00001
00022 #include "avcodec.h"
00023 #include "put_bits.h"
00024 #include "dsputil.h"
00025 #include "lpc.h"
00026 #include "mathops.h"
00027
00028 #define DEFAULT_FRAME_SIZE 4096
00029 #define DEFAULT_SAMPLE_SIZE 16
00030 #define MAX_CHANNELS 8
00031 #define ALAC_EXTRADATA_SIZE 36
00032 #define ALAC_FRAME_HEADER_SIZE 55
00033 #define ALAC_FRAME_FOOTER_SIZE 3
00034
00035 #define ALAC_ESCAPE_CODE 0x1FF
00036 #define ALAC_MAX_LPC_ORDER 30
00037 #define DEFAULT_MAX_PRED_ORDER 6
00038 #define DEFAULT_MIN_PRED_ORDER 4
00039 #define ALAC_MAX_LPC_PRECISION 9
00040 #define ALAC_MAX_LPC_SHIFT 9
00041
00042 #define ALAC_CHMODE_LEFT_RIGHT 0
00043 #define ALAC_CHMODE_LEFT_SIDE 1
00044 #define ALAC_CHMODE_RIGHT_SIDE 2
00045 #define ALAC_CHMODE_MID_SIDE 3
00046
00047 typedef struct RiceContext {
00048 int history_mult;
00049 int initial_history;
00050 int k_modifier;
00051 int rice_modifier;
00052 } RiceContext;
00053
00054 typedef struct AlacLPCContext {
00055 int lpc_order;
00056 int lpc_coeff[ALAC_MAX_LPC_ORDER+1];
00057 int lpc_quant;
00058 } AlacLPCContext;
00059
00060 typedef struct AlacEncodeContext {
00061 int compression_level;
00062 int min_prediction_order;
00063 int max_prediction_order;
00064 int max_coded_frame_size;
00065 int write_sample_size;
00066 int32_t sample_buf[MAX_CHANNELS][DEFAULT_FRAME_SIZE];
00067 int32_t predictor_buf[DEFAULT_FRAME_SIZE];
00068 int interlacing_shift;
00069 int interlacing_leftweight;
00070 PutBitContext pbctx;
00071 RiceContext rc;
00072 AlacLPCContext lpc[MAX_CHANNELS];
00073 LPCContext lpc_ctx;
00074 AVCodecContext *avctx;
00075 } AlacEncodeContext;
00076
00077
00078 static void init_sample_buffers(AlacEncodeContext *s,
00079 const int16_t *input_samples)
00080 {
00081 int ch, i;
00082
00083 for (ch = 0; ch < s->avctx->channels; ch++) {
00084 const int16_t *sptr = input_samples + ch;
00085 for (i = 0; i < s->avctx->frame_size; i++) {
00086 s->sample_buf[ch][i] = *sptr;
00087 sptr += s->avctx->channels;
00088 }
00089 }
00090 }
00091
00092 static void encode_scalar(AlacEncodeContext *s, int x,
00093 int k, int write_sample_size)
00094 {
00095 int divisor, q, r;
00096
00097 k = FFMIN(k, s->rc.k_modifier);
00098 divisor = (1<<k) - 1;
00099 q = x / divisor;
00100 r = x % divisor;
00101
00102 if (q > 8) {
00103
00104 put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
00105 put_bits(&s->pbctx, write_sample_size, x);
00106 } else {
00107 if (q)
00108 put_bits(&s->pbctx, q, (1<<q) - 1);
00109 put_bits(&s->pbctx, 1, 0);
00110
00111 if (k != 1) {
00112 if (r > 0)
00113 put_bits(&s->pbctx, k, r+1);
00114 else
00115 put_bits(&s->pbctx, k-1, 0);
00116 }
00117 }
00118 }
00119
00120 static void write_frame_header(AlacEncodeContext *s, int is_verbatim)
00121 {
00122 put_bits(&s->pbctx, 3, s->avctx->channels-1);
00123 put_bits(&s->pbctx, 16, 0);
00124 put_bits(&s->pbctx, 1, 1);
00125 put_bits(&s->pbctx, 2, 0);
00126 put_bits(&s->pbctx, 1, is_verbatim);
00127 put_bits32(&s->pbctx, s->avctx->frame_size);
00128 }
00129
00130 static void calc_predictor_params(AlacEncodeContext *s, int ch)
