00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00028 #include <float.h>
00029
00030 #include "avcodec.h"
00031 #include "put_bits.h"
00032 #include "celp_filters.h"
00033 #include "ra144.h"
00034
00035
00036 static av_cold int ra144_encode_init(AVCodecContext * avctx)
00037 {
00038 RA144Context *ractx;
00039 int ret;
00040
00041 if (avctx->sample_fmt != AV_SAMPLE_FMT_S16) {
00042 av_log(avctx, AV_LOG_ERROR, "invalid sample format\n");
00043 return -1;
00044 }
00045 if (avctx->channels != 1) {
00046 av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n",
00047 avctx->channels);
00048 return -1;
00049 }
00050 avctx->frame_size = NBLOCKS * BLOCKSIZE;
00051 avctx->bit_rate = 8000;
00052 ractx = avctx->priv_data;
00053 ractx->lpc_coef[0] = ractx->lpc_tables[0];
00054 ractx->lpc_coef[1] = ractx->lpc_tables[1];
00055 ractx->avctx = avctx;
00056 ret = ff_lpc_init(&ractx->lpc_ctx, avctx->frame_size, LPC_ORDER,
00057 FF_LPC_TYPE_LEVINSON);
00058 return ret;
00059 }
00060
00061
00062 static av_cold int ra144_encode_close(AVCodecContext *avctx)
00063 {
00064 RA144Context *ractx = avctx->priv_data;
00065 ff_lpc_end(&ractx->lpc_ctx);
00066 return 0;
00067 }
00068
00069
00080 static int quantize(int value, const int16_t *table, unsigned int size)
00081 {
00082 unsigned int low = 0, high = size - 1;
00083
00084 while (1) {
00085 int index = (low + high) >> 1;
00086 int error = table[index] - value;
00087
00088 if (index == low)
00089 return table[high] + error > value ? low : high;
00090 if (error > 0) {
00091 high = index;
00092 } else {
00093 low = index;
00094 }
00095 }
00096 }
00097
00098
00105 static void orthogonalize(float *v, const float *u)
00106 {
00107 int i;
00108 float num = 0, den = 0;
00109
00110 for (i = 0; i < BLOCKSIZE; i++) {
00111 num += v[i] * u[i];
00112 den += u[i] * u[i];
00113 }
00114 num /= den;
00115 for (i = 0; i < BLOCKSIZE; i++)
00116 v[i] -= num * u[i];
00117 }
00118
00119
00133 static void get_match_score(float *work, const float *coefs, float *vect,
00134 const float *ortho1, const float *ortho2,
00135 const float *data, float *score, float *gain)
00136 {
00137 float c, g;
00138 int i;
00139
00140 ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
00141 if (ortho1)
00142 orthogonalize(work, ortho1);
00143 if (ortho2)
00144 orthogonalize(work, ortho2);
00145 c = g = 0;
00146 for (i = 0; i < BLOCKSIZE; i++) {
00147 g += work[i] * work[i];
00148 c += data[i] * work[i];
00149 }
00150 if (c <= 0) {
00151 *score = 0;
00152 return;
00153 }
00154 *gain = c / g;
00155 *score = *gain * c;
00156 }
00157
00158
00166 static void create_adapt_vect(float *vect, const int16_t *cb, int lag)
00167 {
00168 int i;
00169
00170 cb += BUFFERSIZE - lag;
00171 for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++)
00172 vect[i] = cb[i];
00173 if (lag < BLOCKSIZE)
00174 for (i = 0; i < BLOCKSIZE - lag; i++)
00175 vect[lag + i] = cb[i];
00176 }
00177
00178
00189 static int adaptive_cb_search(const int16_t *adapt_cb, float *work,
00190 const float *coefs, float *data)
00191 {
00192 int i, best_vect;
00193 float score, gain, best_score, best_gain;
00194 float exc[BLOCKSIZE];
00195
00196 gain = best_score = 0;
00197 for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) {
00198 create_adapt_vect(exc, adapt_cb, i);
00199 get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain);
00200 if (score > best_score) {
00201 best_score = score;
00202 best_vect = i;
00203 best_gain = gain;
00204 }
00205 }
00206 if (!best_score)
00207 return 0;
00208
00213 create_adapt_vect(exc, adapt_cb, best_vect);
00214 ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER);
00215 for (i = 0; i < BLOCKSIZE; i++)
00216 data[i] -= best_gain * work[i];
00217 return best_vect - BLOCKSIZE / 2 + 1;
00218 }
00219
00220
00237 static void find_best_vect(float *work, const float *coefs,
00238 const int8_t cb[][BLOCKSIZE], const float *ortho1,
00239 const float *ortho2, float *data, int *idx,
00240 float *gain)
