc_dir_part(AVSContext *h, AVFrame *pic,
380  int chroma_height,int delta,int list,uint8_t *dest_y,
381  uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
382  int src_y_offset,qpel_mc_func *qpix_op,
384 {
385  const int mx= mv->x + src_x_offset*8;
386  const int my= mv->y + src_y_offset*8;
387  const int luma_xy= (mx&3) + ((my&3)<<2);
388  uint8_t * src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
389  uint8_t * src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
390  uint8_t * src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
391  int extra_width = 0;
392  int extra_height= extra_width;
393  int emu=0;
394  const int full_mx= mx>>2;
395  const int full_my= my>>2;
396  const int pic_width = 16*h->mb_width;
397  const int pic_height = 16*h->mb_height;
398 
399  if (!pic->data[0])
400  return;
401  if(mx&7) extra_width -= 3;
402  if(my&7) extra_height -= 3;
403 
404  if( full_mx < 0-extra_width
405  || full_my < 0-extra_height
406  || full_mx + 16/*FIXME*/ > pic_width + extra_width
407  || full_my + 16/*FIXME*/ > pic_height + extra_height){
408  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
409  16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
410  src_y= h->edge_emu_buffer + 2 + 2*h->l_stride;
411  emu=1;
412  }
413 
414  qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
415 
416  if(emu){
417  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb, h->c_stride,
418  9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
419  src_cb= h->edge_emu_buffer;
420  }
421  chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
422 
423  if(emu){
424  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr, h->c_stride,
425  9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
426  src_cr= h->edge_emu_buffer;
427  }
428  chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
429 }
430 
431 static inline void mc_part_std(AVSContext *h,int chroma_height,int delta,
432  uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
433  int x_offset, int y_offset,qpel_mc_func *qpix_put,
434  h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
435  h264_chroma_mc_func chroma_avg, cavs_vector *mv)
436 {
437  qpel_mc_func *qpix_op= qpix_put;
438  h264_chroma_mc_func chroma_op= chroma_put;
439 
440  dest_y += 2*x_offset + 2*y_offset*h->l_stride;
441  dest_cb += x_offset + y_offset*h->c_stride;
442  dest_cr += x_offset + y_offset*h->c_stride;
443  x_offset += 8*h->mbx;
444  y_offset += 8*h->mby;
445 
446  if(mv->ref >= 0){
447  AVFrame *ref = h->DPB[mv->ref].f;
448  mc_dir_part(h, ref, chroma_height, delta, 0,
449  dest_y, dest_cb, dest_cr, x_offset, y_offset,
450  qpix_op, chroma_op, mv);
451 
452  qpix_op= qpix_avg;
453  chroma_op= chroma_avg;
454  }
455 
456  if((mv+MV_BWD_OFFS)->ref >= 0){
457  AVFrame *ref = h->DPB[0].f;
458  mc_dir_part(h, ref, chroma_height, delta, 1,
459  dest_y, dest_cb, dest_cr, x_offset, y_offset,
460  qpix_op, chroma_op, mv+MV_BWD_OFFS);
461  }
462 }
463 
464 void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type) {
465  if(ff_cavs_partition_flags[mb_type] == 0){ // 16x16
466  mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
471  &h->mv[MV_FWD_X0]);
472  }else{
473  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
478  &h->mv[MV_FWD_X0]);
479  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
484  &h->mv[MV_FWD_X1]);
485  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
490  &h->mv[MV_FWD_X2]);
491  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
496  &h->mv[MV_FWD_X3]);
497  }
498 }
499 
500 /*****************************************************************************
501  *
502  * motion vector prediction
503  *
504  ****************************************************************************/
505 
506 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp) {
507  int den = h->scale_den[src->ref];
508 
509  *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
510  *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
511 }
512 