00131 {
00132 int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
00133 int shift[MAX_LPC_ORDER];
00134 int opt_order;
00135
00136 if (s->compression_level == 1) {
00137 s->lpc[ch].lpc_order = 6;
00138 s->lpc[ch].lpc_quant = 6;
00139 s->lpc[ch].lpc_coeff[0] = 160;
00140 s->lpc[ch].lpc_coeff[1] = -190;
00141 s->lpc[ch].lpc_coeff[2] = 170;
00142 s->lpc[ch].lpc_coeff[3] = -130;
00143 s->lpc[ch].lpc_coeff[4] = 80;
00144 s->lpc[ch].lpc_coeff[5] = -25;
00145 } else {
00146 opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch],
00147 s->avctx->frame_size,
00148 s->min_prediction_order,
00149 s->max_prediction_order,
00150 ALAC_MAX_LPC_PRECISION, coefs, shift,
00151 FF_LPC_TYPE_LEVINSON, 0,
00152 ORDER_METHOD_EST, ALAC_MAX_LPC_SHIFT, 1);
00153
00154 s->lpc[ch].lpc_order = opt_order;
00155 s->lpc[ch].lpc_quant = shift[opt_order-1];
00156 memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
00157 }
00158 }
00159
00160 static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
00161 {
00162 int i, best;
00163 int32_t lt, rt;
00164 uint64_t sum[4];
00165 uint64_t score[4];
00166
00167
00168 sum[0] = sum[1] = sum[2] = sum[3] = 0;
00169 for (i = 2; i < n; i++) {
00170 lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
00171 rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
00172 sum[2] += FFABS((lt + rt) >> 1);
00173 sum[3] += FFABS(lt - rt);
00174 sum[0] += FFABS(lt);
00175 sum[1] += FFABS(rt);
00176 }
00177
00178
00179 score[0] = sum[0] + sum[1];
00180 score[1] = sum[0] + sum[3];
00181 score[2] = sum[1] + sum[3];
00182 score[3] = sum[2] + sum[3];
00183
00184
00185 best = 0;
00186 for (i = 1; i < 4; i++) {
00187 if (score[i] < score[best]) {
00188 best = i;
00189 }
00190 }
00191 return best;
00192 }
00193
00194 static void alac_stereo_decorrelation(AlacEncodeContext *s)
00195 {
00196 int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
00197 int i, mode, n = s->avctx->frame_size;
00198 int32_t tmp;
00199
00200 mode = estimate_stereo_mode(left, right, n);
00201
00202 switch(mode)
00203 {
00204 case ALAC_CHMODE_LEFT_RIGHT:
00205 s->interlacing_leftweight = 0;
00206 s->interlacing_shift = 0;
00207 break;
00208
00209 case ALAC_CHMODE_LEFT_SIDE:
00210 for (i = 0; i < n; i++) {
00211 right[i] = left[i] - right[i];
00212 }
00213 s->interlacing_leftweight = 1;
00214 s->interlacing_shift = 0;
00215 break;
00216
00217 case ALAC_CHMODE_RIGHT_SIDE:
00218 for (i = 0; i < n; i++) {
00219 tmp = right[i];
00220 right[i] = left[i] - right[i];
00221 left[i] = tmp + (right[i] >> 31);
00222 }
00223 s->interlacing_leftweight = 1;
00224 s->interlacing_shift = 31;
00225 break;
00226
00227 default:
00228 for (i = 0; i < n; i++) {
00229 tmp = left[i];
00230 left[i] = (tmp + right[i]) >> 1;
00231 right[i] = tmp - right[i];
00232 }
00233 s->interlacing_leftweight = 1;
00234 s->interlacing_shift = 1;
00235 break;
00236 }
00237 }
00238
00239 static void alac_linear_predictor(AlacEncodeContext *s, int ch)
00240 {
00241 int i;
00242 AlacLPCContext lpc = s->lpc[ch];
00243
00244 if (lpc.lpc_order == 31) {