00241 {
00242 int i, j;
00243 float g, score, best_score;
00244 float vect[BLOCKSIZE];
00245
00246 *idx = *gain = best_score = 0;
00247 for (i = 0; i < FIXED_CB_SIZE; i++) {
00248 for (j = 0; j < BLOCKSIZE; j++)
00249 vect[j] = cb[i][j];
00250 get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g);
00251 if (score > best_score) {
00252 best_score = score;
00253 *idx = i;
00254 *gain = g;
00255 }
00256 }
00257 }
00258
00259
00272 static void fixed_cb_search(float *work, const float *coefs, float *data,
00273 int cba_idx, int *cb1_idx, int *cb2_idx)
00274 {
00275 int i, ortho_cb1;
00276 float gain;
00277 float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];
00278 float vect[BLOCKSIZE];
00279
00284 if (cba_idx)
00285 memcpy(cba_vect, work, sizeof(cba_vect));
00286
00287 find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL,
00288 data, cb1_idx, &gain);
00289
00294 if (gain) {
00295 for (i = 0; i < BLOCKSIZE; i++)
00296 vect[i] = ff_cb1_vects[*cb1_idx][i];
00297 ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
00298 if (cba_idx)
00299 orthogonalize(work, cba_vect);
00300 for (i = 0; i < BLOCKSIZE; i++)
00301 data[i] -= gain * work[i];
00302 memcpy(cb1_vect, work, sizeof(cb1_vect));
00303 ortho_cb1 = 1;
00304 } else
00305 ortho_cb1 = 0;
00306
00307 find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,
00308 ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);
00309 }
00310
00311
00321 static void ra144_encode_subblock(RA144Context *ractx,
00322 const int16_t *sblock_data,
00323 const int16_t *lpc_coefs, unsigned int rms,
00324 PutBitContext *pb)
00325 {
00326 float data[BLOCKSIZE], work[LPC_ORDER + BLOCKSIZE];
00327 float coefs[LPC_ORDER];
00328 float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];
00329 int16_t cba_vect[BLOCKSIZE];
00330 int cba_idx, cb1_idx, cb2_idx, gain;
00331 int i, n, m[3];
00332 float g[3];
00333 float error, best_error;
00334
00335 for (i = 0; i < LPC_ORDER; i++) {
00336 work[i] = ractx->curr_sblock[BLOCKSIZE + i];
00337 coefs[i] = lpc_coefs[i] * (1/4096.0);
00338 }
00339
00344 memset(data, 0, sizeof(data));
00345 ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE,
00346 LPC_ORDER);
00347 for (i = 0; i < BLOCKSIZE; i++) {
00348 zero[i] = work[LPC_ORDER + i];
00349 data[i] = sblock_data[i] - zero[i];
00350 }
00351
00357 memset(work, 0, LPC_ORDER * sizeof(*work));
00358
00359 cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs,
00360 data);
00361 if (cba_idx) {
00366 memcpy(cba, work + LPC_ORDER, sizeof(cba));
00367
00368 ff_copy_and_dup(cba_vect, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1);
00369 m[0] = (ff_irms(cba_vect) * rms) >> 12;
00370 }
00371 fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx);
00372 for (i = 0; i < BLOCKSIZE; i++) {
00373 cb1[i] = ff_cb1_vects[cb1_idx][i];
00374 cb2[i] = ff_cb2_vects[cb2_idx][i];
00375 }
00376 ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE,
00377 LPC_ORDER);
00378 memcpy(cb1, work + LPC_ORDER, sizeof(cb1));
00379 m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8;
00380 ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE,
00381 LPC_ORDER);
00382 memcpy(cb2, work + LPC_ORDER, sizeof(cb2));
00383 m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8;
00384 best_error = FLT_MAX;
00385 gain = 0;
00386 for (n = 0; n < 256; n++) {
00387 g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) *
00388 (1/4096.0);
00389 g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) *
00390 (1/4096.0);
00391 error = 0;
00392 if (cba_idx) {
00393 g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) *
00394 (1/4096.0);
00395 for (i = 0; i < BLOCKSIZE; i++) {
00396 data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] +
00397 g[2] * cb2[i];
00398 error += (data[i] - sblock_data[i]) *
00399 (data[i] - sblock_data[i]);
00400 }
00401 } else {
00402 for (i = 0; i < BLOCKSIZE; i++) {
00403 data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i];