513 static inline void mv_pred_median(AVSContext *h, cavs_vector *mvP,
514  cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC) {
515  int ax, ay, bx, by, cx, cy;
516  int len_ab, len_bc, len_ca, len_mid;
517 
518  /* scale candidates according to their temporal span */
519  scale_mv(h, &ax, &ay, mvA, mvP->dist);
520  scale_mv(h, &bx, &by, mvB, mvP->dist);
521  scale_mv(h, &cx, &cy, mvC, mvP->dist);
522  /* find the geometrical median of the three candidates */
523  len_ab = abs(ax - bx) + abs(ay - by);
524  len_bc = abs(bx - cx) + abs(by - cy);
525  len_ca = abs(cx - ax) + abs(cy - ay);
526  len_mid = mid_pred(len_ab, len_bc, len_ca);
527  if(len_mid == len_ab) {
528  mvP->x = cx;
529  mvP->y = cy;
530  } else if(len_mid == len_bc) {
531  mvP->x = ax;
532  mvP->y = ay;
533  } else {
534  mvP->x = bx;
535  mvP->y = by;
536  }
537 }
538 
539 void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
540  enum cavs_mv_pred mode, enum cavs_block size, int ref) {
541  cavs_vector *mvP = &h->mv[nP];
542  cavs_vector *mvA = &h->mv[nP-1];
543  cavs_vector *mvB = &h->mv[nP-4];
544  cavs_vector *mvC = &h->mv[nC];
545  const cavs_vector *mvP2 = NULL;
546 
547  mvP->ref = ref;
548  mvP->dist = h->dist[mvP->ref];
549  if(mvC->ref == NOT_AVAIL)
550  mvC = &h->mv[nP-5]; // set to top-left (mvD)
551  if((mode == MV_PRED_PSKIP) &&
552  ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
553  ((mvA->x | mvA->y | mvA->ref) == 0) ||
554  ((mvB->x | mvB->y | mvB->ref) == 0) )) {
555  mvP2 = &un_mv;
556  /* if there is only one suitable candidate, take it */
557  } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
558  mvP2= mvA;
559  } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
560  mvP2= mvB;
561  } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
562  mvP2= mvC;
563  } else if(mode == MV_PRED_LEFT && mvA->ref == ref){
564  mvP2= mvA;
565  } else if(mode == MV_PRED_TOP && mvB->ref == ref){
566  mvP2= mvB;
567  } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
568  mvP2= mvC;
569  }
570  if(mvP2){
571  mvP->x = mvP2->x;
572  mvP->y = mvP2->y;
573  }else
574  mv_pred_median(h, mvP, mvA, mvB, mvC);
575 
576  if(mode < MV_PRED_PSKIP) {
577  mvP->x += get_se_golomb(&h->gb);
578  mvP->y += get_se_golomb(&h->gb);
579  }
580  set_mvs(mvP,size);
581 }
582 
583 /*****************************************************************************
584  *
585  * macroblock level
586  *
587  ****************************************************************************/
588 
589 /**
590  * initialise predictors for motion vectors and intra prediction
591  */
593  int i;
594 
595  /* copy predictors from top line (MB B and C) into cache */
596  for(i=0;i<3;i++) {
597  h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
598  h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
599  }
600  h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
601  h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
602  /* clear top predictors if MB B is not available */
603  if(!(h->flags & B_AVAIL)) {
604  h->mv[MV_FWD_B2] = un_mv;
605  h->mv[MV_FWD_B3] = un_mv;
606  h->mv[MV_BWD_B2] = un_mv;
607  h->mv[MV_BWD_B3] = un_mv;
608  h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
609  h->flags &= ~(C_AVAIL|D_AVAIL);
610  } else if(h->mbx) {
611  h->flags |= D_AVAIL;
612  }
613  if(h->mbx == h->mb_width-1) //MB C not available
614  h->flags &= ~C_AVAIL;
615  /* clear top-right predictors if MB C is not available */
616  if(!(h->flags & C_AVAIL)) {
617  h->mv[MV_FWD_C2] = un_mv;
618  h->mv[MV_BWD_C2] = un_mv;
619  }
620  /* clear top-left predictors if MB D is not available */
621  if(!(h->flags & D_AVAIL)) {
622  h->mv[MV_FWD_D3] = un_mv;
623  h->mv[MV_BWD_D3] = un_mv;
624  }
625 }
626 
627 /**
628  * save predictors for later macroblocks and increase
629  * macroblock address
630  * @return 0 if end of frame is reached, 1 otherwise
631  */
633  int i;
634 
635  h->flags |= A_AVAIL;
636  h->cy += 16;
637  h->cu += 8;
638  h->cv += 8;