00245 s->predictor_buf[0] = s->sample_buf[ch][0];
00246
00247 for (i = 1; i < s->avctx->frame_size; i++)
00248 s->predictor_buf[i] = s->sample_buf[ch][i] - s->sample_buf[ch][i-1];
00249
00250 return;
00251 }
00252
00253
00254
00255 if (lpc.lpc_order > 0) {
00256 int32_t *samples = s->sample_buf[ch];
00257 int32_t *residual = s->predictor_buf;
00258
00259
00260 residual[0] = samples[0];
00261 for (i = 1; i <= lpc.lpc_order; i++)
00262 residual[i] = samples[i] - samples[i-1];
00263
00264
00265 for (i = lpc.lpc_order + 1; i < s->avctx->frame_size; i++) {
00266 int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
00267
00268 for (j = 0; j < lpc.lpc_order; j++) {
00269 sum += (samples[lpc.lpc_order-j] - samples[0]) *
00270 lpc.lpc_coeff[j];
00271 }
00272
00273 sum >>= lpc.lpc_quant;
00274 sum += samples[0];
00275 residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum,
00276 s->write_sample_size);
00277 res_val = residual[i];
00278
00279 if(res_val) {
00280 int index = lpc.lpc_order - 1;
00281 int neg = (res_val < 0);
00282
00283 while(index >= 0 && (neg ? (res_val < 0):(res_val > 0))) {
00284 int val = samples[0] - samples[lpc.lpc_order - index];
00285 int sign = (val ? FFSIGN(val) : 0);
00286
00287 if(neg)
00288 sign*=-1;
00289
00290 lpc.lpc_coeff[index] -= sign;
00291 val *= sign;
00292 res_val -= ((val >> lpc.lpc_quant) *
00293 (lpc.lpc_order - index));
00294 index--;
00295 }
00296 }
00297 samples++;
00298 }
00299 }
00300 }
00301
00302 static void alac_entropy_coder(AlacEncodeContext *s)
00303 {
00304 unsigned int history = s->rc.initial_history;
00305 int sign_modifier = 0, i, k;
00306 int32_t *samples = s->predictor_buf;
00307
00308 for (i = 0; i < s->avctx->frame_size;) {
00309 int x;
00310
00311 k = av_log2((history >> 9) + 3);
00312
00313 x = -2*(*samples)-1;
00314 x ^= (x>>31);
00315
00316 samples++;
00317 i++;
00318
00319 encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
00320
00321 history += x * s->rc.history_mult
00322 - ((history * s->rc.history_mult) >> 9);
00323
00324 sign_modifier = 0;
00325 if (x > 0xFFFF)
00326 history = 0xFFFF;
00327
00328 if (history < 128 && i < s->avctx->frame_size) {
00329 unsigned int block_size = 0;
00330
00331 k = 7 - av_log2(history) + ((history + 16) >> 6);
00332
00333 while (*samples == 0 && i < s->avctx->frame_size) {
00334 samples++;
00335 i++;
00336 block_size++;
00337 }
00338 encode_scalar(s, block_size, k, 16);
00339
00340 sign_modifier = (block_size <= 0xFFFF);
00341
00342 history = 0;
00343 }
00344
00345 }
00346 }
00347
00348 static void write_compressed_frame(AlacEncodeContext *s)
00349 {
00350 int i, j;
00351 int prediction_type = 0;
00352
00353 if (s->avctx->channels == 2)
00354 alac_stereo_decorrelation(s);
00355 put_bits(&s->pbctx, 8, s->interlacing_shift);
00356 put_bits(&s->pbctx, 8, s->interlacing_leftweight);
00357
00358 for (i = 0; i < s->avctx->channels; i++) {
00359
00360 calc_predictor_params(s, i);
00361
00362 put_bits(&s->pbctx, 4, prediction_type);
00363 put_bits(&s->pbctx, 4, s->lpc[i].lpc_quant);
