23 #ifndef AACPS_TABLEGEN_H
24 #define AACPS_TABLEGEN_H
29 #if CONFIG_HARDCODED_TABLES
30 #define ps_tableinit()
31 #include "libavcodec/aacps_tables.h"
37 #define NR_ALLPASS_BANDS20 30
38 #define NR_ALLPASS_BANDS34 50
42 static float HA[46][8][4];
43 static float HB[46][8][4];
52 0.00746082949812f, 0.02270420949825f, 0.04546865930473f, 0.07266113929591f,
53 0.09885108575264f, 0.11793710567217f, 0.125f
57 0.04081179924692f, 0.03812810994926f, 0.05144908135699f, 0.06399831151592f,
58 0.07428313801106f, 0.08100347892914f, 0.08333333333333f
62 0.01565675600122f, 0.03752716391991f, 0.05417891378782f, 0.08417044116767f,
63 0.10307344158036f, 0.12222452249753f, 0.125f
67 -0.05908211155639f, -0.04871498374946f, 0.0f, 0.07778723915851f,
68 0.16486303567403f, 0.23279856662996f, 0.25f
74 for (q = 0; q < bands; q++) {
75 for (n = 0; n < 7; n++) {
76 double theta = 2 *
M_PI * (q + 0.5) * (n - 6) / bands;
77 filter[q][
n][0] = proto[
n] * cos(theta);
78 filter[q][
n][1] = proto[
n] * -sin(theta);
89 static const float iid_par_dequant[] = {
91 0.05623413251903, 0.12589254117942, 0.19952623149689, 0.31622776601684,
92 0.44668359215096, 0.63095734448019, 0.79432823472428, 1,
93 1.25892541179417, 1.58489319246111, 2.23872113856834, 3.16227766016838,
94 5.01187233627272, 7.94328234724282, 17.7827941003892,
96 0.00316227766017, 0.00562341325190, 0.01, 0.01778279410039,
97 0.03162277660168, 0.05623413251903, 0.07943282347243, 0.11220184543020,
98 0.15848931924611, 0.22387211385683, 0.31622776601684, 0.39810717055350,
99 0.50118723362727, 0.63095734448019, 0.79432823472428, 1,
100 1.25892541179417, 1.58489319246111, 1.99526231496888, 2.51188643150958,
101 3.16227766016838, 4.46683592150963, 6.30957344480193, 8.91250938133745,
102 12.5892541179417, 17.7827941003892, 31.6227766016838, 56.2341325190349,
103 100, 177.827941003892, 316.227766016837,
105 static const float icc_invq[] = {
106 1, 0.937, 0.84118, 0.60092, 0.36764, 0, -0.589, -1
108 static const float acos_icc_invq[] = {
109 0, 0.35685527, 0.57133466, 0.92614472, 1.1943263,
M_PI/2, 2.2006171,
M_PI
114 static const int8_t f_center_20[] = {
115 -3, -1, 1, 3, 5, 7, 10, 14, 18, 22,
117 static const int8_t f_center_34[] = {
118 2, 6, 10, 14, 18, 22, 26, 30,
119 34,-10, -6, -2, 51, 57, 15, 21,
120 27, 33, 39, 45, 54, 66, 78, 42,
121 102, 66, 78, 90,102,114,126, 90,
123 static const float fractional_delay_links[] = { 0.43f, 0.75f, 0.347f };
124 const float fractional_delay_gain = 0.39f;
126 for (pd0 = 0; pd0 < 8; pd0++) {
127 float pd0_re = ipdopd_cos[pd0];
128 float pd0_im = ipdopd_sin[pd0];
129 for (pd1 = 0; pd1 < 8; pd1++) {
130 float pd1_re = ipdopd_cos[pd1];
131 float pd1_im = ipdopd_sin[pd1];
132 for (pd2 = 0; pd2 < 8; pd2++) {
133 float pd2_re = ipdopd_cos[pd2];
134 float pd2_im = ipdopd_sin[pd2];
135 float re_smooth = 0.25f * pd0_re + 0.5f * pd1_re + pd2_re;
136 float im_smooth = 0.25f * pd0_im + 0.5f * pd1_im + pd2_im;
137 float pd_mag = 1 / sqrt(im_smooth * im_smooth + re_smooth * re_smooth);
144 for (iid = 0; iid < 46; iid++) {
145 float c = iid_par_dequant[iid];
146 float c1 = (float)
M_SQRT2 / sqrtf(1.0f + c*c);
148 for (icc = 0; icc < 8; icc++) {
150 float alpha = 0.5f * acos_icc_invq[icc];
152 HA[iid][icc][0] = c2 *
cosf(beta + alpha);
153 HA[iid][icc][1] = c1 *
cosf(beta - alpha);
154 HA[iid][icc][2] = c2 *
sinf(beta + alpha);
155 HA[iid][icc][3] = c1 *
sinf(beta - alpha);
157 float alpha, gamma, mu, rho;
158 float alpha_c, alpha_s, gamma_c, gamma_s;
159 rho =
FFMAX(icc_invq[icc], 0.05f);
160 alpha = 0.5f *
atan2f(2.0f * c * rho, c*c - 1.0f);
162 mu = sqrtf(1 + (4 * rho * rho - 4)/(mu * mu));
163 gamma =
atanf(sqrtf((1.0f - mu)/(1.0f + mu)));
164 if (alpha < 0) alpha +=
M_PI/2;
165 alpha_c =
cosf(alpha);
166 alpha_s =
sinf(alpha);
167 gamma_c =
cosf(gamma);
168 gamma_s =
sinf(gamma);
169 HB[iid][icc][0] =
M_SQRT2 * alpha_c * gamma_c;
170 HB[iid][icc][1] =
M_SQRT2 * alpha_s * gamma_c;
171 HB[iid][icc][2] = -
M_SQRT2 * alpha_s * gamma_s;
172 HB[iid][icc][3] =
M_SQRT2 * alpha_c * gamma_s;
178 double f_center, theta;
180 f_center = f_center_20[k] * 0.125;
184 theta = -
M_PI * fractional_delay_links[
m] * f_center;
188 theta = -
M_PI*fractional_delay_gain*f_center;
193 double f_center, theta;
195 f_center = f_center_34[k] / 24.;
197 f_center = k - 26.5f;
199 theta = -
M_PI * fractional_delay_links[
m] * f_center;
203 theta = -
M_PI*fractional_delay_gain*f_center;