639  /* copy mvs as predictors to the left */
640  for(i=0;i<=20;i+=4)
641  h->mv[i] = h->mv[i+2];
642  /* copy bottom mvs from cache to top line */
643  h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
644  h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
645  h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
646  h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
647  /* next MB address */
648  h->mbidx++;
649  h->mbx++;
650  if(h->mbx == h->mb_width) { //new mb line
651  h->flags = B_AVAIL|C_AVAIL;
652  /* clear left pred_modes */
653  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
654  /* clear left mv predictors */
655  for(i=0;i<=20;i+=4)
656  h->mv[i] = un_mv;
657  h->mbx = 0;
658  h->mby++;
659  /* re-calculate sample pointers */
660  h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
661  h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
662  h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
663  if(h->mby == h->mb_height) { //frame end
664  return 0;
665  }
666  }
667  return 1;
668 }
669 
670 /*****************************************************************************
671  *
672  * frame level
673  *
674  ****************************************************************************/
675 
677  int i;
678 
679  /* clear some predictors */
680  for(i=0;i<=20;i+=4)
681  h->mv[i] = un_mv;
683  set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
685  set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
686  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
687  h->cy = h->cur.f->data[0];
688  h->cu = h->cur.f->data[1];
689  h->cv = h->cur.f->data[2];
690  h->l_stride = h->cur.f->linesize[0];
691  h->c_stride = h->cur.f->linesize[1];
692  h->luma_scan[2] = 8*h->l_stride;
693  h->luma_scan[3] = 8*h->l_stride+8;
694  h->mbx = h->mby = h->mbidx = 0;
695  h->flags = 0;
696 
697  return 0;
698 }
699 
700 /*****************************************************************************
701  *
702  * headers and interface
703  *
704  ****************************************************************************/
705 
706 /**
707  * some predictions require data from the top-neighbouring macroblock.
708  * this data has to be stored for one complete row of macroblocks
709  * and this storage space is allocated here
710  */
712  /* alloc top line of predictors */
713  h->top_qp = av_mallocz( h->mb_width);
714  h->top_mv[0] = av_mallocz((h->mb_width*2+1)*sizeof(cavs_vector));
715  h->top_mv[1] = av_mallocz((h->mb_width*2+1)*sizeof(cavs_vector));
716  h->top_pred_Y = av_mallocz( h->mb_width*2*sizeof(*h->top_pred_Y));
717  h->top_border_y = av_mallocz((h->mb_width+1)*16);
718  h->top_border_u = av_mallocz( h->mb_width * 10);
719  h->top_border_v = av_mallocz( h->mb_width * 10);
720 
721  /* alloc space for co-located MVs and types */
722  h->col_mv = av_mallocz( h->mb_width*h->mb_height*4*sizeof(cavs_vector));
724  h->block = av_mallocz(64*sizeof(int16_t));
725 }
726 
728  AVSContext *h = avctx->priv_data;
729 
730  ff_dsputil_init(&h->dsp, avctx);
732  ff_videodsp_init(&h->vdsp, 8);
733  ff_cavsdsp_init(&h->cdsp, avctx);
735  h->cdsp.idct_perm);
737 
738  h->avctx = avctx;
739  avctx->pix_fmt= AV_PIX_FMT_YUV420P;
740 
741  h->cur.f = av_frame_alloc();
742  h->DPB[0].f = av_frame_alloc();
743  h->DPB[1].f = av_frame_alloc();
744  if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
745  ff_cavs_end(avctx);
746  return AVERROR(ENOMEM);
747  }
748 
749  h->luma_scan[0] = 0;
750  h->luma_scan[1] = 8;
766  h->mv[ 7] = un_mv;
767  h->mv[19] = un_mv;
768  return 0;
769 }
770 
772  AVSContext *h = avctx->priv_data;
773 
774  av_frame_free(&h->cur.f);
775  av_frame_free(&h->DPB[0].f);
776  av_frame_free(&h->DPB[1].f);
777 
778  av_free(h->top_qp);
779  av_free(h->top_mv[0]);
780  av_free(h->top_mv[1]);
781  av_free(h->top_pred_Y);
782  av_free(h->top_border_y);
783  av_free(h->top_border_u);
784  av_free(h->top_border_v);
785  av_free(h->col_mv);
787  av_free(h->block);
789  return 0;
790 }