00364
00365 put_bits(&s->pbctx, 3, s->rc.rice_modifier);
00366 put_bits(&s->pbctx, 5, s->lpc[i].lpc_order);
00367
00368 for (j = 0; j < s->lpc[i].lpc_order; j++) {
00369 put_sbits(&s->pbctx, 16, s->lpc[i].lpc_coeff[j]);
00370 }
00371 }
00372
00373
00374
00375 for (i = 0; i < s->avctx->channels; i++) {
00376 alac_linear_predictor(s, i);
00377
00378
00379 if (prediction_type == 15) {
00380
00381 for (j = s->avctx->frame_size - 1; j > 0; j--)
00382 s->predictor_buf[j] -= s->predictor_buf[j - 1];
00383 }
00384
00385 alac_entropy_coder(s);
00386 }
00387 }
00388
00389 static av_cold int alac_encode_init(AVCodecContext *avctx)
00390 {
00391 AlacEncodeContext *s = avctx->priv_data;
00392 int ret;
00393 uint8_t *alac_extradata = av_mallocz(ALAC_EXTRADATA_SIZE+1);
00394
00395 avctx->frame_size = DEFAULT_FRAME_SIZE;
00396 avctx->bits_per_coded_sample = DEFAULT_SAMPLE_SIZE;
00397
00398 if (avctx->sample_fmt != AV_SAMPLE_FMT_S16) {
00399 av_log(avctx, AV_LOG_ERROR, "only pcm_s16 input samples are supported\n");
00400 return -1;
00401 }
00402
00403
00404
00405
00406 if (avctx->channels > 2) {
00407 av_log(avctx, AV_LOG_ERROR, "only mono or stereo input is currently supported\n");
00408 return AVERROR_PATCHWELCOME;
00409 }
00410
00411
00412 if (avctx->compression_level == FF_COMPRESSION_DEFAULT)
00413 s->compression_level = 2;
00414 else
00415 s->compression_level = av_clip(avctx->compression_level, 0, 2);
00416
00417
00418 s->rc.history_mult = 40;
00419 s->rc.initial_history = 10;
00420 s->rc.k_modifier = 14;
00421 s->rc.rice_modifier = 4;
00422
00423 s->max_coded_frame_size = 8 + (avctx->frame_size*avctx->channels*avctx->bits_per_coded_sample>>3);
00424
00425 s->write_sample_size = avctx->bits_per_coded_sample + avctx->channels - 1;
00426
00427 AV_WB32(alac_extradata, ALAC_EXTRADATA_SIZE);
00428 AV_WB32(alac_extradata+4, MKBETAG('a','l','a','c'));
00429 AV_WB32(alac_extradata+12, avctx->frame_size);
00430 AV_WB8 (alac_extradata+17, avctx->bits_per_coded_sample);
00431 AV_WB8 (alac_extradata+21, avctx->channels);
00432 AV_WB32(alac_extradata+24, s->max_coded_frame_size);
00433 AV_WB32(alac_extradata+28,
00434 avctx->sample_rate * avctx->channels * avctx->bits_per_coded_sample);
00435 AV_WB32(alac_extradata+32, avctx->sample_rate);
00436
00437
00438 if (s->compression_level > 0) {
00439 AV_WB8(alac_extradata+18, s->rc.history_mult);
00440 AV_WB8(alac_extradata+19, s->rc.initial_history);
00441 AV_WB8(alac_extradata+20, s->rc.k_modifier);
00442 }
00443
00444 s->min_prediction_order = DEFAULT_MIN_PRED_ORDER;
00445 if (avctx->min_prediction_order >= 0) {
00446 if (avctx->min_prediction_order < MIN_LPC_ORDER ||
00447 avctx->min_prediction_order > ALAC_MAX_LPC_ORDER) {
00448 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
00449 avctx->min_prediction_order);
00450 return -1;
00451 }
00452
00453 s->min_prediction_order = avctx->min_prediction_order;
00454 }
00455
00456 s->max_prediction_order = DEFAULT_MAX_PRED_ORDER;
00457 if (avctx->max_prediction_order >= 0) {
00458 if (avctx->max_prediction_order < MIN_LPC_ORDER ||