00404 error += (data[i] - sblock_data[i]) *
00405 (data[i] - sblock_data[i]);
00406 }
00407 }
00408 if (error < best_error) {
00409 best_error = error;
00410 gain = n;
00411 }
00412 }
00413 put_bits(pb, 7, cba_idx);
00414 put_bits(pb, 8, gain);
00415 put_bits(pb, 7, cb1_idx);
00416 put_bits(pb, 7, cb2_idx);
00417 ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms,
00418 gain);
00419 }
00420
00421
00422 static int ra144_encode_frame(AVCodecContext *avctx, uint8_t *frame,
00423 int buf_size, void *data)
00424 {
00425 static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4};
00426 static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
00427 RA144Context *ractx;
00428 PutBitContext pb;
00429 int32_t lpc_data[NBLOCKS * BLOCKSIZE];
00430 int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER];
00431 int shift[LPC_ORDER];
00432 int16_t block_coefs[NBLOCKS][LPC_ORDER];
00433 int lpc_refl[LPC_ORDER];
00434 unsigned int refl_rms[NBLOCKS];
00435 int energy = 0;
00436 int i, idx;
00437
00438 if (buf_size < FRAMESIZE) {
00439 av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
00440 return 0;
00441 }
00442 ractx = avctx->priv_data;
00443
00451 for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) {
00452 lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];
00453 energy += (lpc_data[i] * lpc_data[i]) >> 4;
00454 }
00455 for (i = 2 * BLOCKSIZE + BLOCKSIZE / 2; i < NBLOCKS * BLOCKSIZE; i++) {
00456 lpc_data[i] = *((int16_t *)data + i - 2 * BLOCKSIZE - BLOCKSIZE / 2) >>
00457 2;
00458 energy += (lpc_data[i] * lpc_data[i]) >> 4;
00459 }
00460 energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab,
00461 32)];
00462
00463 ff_lpc_calc_coefs(&ractx->lpc_ctx, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER,
00464 LPC_ORDER, 16, lpc_coefs, shift, FF_LPC_TYPE_LEVINSON,
00465 0, ORDER_METHOD_EST, 12, 0);
00466 for (i = 0; i < LPC_ORDER; i++)
00467 block_coefs[NBLOCKS - 1][i] = -(lpc_coefs[LPC_ORDER - 1][i] <<
00468 (12 - shift[LPC_ORDER - 1]));
00469
00475 if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
00479 ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]);
00480 if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
00481
00482 memset(lpc_refl, 0, sizeof(lpc_refl));
00483 }
00484 }
00485 init_put_bits(&pb, frame, buf_size);
00486 for (i = 0; i < LPC_ORDER; i++) {
00487 idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]);
00488 put_bits(&pb, bit_sizes[i], idx);
00489 lpc_refl[i] = ff_lpc_refl_cb[i][idx];
00490 }
00491 ractx->lpc_refl_rms[0] = ff_rms(lpc_refl);
00492 ff_eval_coefs(ractx->lpc_coef[0], lpc_refl);
00493 refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
00494 refl_rms[1] = ff_interp(ractx, block_coefs[1], 2,
00495 energy <= ractx->old_energy,
00496 ff_t_sqrt(energy * ractx->old_energy) >> 12);
00497 refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy);
00498 refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy);
00499 ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]);
00500 put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32));
00501 for (i = 0; i < NBLOCKS; i++)
00502 ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE,
00503 block_coefs[i], refl_rms[i], &pb);
00504 flush_put_bits(&pb);
00505 ractx->old_energy = energy;
00506 ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
00507 FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
00508 for (i = 0; i < NBLOCKS * BLOCKSIZE; i++)
00509 ractx->curr_block[i] = *((int16_t *)data + i) >> 2;
00510 return FRAMESIZE;
00511 }
00512
00513
00514 AVCodec ff_ra_144_encoder = {
00515 .name = "real_144",
00516 .type = AVMEDIA_TYPE_AUDIO,
00517 .id = CODEC_ID_RA_144,
00518 .priv_data_size = sizeof(RA144Context),
00519 .init = ra144_encode_init,
00520 .encode = ra144_encode_frame,
00521 .close = ra144_encode_close,
00522 .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
00523 AV_SAMPLE_FMT_NONE },
00524 .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K) encoder"),
00525 };