00459 avctx->max_prediction_order > ALAC_MAX_LPC_ORDER) {
00460 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
00461 avctx->max_prediction_order);
00462 return -1;
00463 }
00464
00465 s->max_prediction_order = avctx->max_prediction_order;
00466 }
00467
00468 if (s->max_prediction_order < s->min_prediction_order) {
00469 av_log(avctx, AV_LOG_ERROR,
00470 "invalid prediction orders: min=%d max=%d\n",
00471 s->min_prediction_order, s->max_prediction_order);
00472 return -1;
00473 }
00474
00475 avctx->extradata = alac_extradata;
00476 avctx->extradata_size = ALAC_EXTRADATA_SIZE;
00477
00478 avctx->coded_frame = avcodec_alloc_frame();
00479 avctx->coded_frame->key_frame = 1;
00480
00481 s->avctx = avctx;
00482 ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size, s->max_prediction_order,
00483 FF_LPC_TYPE_LEVINSON);
00484
00485 return ret;
00486 }
00487
00488 static int alac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
00489 int buf_size, void *data)
00490 {
00491 AlacEncodeContext *s = avctx->priv_data;
00492 PutBitContext *pb = &s->pbctx;
00493 int i, out_bytes, verbatim_flag = 0;
00494
00495 if (avctx->frame_size > DEFAULT_FRAME_SIZE) {
00496 av_log(avctx, AV_LOG_ERROR, "input frame size exceeded\n");
00497 return -1;
00498 }
00499
00500 if (buf_size < 2 * s->max_coded_frame_size) {
00501 av_log(avctx, AV_LOG_ERROR, "buffer size is too small\n");
00502 return -1;
00503 }
00504
00505 verbatim:
00506 init_put_bits(pb, frame, buf_size);
00507
00508 if (s->compression_level == 0 || verbatim_flag) {
00509
00510 const int16_t *samples = data;
00511 write_frame_header(s, 1);
00512 for (i = 0; i < avctx->frame_size * avctx->channels; i++) {
00513 put_sbits(pb, 16, *samples++);
00514 }
00515 } else {
00516 init_sample_buffers(s, data);
00517 write_frame_header(s, 0);
00518 write_compressed_frame(s);
00519 }
00520
00521 put_bits(pb, 3, 7);
00522 flush_put_bits(pb);
00523 out_bytes = put_bits_count(pb) >> 3;
00524
00525 if (out_bytes > s->max_coded_frame_size) {
00526
00527 if (verbatim_flag || s->compression_level == 0) {
00528
00529 av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
00530 return -1;
00531 }
00532 verbatim_flag = 1;
00533 goto verbatim;
00534 }
00535
00536 return out_bytes;
00537 }
00538
00539 static av_cold int alac_encode_close(AVCodecContext *avctx)
00540 {
00541 AlacEncodeContext *s = avctx->priv_data;
00542 ff_lpc_end(&s->lpc_ctx);
00543 av_freep(&avctx->extradata);
00544 avctx->extradata_size = 0;
00545 av_freep(&avctx->coded_frame);
00546 return 0;
00547 }
00548
00549 AVCodec ff_alac_encoder = {
00550 .name = "alac",
00551 .type = AVMEDIA_TYPE_AUDIO,
00552 .id = CODEC_ID_ALAC,
00553 .priv_data_size = sizeof(AlacEncodeContext),
00554 .init = alac_encode_init,
00555 .encode = alac_encode_frame,
00556 .close = alac_encode_close,
00557 .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
00558 .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
00559 AV_SAMPLE_FMT_NONE },
00560 .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
00561 };